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Abstract: We prove a growth theorem for a function to belong to the class
�

(μ; a) and generalize a Weierstrass-

Enneper representation type theorem for the minimal surfaces given in [5] to spacelike minimal surfaces which lie in

3-dimensional Lorentz-Minkowski space �3. We also obtain some estimates of the Gaussian curvature of the minimal

surfaces in 3-dimensional Euclidean space �3 and of the spacelike minimal surfaces in �3.
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1. Introduction

It is well known that the connection between harmonic mappings and minimal surfaces arises from the fact
that Euclidean coordinates of a minimal surfaces are harmonic functions of isothermal (conformal) parameters.
The projection of a minimal graph onto its base plane defines a harmonic mapping. Conversely, the harmonic
mappings that lift to minimal surfaces have a simple description and corresponding surfaces can be given by
explicit formulas. The representation makes harmonic mappings an effective tool in the study of minimal surfaces
theory. In this paper we consider the univalent quasiconformal harmonic mappings with starlike analytic part
whose second dilatation ω is in the class

∑
(μ; a), and consider the (regular) minimal surfaces with isothermal

parameters in R3 and the (regular) spacelike minimal surfaces with isothermal parameters in L3. First, we

give a growth theorem for a function which belongs to the class
∑

(μ; a) and then we generalize a Weierstrass-

Enneper representation type theorem for the minimal surfaces given in [5] to the spacelike minimal surfaces

which lie in 3-dimensional Lorentz-Minkowski space L3. Finally, applying the growth theorem, we obtain some

estimates of the Gaussian curvature of the minimal surfaces in R3 and of the spacelike minimal surfaces in

L3 which lift by the (sense-preserving) univalent quasiconformal harmonic mapping with starlike analytic part

whose second dilatation ω is in the class
∑

(μ; a). Our work is motivated by studies on the theory of minimal

surfaces, especially those that are lifted by harmonic mappings; see [5, 6, 8, 11, 13].
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2. Preliminaries

Minimal surfaces in Euclidean space R3

Minimal surfaces are most commonly known as those which have the minimum area amongst all other surfaces

spanning a given closed curve in R3 . Geometrically, the definition of a minimal surface is that the mean

curvature H is zero at every point of the surface. If locally one can write the minimal surface in R3 as
(x, y, Φ(x, y)), the minimal surface equation H = 0 is equivalent to

(1 + Φ2
y)Φxx − 2ΦxΦyΦxy + (1 + Φ2

x)Φyy = 0.

There exists a choice of isothermal parameters (u, v) ∈ Ω ⊂ R
2 so that the surface X(u, v) = (x(u, v), y(u, v), Φ(u, v)) ∈

R
3 satisfying the minimal surface equation is given by

E = |Xu|2 = |Xv|2 = G > 0, F =< Xu, Xv >= 0, �(u,v)X = 0,

where Δ denotes the Laplacian operator [3]. In the classical theory of minimal surfaces in R3, a basic tool is
the Weierstrass-Enneper representation. One of the local versions of this can be stated as follows.

Theorem 2.1 [5, 11] Let Ω ⊂ C be an open set endowed with a complex coordinate z = u+iv. Let X : Ω → R3

be an isothermal (conformal) minimal immersion. Then the vector field

ϕ = (ϕ1, ϕ2, ϕ3) = 2
∂X

∂z
:= (

∂X

∂u
− i

∂X

∂v
)

satisfies

1. |ϕ1|2 + |ϕ2|2 + |ϕ3|2 > 0 ,

2. ϕ2
1 + ϕ2

2 + ϕ2
3 = 0 ,

3.
∂ϕk

∂z
= 0, k = 1, 2, 3.

Conversely, if Ω is simply connected and ϕk : Ω → C (k = 1, 2, 3) are functions satisfying the above conditions,
the map

X = Re
∫

ϕdz

is a well-defined conformal immersion. Moreover, the functions ϕk (k = 1, 2, 3) can be described as

ϕ1 = p(1 + q2), ϕ2 = −ip(1 − q2), ϕ3 = −2ipq, (2.1)

where p (respectively q) is an analytic function (respectively meromorphic function) on Ω such that pq2 is

analytic on Ω and ϕ2 �= iϕ1 for z ∈ Ω. Then the first fundamental form of S = X(Ω) is given by

ds2 = |p|2(1 + |q|2)2|dz|2 (2.2)

and the Gaussian curvature of the minimal surface S = X(Ω) is given by

K = − 4|q′|2
|p|2(1 + |q|2)4 . (2.3)

268
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In Theorem 2.1, the first condition tells us that X is an immersion or equivalently that the surface S = X(Ω)

is regular, the second one that X is conformal and the third one that X is minimal [5, 11].

Minimal Surfaces in Lorentz-Minkowski space L3

The affine space R3 endowed with the Lorentzian metric

g = dx2
1 + dx2

2 − dx2
3

is called Lorentz-Minkowski space and denoted by L3 in general. Let Ω be an open set in R2 and X : Ω → L3

be an immersion. We shall say that X is spacelike if the induced metric X∗g is positive definite. If X∗g is a
symmetric non-degenerate form of index 1, that is, if it is a Lorentzian metric, then we say that X is timelike.
In the case the induced metric X∗g is positive definite, a surface S = X(Ω) is called a spacelike surface. A
spacelike surface with vanishing mean curvature is called a spacelike minimal surface. Some authors also call
S = X(Ω) a maximal surface [8, 11].

For spacelike minimal surfaces in L3 , an analogue of Theorem 2.1 was proved by O. Kobayashi in [8] and
can be stated as follows.

Theorem 2.2 [8, 11] Let Ω ⊂ C be an open set endowed with a complex coordinate z = u+iv. Let X : Ω → L3

be a conformal (isothermal) minimal immersion. Then the vector field

ϕ = (ϕ1, ϕ2, ϕ3) = 2
∂X

∂z
:= (

∂X

∂u
− i

∂X

∂v
)

satisfies

1. |ϕ1|2 + |ϕ2|2 − |ϕ3|2 > 0;

2. ϕ2
1 + ϕ2

2 − ϕ2
3 = 0;

3. ∂ϕk

∂z = 0, k = 1, 2, 3. Equivalently, the functions ϕk are analytic.

Conversely, if Ω is simply connected and ϕk : Ω → C (k = 1, 2, 3) are functions satisfying the above conditions,
the map

X = Re
∫

ϕdz = Re
∫

(p(1 + q2), ip(1 − q2),−2pq)dz

is a well-defined conformal immersion, where p (respectively, q) is an analytic function (respectively, meromor-

phic function) on Ω such that pq2 is analytic on Ω and |q(z)| �= 1 for z ∈ Ω. Moreover, the first fundamental

form of the minimal surface S = X(Ω) is given by

ds = |p|(1− |q|2)dz, (2.4)

and the Gaussian curvature of the minimal surface S = X(Ω) is given by

K =
4|q′|2

|p|2(1 − |q|2)4 . (2.5)

Contrary to the case of minimal surfaces in R3 , a spacelike minimal surface in L3 has non-negative Gaussian
curvature [8].
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Quasiconformal harmonic mappings in the plane C

Quasiconformal harmonic mappings in the plane were first studied by O. Martio in [12], and nowadays they
are actively investigated both in the planar and the multidimensional setting from several different points of
view. Some of the topics considered are the boundary behavior, including Hölder and Lipschitz continuity of
quasiconformal harmonic mappings, and more generally moduli of continuity of them. As we have already
mentioned above, we will be interested in planar quasiconformal harmonic mappings throughout this paper.

A complex-valued function f which is harmonic in a simply connected domain D ⊂ C has the canon-
ical representation f = h + g , where h and g are analytic in D and g(z0) = 0 for some prescribed

point z0 ∈ D . According to a theorem of H. Lewy [2], f is locally univalent if and only if its Jacobian

(|fz|2−|fz |2 = |h′
(z)|2−|g′

(z)|2) does not vanish. f is said to be sense-preserving if its Jacobian is positive. In

this case, h
′
(z) does not vanish and the analytic function ω(z) =

g′(z)
h′(z)

, called the second dilatation of f , has

the property |ω(z)| < 1 for all z ∈ D . A univalent harmonic mapping is called μ-quasiconformal (0 ≤ μ < 1)

if |ω(z)| < μ [7]. For general definition of quasiconformal mappings, see [1, 9].

Now, recall that f = h + g can be lifted locally to a regular minimal surface in R3 given by isothermal

parameters if and only if its dilatation is the square of an analytic function ω(z) = q2(z) for some analytic

functionq with |q(z)| < 1. Equivalently, the requirement is that any zero of ω be of even order, unless ω ≡ 0
on its domain, so that there is no loss of generality in supposing that z ranges over the unit disk D , because
any other isothermal representation can be precomposed with a conformal map from the unit disk D whose
existence is guaranteed by the Riemann mapping theorem [5]. Then Theorem 2.1 can be restated as follows.

Theorem 2.3 [5] Let f = h + g be a sense-preserving univalent harmonic mapping of D onto some domain

Ω with ω(z) = q2(z) for some function q analytic in D, and let S = X(D) be a regular minimal surface as in

Theorem 1.1. If f = h + g lifts to the minimal surface S = X(D) , then

ϕ1 = h′ + g′, ϕ2 = −i(h′ − g′), ϕ3 = −2ih′√w (2.6)

and
h′ = p, g′ = pq2, (2.7)

where ω is the second dilatation of f = h + g. Moreover, the first fundamental form of the minimal surface
S = X(D) is given by

ds = λdz, whereλ = |h′|+ |g′| = |h′|(1 + |ω|) = |p|(1 + |q|2) (2.8)

and the Gaussian curvature of the minimal surface S = X(D) is given by

K = − |ω′|2
|h′g′|(1 + |ω|)4 . (2.9)

We shall call the functions ϕk (k = 1, 2, 3) as Weierstrass-Enneper functions of the regular minimal surface with

conformal parameters. Now, we define the following class of harmonic functions [4], which is used throughout
this paper.
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Let h(z) = a0 + a1z + a2z
2 + · · · and g(z) = b0 + b1z + b2z

2 + · · · be analytic functions in the open unit

disk D = {z ∈ C : |z| < 1} . The class of all sense-preserving harmonic functions in D with a0 = b0 = 0 and

a1 = 1 will be denoted by SH . Thus SH contains the standard class S of analytic functions (See [4, 5]). Let

s(z) = z + c2z + c3z
2 + · · · be an analytic function in the open unit disk D . If s(z) satisfies the condition

Re
(

z
s′(z)
s(z)

)
> 0, (z ∈ D), (2.10)

then s(z) is called a starlike function in D , and the class of starlike functions in D is denoted by S∗ .

Let
∑

(μ; a) be the family of functions ω(z) which are regular in D and satisfy the conditions ω(0) = a

and |ω(z)| < μ for all z ∈ D , where 0 < |a| < 1 and 0 ≤ μ < 1.

We denote by S∗
QCH the subclass of SH consisting of all univalent quasiconformal harmonic functions

whose analytic part is starlike. From now on we will assume that f is a locally univalent, sense-preserving,
quasiconformal harmonic function whose second dilatation belongs to class

∑
(μ; a), unless otherwise stated.

3. Main Theorems

Lemma 3.1 Let ω be an element of
∑

(μ; a) . Then

μ(|a| − μr)
μ − |a|r ≤ |ω(z)| ≤ μ(|a|+ μr)

μ + |a|r . (3.1)

Proof Since the transformation ω(z) =
μ2(a − z)
μ2 − az

maps |z| = r onto the disk with center

C(r) =
(

(μ4 − μ2r2)a1

μ4 − |a|2r2
;
(μ4 − μ2r2)a2

μ4 − |a|2r2

)

and the radius

�(r) =
μ2(μ2 − |a|2)r

μ4 − |a|2r2
,

where a1 = Re(a) and a2 = Im(a), we can write

∣∣∣∣ω(z) − μ2(1 − r2)a
μ2 − |a|2r2

∣∣∣∣ ≤ μ(μ2 − |a|2)r
μ2 − |a|2r2

. (3.2)

After simple calculations from (3.2) we get (3.1). �

Corollary 3.2 If ω ∈ ∑
(μ; a) , then

μ(1 − μr) + |a|(μ − r)
μ + |a|r ≤ (1 − |ω(z)|) ≤ μ(1 + μr) − |a|(μ + r)

μ − |a|r , (3.3)

and
μ − |a|r + μ|a| − μ2r

μ − |a|r ≤ 1 + |ω(z)| ≤ μ + |a|r + μ|a|+ μ2r

μ + |a|r . (3.4)
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Proof These inequalities are simple consequences of Lemma 3.1. �

Corollary 3.3 Let f = h + g be an element of S∗
QCH . Then

μ(1 − r)(|a| − μr)
(1 + r)3(μ − |a|r) ≤ |g′(z)| ≤ μ(1 + r)(|a|+ μr)

(1 − r)3(μ + |a|r) (3.5)

Proof Recall that if the analytic part h of f is starlike, we then have

1 − r

(1 + r)3
≤ |h′(z)| ≤ 1 + r

(1 − r)3
. (3.6)

On the other hand, if we consider Lemma 3.1 and the definition of the second dilatation of f , then we can write

μ(|a| − μr)
μ − |a|r ≤

∣∣∣∣ g′(z)
h′(z)

∣∣∣∣ ≤ μ(|a| + μr)
μ + |a|r . (3.7)

Considering the inequalities (3.6) and (3.7) together, we obtain (3.5). �

Theorem 3.4 Let f = (h + g) ∈ S∗
QCH lift to a regular minimal surface S in R3. If the functions ϕk for

k = 1, 2, 3 are the Weierstrass-Enneper functions of the minimal surface S , then

(1 − r)[μ(1 − μr) + |a|(μ − r)]
(1 + r)3(μ + |a|r) ≤ |ϕ1| ≤

(1 + r)[μ + |a|r + μ|a|+ μ2r]
(1 − r)3(μ + |a|r) , (3.8)

(1 − r)[μ(1 − μr) + |a|(μ − r)]
(1 + r)3(μ + |a|r) ≤ |ϕ2| ≤

(1 + r)[μ + |a|r + μ|a|+ μ2r]
(1 − r)3(μ + |a|r) , (3.9)

and
4μ(1− r)2(|a| − μr)
(1 + r)6(μ − |a|r) ≤ |ϕ3|2 ≤ 4μ(1 + r)2(|a|+ μr)

(1 − r)6(μ + |a|r) . (3.10)

Proof From the equation (2.6) we can write

ϕ1 = h′ + g′ = h′(1 +
g′

h′ ) = h′(1 + ω), (3.11)

ϕ2 = −i(h′ − g′) = −ih′(1 − g′

h′ ) = −ih′(1 − ω), (3.12)

and
ϕ2

3 = −4ω(h′)2. (3.13)

Hence, we get

|ϕ1| = |h′||(1 + ω)|, (3.14)

|ϕ2| = |h′||(1 − ω)|, (3.15)

and
|ϕ3|2 = 4|ω||h′|2. (3.16)
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Using the triangle inequality in (3.14) and (3.15), we have

|h′|(1− |ω|) ≤ |ϕ1| ≤ |h′|(1 + |ω|) (3.17)

and
|h′|(1− |ω|) ≤ |ϕ2| ≤ |h′|(1 + |ω|) (3.18)

With the help of the inequalities (3.3), (3.4) and (3.6) from (3.17) and (3.18), we obtain (3.8) and (3.9). Finally,

if we use the inequalities (3.1) and (3.6) in the equality (3.16), we obtain (3.10). �

Theorem 3.5 Let K be the Gaussian curvature of the regular minimal surface S and f = (h + g) ∈ S∗
QCH

lift to the minimal surface S. Then

|K| ≤ (1 + r)2(μ − |a|r)[μ(1 + μr) − |a|(μ + r)]2[μ + |a|r + μ|a|+ μ2r]2

μ(1 − r)2(|a| − μr)(μ + |a|r)2[μ − |a|r + μ|a| − μ2r]4
(3.19)

Proof From the inequalities (3.5) and (3.6), we get

(1 − r)6(μ + |a|r)
μ(1 + r)2(|a|+ μr)

≤ 1
|g′(z)h′(z)| ≤

(1 + r)6(μ − |a|r)
μ(1 − r)2(|a| − μr)

. (3.20)

Using the equality (2.9) and the inequality (3.20) we have

|K| =
|ω′(z)|2

|g′(z)h′(z)|(1 + |ω(z)|)4 ≤ |ω′(z)|2(1 + r)6(μ − |a|r)
(1 + |ω(z)|)4μ(1 − r)2(|a| − μr)

. (3.21)

On the other hand, if we use the Schwarz-Pick’s Lemma for the function

φ(z) =
ω(z) − ω(0)
1 − ω(0)ω(z)

,

we obtain

|ω′(z)|2 ≤ (1 − |ω(z)|2)2
(1 − r2)2

=
(1 − |ω(z)|)2(1 + |ω(z)|)2

(1 − r)2(1 + r)2
. (3.22)

If we use the inequality (3.22) together with (3.3) and (3.4) in (3.21) we obtain (3.19). �

Example. Consider the function f(z) = z − μ

2
z̄

2 − z̄
, where μ ∈ (0, 1) is a constant and z ∈ D . Since

�f =
4∂2f

∂z∂z
= 0, f is harmonic. The functions h(z) = z and g(z) = −μ

2
z

2 − z
, the analytic and co-analytic

parts of f, are analytic in D and satisfy h(0) = g(0) = 0. As Jf(z) = |h′
(z)|2 − |g′

(z)|2 = 1 − μ

|2− z|2 > 0 on

D , it follows that f is sense-preserving and univalent. Furthermore, the analytic part h(z) = z of f is starlike.

The second dilatation of f is ω(z) =
g′(z)
h′(z)

= −(
√

μ

2 − z
)2. Since |ω(0)| =

μ

4
∈ (0, 1) and |ω(z)| < μ on D ,

we have ω ∈ ∑
(μ; a). Therefore f belongs to the class S∗

QCH . On the other hand, ω(z) is the square of the
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analytic function q(z) =
i
√

μ

2 − z
in D . Thus the univalent quasiconformal harmonic function f can lift locally

to a (regular) minimal surface. Now, using (2.1), we get p(z) ≡ 1 and q(z) =
i
√

μ

2 − z
, and it is known that the

functions p and q are the Weierstrass-Enneper parameters of the minimal surface Catenoid.

As in R3, the projection of a regular spacelike minimal surface with isothermal parameters in L3 onto
its base plane defines a harmonic mapping (see [6]). Therefore, we can construct an analogue of Theorem 2.3

for the spacelike minimal surfaces in L3. Consider a regular minimal graph

S = {(u, v, Φ(u, v)) : u + iv ∈ Ω}

in L3 , over a simply connected domain Ω ⊂ C containing the origin. Suppose that Ω is not the whole plane.
In view of Theorem 2.2, the surface has a reparametrization by isothermal parameters z = x + iy in the unit
disk D, so that

u = Re{
∫ z

0

ϕ1(ξ)dξ}, v = Re{
∫ z

0

ϕ2(ξ)dξ},

Φ(u, v) = Re{
∫ z

0

ϕ3(ξ)dξ}, z ∈ D.

There is no loss of generality in supposing that z ranges over the unit disk D , because any other isothermal
representation can be precomposed with a conformal map from the unit disk D whose existence is guaranteed
by the Riemann mapping theorem. Now let w = u + iv and let w = f(z) denote the projection of S onto its
base plane:

f(z) = Re{
∫ z

0 ϕ1(ξ)dξ} + iRe{
∫ z

0 ϕ2(ξ)dξ}. (3.23)

Then f is a harmonic mapping of D onto Ω with f(0) = 0. Let

f = h + g, h(0) = g(0) = 0,

be the canonical decomposition of f , where h and g are analytic in D . Differentiating from (3.23) we get

h′ =
1
2
(ϕ1 + iϕ2), g′ =

1
2
(ϕ1 − iϕ2)

or
ϕ1 = h′ + g′, ϕ2 = −i(h′ − g′). (3.24)

Hence
ϕ2

3 = ϕ2
1 + ϕ2

2 = 4h′g′ = 4ω(h′)2,

where ω(z) =
g′(z)
h′(z)

is the dilatation of f. This shows that ω(z) =
1
4

ϕ2
3

(h′)2
is the square of a meromorphic

function. In other words, the harmonic mappings that result from the projection of minimal graphs have
dilatations with single-valued square roots. If f is sense-preserving, this is equivalent to saying that its dilatation
function ω has no zeros of odd order.
On the other hand, from Theorem 2.2 we have

ϕ1 = p(1 + q2), ϕ2 = ip(1 − q2), ϕ3 = −2pq. (3.25)
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From (3.24) and (3.25) we obtain

h′ = pq2, g′ = p, (3.26)

which gives

ω =
1
q2

(3.27)

for the dilatation of the projected harmonic mapping f. In particular, it follows that f is sense-preserving if
and only if q is analytic and |q(z)| > 1 in D.

Theorem 3.6 If a regular minimal graph

S = {(u, v, Φ(u, v)) : u + iv ∈ Ω}

in L3 is parametrized by sense-preserving isothermal parameters z = x + iy ∈ D, then the projection onto its
base plane defines a harmonic mapping w = u+ iv = f(z) of D onto Ω whose second dilatation is the square of
an analytic function. Conversely, if f = h+g is a sense-preserving harmonic mapping of D onto some domain

Ω with second dilatation ω =
1
q2

for some function q analytic and has the property |q(z)| > 1 in D, then the

formulas

u = Re{f(z)}, v = Im{f(z)}, t = 2Re
∫ z

0

h′(ξ)
q(ξ)

dξ. (3.28)

define by isothermal parameters a minimal graph whose projection is f. Except for the choice of sign and an
arbitrary additive constant in the third coordinate function, this is the only such surface.

Proof The necessity of the condition ω =
1
q2

has already been proved. For the converse it needs only to show

that the surface defined by the equations (3.28) is represented by harmonic functions of isothermal parameters.

According to Theorem 2.2, this is equivalent to showing that each of the derivatives
∂u

∂z
,

∂v

∂z
and

∂t

∂z
are

analytic, and that (
∂u

∂z

)2

+
(

∂v

∂z

)2

−
(

∂t

∂z

)2

= 0. (3.29)

Taking derivative from (3.28) and using (3.23), we get

∂u

∂z
=

1
2
(h′ + g′),

∂v

∂z
=

1
2i

(h′ − g′), (3.30)

and

∂t

∂z
= 2.

1
2
.

(∫ z

0

h′(ξ)
q(ξ)

dξ +
∫ z

0

h′(ξ)
q(ξ)

dξ

)
=

h′

q
. (3.31)

It is easy to see that
∂u

∂z
,
∂v

∂z
and

∂t

∂z
are analytic and (3.29) holds. Since f is univalent by the hypothesis, the

given surface is seen to be a graph: the third coordinate function t is actually just a function of u and v .
To verify the uniqueness assertion, let

u = Re{f(z)}, v = Im{f(z)}, t = k(z)
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represent some other minimal surface in isothermal parameters. Then k is such that
∂t

∂z
is analytic. Since the

representation is isothermal, the condition (2) in Theorem 2.2 must hold. This implies that

(
∂k

∂z

)2

=
(

∂u

∂z

)2

+
(

∂v

∂z

)2

=
(

h′

q

)2

,

so that
(

∂k

∂z

)
= ±h′

q
. But the real-valued function k has a unique representation k = ψ + ψ = 2Re{ψ} for

some analytic function ψ . Since ψ′ = ±h′

q
, it follows that

ψ(z) = ±
∫ z

0

h′

q
dξ + c

for some complex constant c , which proves the uniqueness. �

Therefore, we can restate the Weierstrass-Enneper type theorem for spacelike minimal surfaces in L3.

Theorem 3.7 Let f = h + g be a sense-preserving univalent harmonic mapping of D onto some domain Ω

with ω(z) =
1

q2(z)
for some function q analytic with the property |q(z)| > 1 in D, and let S = X(D) be a

regular spacelike minimal surface as in Theorem 2.1. If f = h + g lifts to the minimal surface S = X(D) , then

ϕ1 = h′ + g′, ϕ2 = −i(h′ − g′), ϕ3 = 2h′√w (3.32)

and

g′ = p, h′ = pq2, (3.33)

where ω is the second dilatation of f = h + g. Moreover, the first fundamental form of the minimal surface
S = X(D) is given by

ds = |h′|(1 − |ω|)dz| (3.34)

and the Gaussian curvature of the minimal surface S = X(D) is given by

K =
|ω′|2

|h′g′|(1 − |ω|)4 . (3.35)

Now, we give an estimate for the Gaussian curvature of a spacelike minimal surface S with isothermal parameters

which lies in L
3.

Theorem 3.8 Let K be the Gaussian curvature of a spacelike minimal surface S with isothermal parameters
and let f = h + g ∈ S∗

QCH lift to the minimal surface S. Then

K ≤ (1 + r)4(μ − |a|r)[μ + |a|r + μ|a|+ μ2r]2

(1 − r)2μ(|a| − μr)[μ(1 − μr) + |a|(μ− r)]2
. (3.36)
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Proof From (3.20) and (3.33) we have

K ≤ |ω′(z)|2(1 + r)6(μ − |a|r)
(1 − |ω(z)|)4μ(1 − r)2(|a| − μr)

. (3.37)

If we use the inequality (3.22) together with (3.3) and (3.4) in (3.37) we obtain (3.36). �

Example. Consider the function f(z) = z +
μ

2
z̄, where μ ∈ (0, 1) is a constant and z ∈ D . Since

�f =
4∂2f

∂z∂z
= 0, f is harmonic. The functions h(z) = z and g(z) =

μ

2
z, the analytic and co-analytic

parts of f, are analytic in D and satisfy h(0) = g(0) = 0. As Jf(z) = |h′
(z)|2 − |g′

(z)|2 = 1 − μ2

4
> 0 on D ,

it follows that f is sense-preserving and univalent. Furthermore, the analytic part h(z) = z of f is starlike.

The second dilatation of f is ω(z) =
g′(z)
h′(z)

=
μ

2
. Since |ω(0)| =

μ

4
∈ (0, 1) and |ω(z)| =

μ

2
< μ on D , we have

ω ∈ ∑
(μ; a). Therefore f belongs to the class S∗

QCH . On the other hand, ω(z) is the square of the analytic

function
1

q(z)
=

√
μ

2
with the property |q(z)| =

√
2
μ

> 1 in D . Thus the univalent quasiconformal harmonic

function f can lift locally to a (regular) spacelike minimal surface. Now using by the equations (3.26) and

(3.27), we get p(z) =
μ

2
and q(z) =

√
2
μ

. By setting p(z) =
μ

2
and q(z) =

√
2
μ

in Theorem 2.2, we obtain the

spacelike plane in L3 which is the simplest example of spacelike minimal surface (see [8]).
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