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Abstract: The aim of this paper is to present some properties of the Baer-invariant of a pair of groups with respect to

a given variety of groups V . We derive some equalities and inequalities of the Baer-invariant of a pair of finite groups,

as long as V is considered to be a Schur-Baer variety. Moreover, we present a relative version of the concept of lower

marginal series and give some isomorphisms among VG -marginal factor groups. Also, we conclude a generalized version

of the Stallings’ theorem.
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1. Introduction and preliminaries

Let F∞ be the free group freely generated by the countable set X = {x1, x2, ...} , and V be a subset of F∞ .
Let V be the variety of groups defined by the set of laws V . We assume that the reader is familiar with the
notions of the verbal subgroup, V (G), and the marginal subgroup, V ∗(G), associated with the variety of groups

V and a given group G (see [14] for more information on varieties of groups). Variety V is called a Schur-Baer

variety if for any group G in which the marginal factor group G/V ∗(G) is finite, then the verbal subgroup

V (G) is also finite. Schur [17] proved that the variety of abelian groups is a Schur-Baer variety and Baer [2]
showed that a variety defined by outer commutator words carries this property.

Let G be any group with a normal subgroup N, then we define [NV∗G] to be the subgroup of G generated
by the following set:

{ν(g1, g2, ..., gin, ..., gr)ν(g1, g2, ..., gr)−1 | 1 ≤ i ≤ r, ν ∈ V, g1, ..., gr ∈ G, n ∈ N }.

It is easily checked that [NV∗G] is the smallest normal subgroup T of G contained in N, such that N /T is

contained in V∗(G/T ).

The following lemma gives the basic properties of the verbal and marginal subgroups of a group G with
respect to the variety of groups V which is useful in our investigation, so you may see [7] .

Lemma 1.1 Let V be a variety of groups defined by a set of laws V and N be a normal subgroup of a given
group G . Then
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(i) G ∈ V ⇐⇒ V (G) = 1 ⇐⇒ V ∗(G) = G;

(ii) V (G/N) = V (G)N/N and V ∗(G/N) ⊇ V ∗(G)N/N ;

(iii) N ⊆ V ∗(G) ⇐⇒ [NV ∗G ] = 1;

(iv) V (N) ⊆ [NV ∗G ] ⊆ N ∩ V (G). In particular, V (G) = [GV ∗G ] ;

(v) V (V ∗(G)) = 1 and V ∗(G/V (G)) = G/V (G) .

Let 1 → R → F → G → 1 be a free presentation of the group G and N be a normal subgroup of G such that
N ∼= S/R , for a normal subgroup S of the free group F. Then we define the Baer-invariant of a pair of groups

(G, N) with respect to the variety V denoted by VM(G, N) to be

R ∩ [SV ∗F ]
[RV ∗F ]

.

One may check that VM(G, N) is an abelian group and independent of the choice of the free presentation of

G (see [11, 13]). If N = G , then the Baer-invariant of the pair (G, G) will be (R ∩ V (F ))/[RV ∗F ] which

is the usual Baer-invariant of the group G (denoted by VM(G)). The first modern treatment about Baer-

invariants is conducted by Fröhlich [4] , who considered associative algebras, and named the invariants after

Baer ′ s group-theoretical papers [1] . Furtado-Coelho and Lue [6, 10] worked in the context of Higgins’ varieties

of Ω-groups [3] . In particular, if V is the variety of abelian groups, then Baer-invariant of the group G will be

(R ∩ [F, F ])/[R, F ] which by Schur [18] is isomorphic to the Schur multiplier of G .

It is interesting to know the connection between the Baer-invariant of a pair of finite groups (G, N) and

its factor groups with respect to the Schur-Baer variety V . Jones [9] gave some inequalities for the Schur

multiplier of a finite group G and its factor group. Moghaddam et al. [13] generalized these inequalities to a
pair of finite groups. In the next section, we give generalized version of these inequalities for the Baer-invariant
of a pair of groups and its factor groups (Theorem 2.3). We also give some necessary and sufficient conditions

for establishing connection between the orders of the Baer-invariants of pair of finite groups (Theorem 2.4). In
the final section, we show that under some circumstances there are some isomorphisms among VG -marginal
factor groups (Theorem 3.3). Also, we extend the works of Stallings (Theorem 3.5).

2. Some inequalities

In the following lemma we present some exact sequences for the Baer-invariant of a pair of groups and its factor
groups.

Lemma 2.1 Let G be a group with a free presentation 1 → R → F → G → 1◦, also S and T are normal
subgroups of the free group F such that T ⊆ S , S/R ∼= N and T/R ∼= K . Then the following sequences are
exact:

(i) 1 → R ∩ [TV ∗F ]
[RV ∗F ]

→ VM(G, N) α→ VM(G/K, N/K) β→ K ∩ [NV ∗G]
[KV ∗G]

→ 1;

(ii) If K is contained in V ∗(G), then

1 → R ∩ [SV ∗F ]
[TV ∗F ] ∩ [SV ∗F ]

→ VM(G/K, N/K) → K
γ→ N

[NV ∗G]
θ→ N

[NV ∗G]K
→ 1 .
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Proof By the definition of the Baer-invariant of the pair of groups, we can conclude:

VM(G, K) =
R ∩ [TV ∗F ]

[RV ∗F ]
VM(G, N) =

R ∩ [SV ∗F ]
[RV ∗F ]

,

K ∩ [NV ∗G]
[KV ∗G]

=
(T ∩ [SV ∗F ])R

[TV ∗F ]R
.

One can easily check that the sequence (i) is exact.

(ii) Using the assumption and Lemma 1.1, then we have [TV ∗F ] ⊆ R . One can easily check that the following
sequence is exact:

1 → R ∩ [SV ∗F ]
[TV ∗F ] ∩ [SV ∗F ]

→ T ∩ [SV ∗F ]
[TV ∗F ]

→ T/R → S

[SV ∗F ]R
→ S

[SV ∗F ]T
→ 1.

�

Now we introduce a relative version of the concept of lower marginal series.

Definition 2.2 Let N be a normal subgroup of a group G . Then we define a series of normal subgroups of N

as follows:
N = V0(N, G) ⊇ V1(N, G) ⊇ V2(N, G) ⊇ · · · ⊇ Vn(N, G) ⊇ · · · ,

where Vi(N, G) = [Vi−1(N, G)V ∗G] for all n ≥ 1 . We call such a series the lower VG -marginal series of N

in G . One may also define the upper VG -marginal series as in [12] .
We say that the normal subgroup N of G is VG -nilpotent if it has a finite lower VG -marginal series. The
shortest length of such series is called the class of VG -nilpotency of N in G .

If N = G , then this is called lower V -marginal series of G . The group G is said to be V -nilpotent iff Vn(G) = 1,

for some positive integer n [5] .

In 2002, Moghaddam et al. [12] proved that for finite group G , VM(G) and hence VM(G, N) are finite
when V is a Schur-Baer variety. Therefore, throughout the rest of this section we always assume that V is a
variety of groups which enjoys the Schur-Baer property. By the Definition 2.2 and using Lemma 2.1(i) we have
the following theorem.

Theorem 2.3 Let G be a finite group with a free presentation 1 → R → F → G → 1 and S be a normal
subgroup of the free group F such that S/R ∼= N . If N is a subgroup VG -nilpotent of G of class c ≥ 2 , then

(i) | Vc−1(N, G) || VM(G, N) |=
∣∣VM(

G

Vc−1(N, G)
,

N

Vc−1(N, G)
)
∣∣∣∣∣ [Vc−1(S, F )RV ∗F ]

[RV ∗F ]

∣∣∣;

(ii) d(VM(G, N)) ≤ d
(
VM(

G

Vc−1(N, G)
,

N

Vc−1(N, G)
)
)

+ d
( [Vc−1(S, F )RV ∗F ]

[RV ∗F ]

)
;

(iii) e(VM(G, N)) divides e
(
VM(

G

Vc−1(N, G)
,

N

Vc−1(N, G)
)
)
e
( [Vc−1(S, F )RV ∗F ]

[RV ∗F ]

)
.

where e(X) and d(X) are the exponent and the minimal number of generators of a group X, respectively.

261



RISMANCHIAN and ARASKHAN/Turk J Math

Proof By Lemma 2.1(i) we have,

|VM(G, N)| = |L|
∣∣∣R ∩ [Vc−1(S, F )RV ∗F ]

[RV ∗F ]

∣∣∣ and
VM(

G

K
,
N

K
)

L
∼= K,

where L is Im(α) in Lemma 2.1(i) and K = Vc−1(N, G). Hence:

|K||VM(G, N)| = |VM(G/K, N/K)|
∣∣∣R ∩ [Vc−1(S, F )RV ∗F ]

[RV ∗F ]

∣∣∣.

But [KV ∗G] = [Vc−1(N, G)V ∗G] = Vc(N, G) = 1, then [Vc−1(S, F )RV ∗F ] ⊆ R . This implies part (i). We can

prove (ii) and (iii) in the same way. �

Let H be the marginal factor group of G and L = N/V ∗(G). Finally, some necessary and sufficient

conditions for establishing connection between the orders of the Baer-invariants of pair of finite groups (G, N)

and (H, L) have been highlighted.

Theorem 2.4 Let G be a finite group with a normal subgroup N such that V ∗(G) ⊆ N . Let H = G/V ∗(G)

be the marginal factor group of G and L = N/V ∗(G) . Then

(i) |[NV ∗G]| ≤ |VM(H, L)||[LV ∗H ]| ≤ |VM(G, N)||[NV ∗G]|;
(ii) |[NV ∗G]| = |VM(H, L)||[LV ∗H ]| ⇐⇒ VM(H, L) ∼= V ∗(G) ∩ [NV ∗G];

(iii) |VM(H, L)||[LV ∗H ]| = |VM(G, N)||[NV ∗G]| ⇐⇒ VM(H, L)
VM(G, N)

∼= V ∗(G) ∩ [NV ∗G].

Proof (i) By considering K = V ∗(G) and using the Lemma 2.1(i), we have

|VM(H, L)| = |V ∗(G) ∩ [NV ∗G]|| kerβ|.

But [LV ∗H ] =
[NV ∗G]V ∗(G)

V ∗(G)
∼= [NV ∗G]

V ∗(G) ∩ [NV ∗G]
, so |V ∗(G) ∩ [NV ∗G]| = |[NV ∗G]|

|[LV ∗H ]| .

Hence:
|[NV ∗G]|| kerβ| = |VM(H, L)||[LV ∗H ]| , then |[NV ∗G]| ≤ |VM(H, L)||[LV ∗H ]|.

Moreover, | kerβ| = |Imα| ≤ |VM(G, N)|, then |VM(H, L)||[LV ∗H ]| ≤ |VM(G, N)||[NV ∗G]| which proves this

part. (ii) By considering the first part, we have

| kerβ| = 1 if and only if VM(H, L) ∼= V ∗(G) ∩ [NV ∗G] and

| kerβ| = 1 if and only if |[NV ∗G]| = |VM(H, L)||[LV ∗H ]|.
Thus, the result holds.
(iii) By Lemma 2.1(i), | kerα||VM(H, L)||[LV ∗H ]| = |VM(G, N)||[NV ∗G]|. Also

| kerα| = 1 if and only if
VM(H, L)
VM(G, N)

∼= V ∗(G) ∩ [NV ∗G], which completes the proof. �

The following corollary gives a connection between the order of the Baer-invariant of any finite group with its
marginal factor group.

Corollary 2.5 Let G be a finite group and H = G/V ∗(G) be the marginal factor group of G . Then

(i) |V (G)| ≤ |VM(H)||V (H)| ≤ |VM(G)||V (G)|;
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(ii) |V (G)| = |VM(H)||V (H)| ⇐⇒ VM(H) ∼= V ∗(G) ∩ V (G);

(iii) |VM(H)||V (H)| = |VM(G)||V (G)| ⇐⇒ VM(H)
VM(G)

∼= V ∗(G) ∩ V (G).

3. Some isomorphisms and VG -marginal series

In this section, we want to show that under some circumstances there are some isomorphisms among VG -
marginal factor groups. The following lemma can really help us to prove the results in our paper. The lemma
can bring us an exact sequence of a given group extension. Therefore, it becomes obvious that the production
of the lemma generalizes 11.4.17 of [15] .

Lemma 3.1 Let V be a variety of groups defined by the set of laws V . If 1 → N → E
π→ G → 1 is a group

extension, and L is a normal subgroup of E such that 1 → N → L
π→ M → 1 is a group extension, then the

following sequence is exact:

VM(E, L) → VM(G, M) → N

[NV ∗E]
→ L

[LV ∗E]
→ M

[MV ∗G]
→ 1 .

Proof We define the following maps

π′ :
L

[LV ∗E]
−→ M

[MV ∗G]
σ′ :

N

[NV ∗E]
−→ L

[LV ∗E]

x[LV ∗E] �−→ π(x)[MV ∗G] n[NV ∗E] �−→ n[LV ∗E]

Clearly, π′ is an epimorphism with the kernel
N [LV ∗E]
[LV ∗E]

. The image and the kernel of σ′ are
N [LV ∗E]
[LV ∗E]

and
N ∩ [LV ∗E]

[NV ∗E]
, respectively. So the exactness at

L

[LV ∗E]
and

M

[MV ∗G]
follows immediately. Now let

1 → R → F
π1→ E → 1 be a free presentation of E and L ∼= T/R for a normal subgroup T of the free group

F . Then π ◦ π1 : F → G is a free presentation of G . Put ker π ◦ π1 = S , therefore, S is the inverse image of
N under π1 . Hence R ⊆ S ⊆ T , N ∼= S/R and M ∼= T/S . Also:

VM(E, L) =
R ∩ [TV ∗F ]

[RV ∗F ]
VM(G, M) =

S ∩ [TV ∗F ]
[SV ∗F ]

.

Now, we define the maps

ϕ : VM(G, M) −→ N

[NV ∗E]
ψ : VM(E, L) −→ VM(G, M)

x[SV ∗F ] �−→ π1(x)[NV ∗E] x[RV ∗F ] �−→ x[SV ∗F ].

It can be easily checked that the image of ϕ is
N ∩ [LV ∗E]

[NV ∗E]
which is the same as the kernel of σ′ . Also, the

kernel of ϕ is
(R ∩ [TV ∗F ])[SV ∗F ]

[SV ∗F ]
which is the same as the image of ψ . Thus, the sequence is exact and the

proof is completed. �

The above lemma has the following corollary which is of interest in its own account.
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Corollary 3.2 Let G be a finite group with two normal subgroups K and N such that K ⊆ N . Then

(i) the following sequence is exact:

VM(G, N) → VM(G/K, N/K) → K

[KV ∗G]
→ N

[NV ∗G]
→ N

[NV ∗G]K
→ 1;

(ii) The following conditions are equivalent:

(a) sequence 1 → VM(G/K, N/K) → K

[KV ∗G]
→ N

[NV ∗G]
→ N

[NV ∗G]K
→ 1 is

exact;
(b) VM(G, K) = VM(G, N);

(c) VM(G/K, N/K) ∼= K ∩ [NV ∗G]
[KV ∗G]

.

Proof (i) This part results from Lemma 3.1, by considering two exact sequences 1 → K → G → G/K → 1

and 1 → K → N → N/K → 1.

(ii) By the definition of the Baer-invariant of the pair of groups and Lemma 2.1(i), we have the following exact
sequence:

1 → VM(G, K) → VM(G, N) → VM(G/K, N/K) → K ∩ [NV ∗G]
[KV ∗G]

→ 1.

It is easily checked that (b) and (c) are equivalent. Also, by first part sequence

VM(G/K, N/K) α→ K

[KV ∗G]
→ N

[NV ∗G]
→ N

[NV ∗G]K
→ 1 is exact. Now by the technique which has been

mentioned in Theorem 2.4, we have
|VM(G/K, N/K)|

| kerα| = |K ∩ [NV ∗G]
[KV ∗G]

| . Hence (a) and (c) are equivalent. �

By using Corollary 3.2(i), we have the following theorem, which generalizes 7.9.1 of [8].

Theorem 3.3 Let f : G → H be a group homomorphism and N be a normal subgroup of G and K be
a normal subgroup of H such that f(N) ⊆ K . Suppose f induces isomorphisms f0 : G/N → H/K and

f1 : N/[NV ∗G] → K/[KV ∗H ] , and that f∗ : VM(G, N) → VM(H, K) is an epimorphism. Then f induces

isomorphisms fn : G/Vn(N, G) �→ H/Vn(K, H) and fn : N/Vn(N, G) �→ K/Vn(K, H) for all n ≥ 0.

Proof At first, we want to mention a point that for making it easier to draw the following diagrams, we would
like to introduce Pn = Vn(N, G) and Qn = Vn(K, H). We proceed by induction. For n = 0 the assertion is
trivial. For n = 1, consider the diagram

1 � N/[NV ∗G] � G/[NV ∗G] � G/N � 1

1 � K/[KV ∗H ] � H/[KV ∗H ] � H/K � 1.

� � �
f1 f1 f0
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By the hypothesis f1 and f0 are isomorphism, hence f1 is an isomorphism. Assume that n ≥ 2. By

considering Corollary 3.2(i), we can conclude the following commutative diagram:

VM(G, N) � VM(G/Pn−1, N/Pn−1)
�

Pn−1/Pn
�

N/[NV ∗G] �
N/[NV ∗G]Pn−1

� 1

VM(H, K) � VM(H/Qn−1, K/Qn−1) �Qn−1/Qn
�K/[KV ∗H ] � K/[KV ∗H ]Qn−1

�1.

� � � � �
α1 α2 α3 α4 α5 (∗)

Note that the naturality of the map f induces homomorphisms αi, i = 1, 2, ..., 5 such that (∗) is
commutative. By hypothesis α1 is an epimorphism and α4 , α5 are isomorphisms. Also, by considering the
induction hypothesis and definition of the Baer-invariant of the pair of groups, α2 is an isomorphism. Hence
by five lemma of [16], α3 is an isomorphism. Now consider the following diagram:

1 � Pn−1/Pn
� N/Pn

� N/Pn−1 � 1

1 � Qn−1/Qn
� K/Qn

� K/Qn−1
� 1

� � �
α3 fn fn−1

by the above discussion α3 is an isomorphism and by induction hypothesis fn−1 is an isomorphism, therefore,

fn is an isomorphism. Finally, by the diagram

1 � N/Pn
� G/Pn

� G/N � 1

1 � K/Qn
� H/Qn

� H/K � 1
� � �
fn fn f1

and in the same way, fn is an isomorphism. �

Now we obtain the following corollary.

Corollary 3.4 Let (f, f |) : (G, N) −→ (H, K) be group homomorphisms that satisfy the hypotheses of Theorem

3.3 . Suppose further that N and K are VG -nilpotent and VH -nilpotent, respectively. Then f and f | are
isomorphisms.

Proof The assertion follows from Theorem 3.3 and the remark that there exists n ≥ 0 such that Vn(N, G) =

{1} and Vn(K, H) = {1} . �

As a final result we have the following theorem, which is a generalization of Stallings ′ theorem [19] .
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Theorem 3.5 Let V be a variety of groups and f : G −→ H be an epimorphism. Let N be a VG -nilpotent
normal subgroup of G and K be a normal subgroup of H such that f(N) = K . If ker f ⊆ [NV ∗G] and

VM(H, K) is trivial, then f and f | are isomorphisms.

Proof Put M = ker f , then
N

[NV ∗G]
∼= K

[KV ∗H ]
,

G

N
∼= H

K
and

Vn(N, G)M
M

= Vn(K, H) for all n ≥ 0. Now

the result follows from Corollary 3.4. �
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