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Abstract: A regularized trace formula of first order for the matrix Sturm-Liouville equation with eigenparameter in the

boundary conditions is obtained.
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1. Introduction

As is known, the trace of a finite-dimensional matrix is the sum of all the eigenvalues. But in an infinite-
dimensional space, in general, ordinary differential operators do not have a finite trace. Gelfand and Levitan
[9] firstly obtained a trace formula for a self-adjoint Sturm-Liouville differential equation. After these studies
several mathematicians were interested in developing trace formulae for different differential operators. For the
scalar Sturm-Liouville problems, there is an enormous literature on estimates of large eigenvalues and regularized
trace formulae which may often be computed explicitly in terms of the coefficients of operators and boundary
conditions. A detailed list of publications related to the present aspect can be found in [13].

Note that the trace formulae are used in the numerical computation of the first eigenvalue of the Sturm-
Liouville problem [6].

As a generalization of the scalar Sturm-Liouville equation, the matrix Sturm-Liouville equations were
found to be important in the study of particle physics [16]. Starting with Faddeev’s study of the regularized

trace formula [7], matrix Sturm-Liouville operators have raised some interesting new problems. Trace formulae

for the matrix Sturm-Liouville problems were considered in [3, 4, 5] and for the Sturm-Liouville problems with

eigenparameter in boundary conditions in [1, 2, 10], etc. Problems with a spectral parameter in the equation and
boundary conditions form an important part of spectral theory of linear differential operators. A bibliography
of papers in which such problems were considered in connection with specific physical processes can be found in
[8, 14]. However, a trace formula for the matrix Sturm-Liouville equation with eigenparameter in the boundary
conditions has never been considered before.

2. Results

The main objective of this paper is to obtain the regularized trace formula for the matrix Sturm-Liouville
problem
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−Y ′′(x) + Q(x)Y (x) = λY (x), x ∈ (0, π) (2.1)

with eigenparameter dependent boundary conditions

{
λ(Y ′(0) − LY (0)) = L1Y

′(0) − L2Y (0)
λ(Y ′(π) + HY (π)) = H1Y

′(π) + H2Y (π), (2.2)

where the entries of the d × d matrix-valued function Q(x) belong to the space C1[0, π] , L, L1, L2, H, H1 and
H2 are d × d scalar matrices and

L1L2 = L2L1, L1L = LL1. (2.3)

The corresponding scalar problem (d = 1) was considered by the authors in [2, 8, 10, 14]. The matrix
case has required developing a new apparatus, called the theory of V-Bezoutians of matrix polynomials, see
details in [12]. If the boundary conditions of problem (2.1) and (2.2) do not contain the eigenvalue parameter

λ , then the boundary conditions are reduced to the conditions of self-adjointness of problem (2.1) and (2.2) in

the form given by F. S. Rofe-Beketov [11].

Theorem 2.1 Let λ
(j)
n , j = 1, d, n = 0, 1, 2, · · · be the spectrum of the problem (2.1) and (2.2), then for

sufficiently large n

λ
(j)
n = (n − 2)2 + 2

πωjj + O
(

1
n2

)
, (2.4)

where ωij denotes entry of matrix ω at the i-th row and j -th column, i, j = 1, 2, · · · , d and

ω = L + H + 1
2

∫ π

0 Q(t)dt.

It is seen from formula (2.4) that the series

d∑
j=1

(
λ

(j)
0 + λ

(j)
1

)
+

∞∑
n=2

⎡
⎣ d∑

j=1

(
λ(j)

n − (n − 2)2
)
− 2

π
trω

⎤
⎦ (2.5)

is absolutely convergent, where trA denotes the trace of a matrix A . In this work, we will find formula for the
sum of series (2.5), which is so-called a regularized trace.

Theorem 2.2 We have the trace formula

∑d
j=1

(
λ

(j)
0 + λ

(j)
1

)
+

∑∞
n=2

[∑d
j=1

(
λ

(j)
n − (n − 2)2

)
− 2

π
trω

]
= tr(Q(0)+Q(π))

4 − 1
2π tr

∫ π

0
Q(t)dt+tr(L1 + H1)− 1

π tr(L + H)− 1
2 tr(L2 + H2).

(2.6)

Remark 2.3
(1) We note that the trace formula (2.6) is a new and natural generalization of the well-known results on

the trace theory for the classical Sturm-Liouville operators which were studied in [9] and other works.
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(2) For a special case L1 = L2 = H1 = H2 = 0d , the trace formula (2.6) implies

∑∞
n=0

[∑d
j=1

(
λ

(j)
n − n2

)
− 1

π tr
∫ π

0 Q(t)dt− 2
π tr(L + H)

]
= tr(Q(0)+Q(π))

4 − 1
2π tr

∫ π

0
Q(t)dt − 1

π tr(L + H) − 1
2 tr(L2 + H2)

where λ
(j)
n are eigenvalues of the matrix Sturm-Liouville problem with the separated boundary conditions

{
−Y ′′(x) + Q(x)Y (x) = λY (x), 0 < x < π

Y ′(0) − LY (0) = 0 = Y ′(π) + HY (π)

and for sufficiently large n

λ(j)
n = n2 +

2
π

ωjj + O

(
1
n2

)
.

3. Proofs

Let Φ(x, λ) be the solution of (2.1) satisfying the initial conditions

Φ(0, λ) = L1 − λId, Φ′(0, λ) = L2 − λL,

where Id is a d× d unit matrix. Then Φ(x, λ) satisfies the integral equation

Φ(x, λ) = (L1 − λId) cos
√

λx + (L2 − λL) sin
√

λx√
λ

+
∫ x

0
sin[

√
λ(x−t)]√

λ
Q(t)Φ(t, λ)dt.

As |λ| tends to infinity through any part of the complex plane one can obtain the following representations

Φ(x, λ) = −λ cos
√

λxId −
(

L +
1
2

∫ x

0

Q(t)dt

)√
λ sin

√
λx + O(eτx) (3.1)

and

Φ′(x, λ) = λ
√

λ sin
√

λxId −
(
L + 1

2

∫ x

0
Q(t)dt

)
λ cos

√
λx

−
[
L1 + Q(0)+Q(x)

4 + 1
2

∫ x

0 Q(t)dtL

+1
8 (

∫ x

0
Q(t)dt)2

]√
λ sin

√
λx + O(eτx),

(3.2)

where τ = |Im
√

λ| .
We see that Φ(x, λ) satisfies boundary condition at the point zero in (2.2), thus the general solutions of

systems (2.1) have the form

φ(x, λ) = Φ(x, λ)C,

where C = (c1, c2, · · · , cd)t, ck ∈ C, k = 1, 2, · · · , d , and At denotes transpose of the matrix A . If φ(x, λ) =

Φ(x, λ)C is a nontrivial solution of the problem (2.1) and (2.2) there exists a non-vanishing vector C satisfying

the matrix equation (i.e., boundary condition at the point π in (2.2))

((λId − H1)Φ′(π, λ) + (λH − H2)Φ(π, λ))C = 0.
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Therefore, λ is an eigenvalue of the problem (2.1) and (2.2) if and only if the matrix

W (λ) = (λId − H1)Φ′(π, λ) + (λH − H2)Φ(π, λ)

is singular. Define the matrices

ω = L + H + 1
2

∫ π

0
Q(t)dt,

ω1=L1+H1+HL+ Q(0)+Q(π)
4

+ 1
2

∫ π

0
Q(t)dt(L+H)+ 1

8

(∫ π

0
Q(t)dt

)2
.

(3.3)

From (3.1) and (3.2) we have

W (λ) = (λ2
√

λ sin
√

λπ)Id − (λ2 cos
√

λπ)ω − (λ
√

λ sin
√

λπ)ω1 + O(|λ|eτπ). (3.4)

The eigenvalues of the problem (2.1) and (2.2) coincide with the zeros of the function detW (λ). Using

the Laplace expansion of determinants, from (3.4) we obtain

ω(λ) : = detW (λ)
=

∏d
i=1

[
λ2

√
λ sin

√
λπ − ωiiλ

2 cos
√

λπ

−ω1,iiλ
√

λ sin
√

λπ + O (|λ|eτπ)
]

+a
(
λ2

√
λ sin

√
λπ

)d−2

λ4 cos2
√

λπ

+O
(
λ2d−1

√
λ

d−1
edτπ

)
,

(3.5)

where

a =

{ −∑
i<j ωijωji (d ≥ 2)

0 (d = 1),
(3.6)

and Aij denotes entry of d× d matrix A at the i-th row and j -th column, i, j = 1, 2, · · · , d .

Define

ω0(λ) =
(
λ2

√
λ sin

√
λπ

)d

, (3.7)

and denote by μn zeros of the function ω0(λ), then

μ
(j)
0 = μ

(j)
1 = 0, μ(j)

n = (n − 2)2, n ≥ 2, j = 1, d,

and zeros of the function ω0(λ) are multiplicities d .

Let ΓN0 be the counterclockwise square contours ABCD as in Figure, integer N0 = 0, 1, 2, · · · → ∞ ,
with

A = (N0 − 2 + 1
2)2(1 − i), B = (N0 − 2 + 1

2)2(1 + i),

C = (N0 − 2 + 1
2 )2(−1 + i), D = (N0 − 2 + 1

2 )2(−1 − i).
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Figure. Contour ΓN0 in λ-complex plane.

To obtain the trace formula we need the following lemma.

Lemma 3.1 (see [15]) For N0 large enough, on the contour ΓN0 , there holds uniformly for t ∈ [0, π] :

∣∣∣∣ sin(λt)
sin(λπ)

∣∣∣∣ ≤ 4,

∣∣∣∣ sin(λt)
cos(λπ)

∣∣∣∣ ≤ 4. (3.8)

Proof
For λ on the side AB , let λ = N0 − 3

2 + iτ, −(N0 − 3
2) ≤ τ ≤ N0 − 3

2 . Then we have

∣∣∣∣ sin(λt)
sin(λπ)

∣∣∣∣ =
∣∣∣∣ sin((N0 − 3

2 + iτ)t)
sin((N0 − 3

2
+ iτ)π)

∣∣∣∣ =

∣∣∣∣∣ e−τt+i(N0− 3
2 )t − eτt−i(N0− 3

2 )t

e−τπ+i(N0− 3
2 )π − eτπ−i(N0− 3

2 )π

∣∣∣∣∣ .

Since ∣∣∣e−τt+i(N0− 3
2 )t − eτt−i(N0− 3

2 )t
∣∣∣ ≤

∣∣∣e−τt+i(N0− 3
2 )t

∣∣∣ +
∣∣∣eτt−i(N0− 3

2 )t
∣∣∣

= e−τt + eτt,∣∣∣e−τπ+i(N0− 3
2 )π − eτπ−i(N0− 3

2 )π
∣∣∣ = eτπ + e−τπ ,

for λ on the side AB , we get

∣∣∣∣ sin(λt)
sin(λπ)

∣∣∣∣ ≤ e−τt + eτt

e−τπ + eτπ
=

e|τ|t + e−|τ|t

e|τ|π + e−|τ|π =
e|τ|(t−π) + e−|τ|(t+π)

1 + e−2|τ|π ≤ e|τ|(t−π) + e−|τ|(t+π) < 2.

As λ locates on the side BC , let λ = σ + i(N0 − 3
2), −(N0 − 3

2) ≤ σ ≤ N0 − 3
2 . Then we have

∣∣∣∣ sin(λt)
sin(λπ)

∣∣∣∣ =
∣∣∣∣ sin(σt + i(N0 − 3

2
)t)

sin(σπ + i(N0 − 3
2
)π)

∣∣∣∣ =

∣∣∣∣∣ e−(N0− 3
2 )t+iσt − e(N0− 3

2 )t−iσt

e−(N0− 3
2 )π+iσπ − e(N0− 3

2 )π−iσπ

∣∣∣∣∣ .

Since ∣∣∣e−(N0− 3
2 )t+iσt − e(N0− 3

2 )t−iσt
∣∣∣ ≤ e(N0− 3

2 )t + e−(N0− 3
2 )t,∣∣∣e−(N0− 3

2 )π+iσπ − e(N0− 3
2 )π−iσπ

∣∣∣ ≥ e(N0− 3
2 )π − e−(N0− 3

2 )π ,

we have ∣∣∣∣ sin(λt)
sin(λπ)

∣∣∣∣ ≤ e(N0− 3
2 )t + e−(N0− 3

2 )t

e(N0− 3
2 )π − e−(N0− 3

2 )π
=

e(N0− 3
2 )(t−π) + e−(N0− 3

2 )(t+π)

1 − e−(2N0−3)π
.
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Since limN0→∞ e−(2N0−3)π = 0, there holds e−(2N0−3)π < 1
2 for N0 large enough. Thus, for N0 large enough,

1 − e−(2N0−3)π > 1
2 . Taking into account e(N0− 3

2 )(t−π) + e−(N0− 3
2 )(t+π) < 2 as 0 ≤ t ≤ π , for λ on the side

BC , there holds uniformly for t ∈ [0, π] : ∣∣∣∣ sin(λt)
sin(λπ)

∣∣∣∣ ≤ 4.

For λ on the side CD and the side DA , the same conclusions are true. Applying a similar method, for

N0 large enough, on the contour ΓN0 , we obtain
∣∣∣ cos(λt)
sin(λπ)

∣∣∣ ≤ 4 for t ∈ [0, π] . �

By Rouché’s theorem, we can obtain a proof of the theorem 2.1 and omit it. Now we can give a proof
of theorem 2.2.

Proof of Theorem 2.2
Asymptotic formula (2.4) imply that, for all sufficiently large N0 , the numbers λn which are the zeros

of the function ω(λ), with n ≤ N0 , are inside ΓN0 and the number λn , with n > N0 are outside ΓN0 .

Obviously, μn = n2 , which are the zeros of function ω0(λ), don’t lie on the contour ΓN0 .

Combining (3.5), (3.7) and (3.8), and arranging the terms on the right-hand side in decreasing order of
powers of λ gives

ω(λ)
ω0(λ) = det

[
Id − cot

√
λπ√

λ
ω − ω1

λ + O
(

1
λ
√

λ

)]
=

∏d
i=1

[
1 − ωii

cot
√

λπ√
λ

− ω1,ii

λ
+ O

(
1

λ
√

λ

)]
+ a cot2

√
λπ

λ
+ O

(
1

λ
√

λ

)
= 1 − ∑d

i=1 ωii
cot

√
λπ√

λ
− ∑d

i=1 ω1,ii
1
λ +

∑d
i<j ωiiωjj

cot2
√

λπ
λ

+a cot2
√

λπ
λ + O

(
1

λ
√

λ

)
on ΓN0 .

Expanding log ω(λ)
ω0(λ)

by the Maclaurin formula, we find that on ΓN0

log ω(λ)
ω0(λ) = −∑d

i=1 ωii
cot

√
λπ√

λ
− ∑d

i=1 ω1,ii
1
λ

+
(
a − 1

2

∑d
i=1 ω2

ii

)
cot2

√
λπ

λ
+ O

(
1

λ
√

λ

)
.

(3.9)

By residue theorem, it follows that

∑
ΓN0

(
λ

(j)
n − μ

(j)
n

)
= 1

2πi

∮
ΓN0

λ
[

ω′(λ)
ω(λ) − ω′

0(λ)
ω0(λ)

]
dλ

= 1
2πi

∮
ΓN0

λd log ω′(λ)
ω0(λ) = − 1

2πi

∮
ΓN0

log ω(λ)
ω0(λ)dλ,

(3.10)

where λ
(j)
n are zeros of entire functions ω(λ) inside the contour ΓN0 listed with multiplicity, respectively.

Using well-known formulae

cot z =
1
z

+ 2z

∞∑
n=1

1
z2 − n2π2

, csc2 z =
∞∑

n=−∞

1
(z + nπ)2

,

we get
1

2πi

∮
ΓN0

cot
√

λπ√
λ

dλ = 2(N0−2)+1
π ,

1
2πi

∮
ΓN0

cot2
√

λπ
λ

dλ = −1 + O( 1
N0

)
(3.11)
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and for large N0 ∣∣∣∣∣
∮

ΓN0

O

(
1

λ
√

λ

)
dλ

∣∣∣∣∣ = O

(
1

N0

)
. (3.12)

Thus, from (3.9), (3.10), (3.11) and (3.12), we have

∑d
j=1

(
λ

(j)
0 + λ

(j)
1

)
+

∑N0
n=2

∑d
j=1

(
λ

(j)
n − (n − 2)2

)
= − 1

2πi

∮
ΓN0

log ω(λ)
ω0(λ)dλ

= 1
2πi

∮
ΓN0

[∑d
i=1 ωii

cot
√

λπ√
λ

+
∑d

i=1 ω1,ii
1
λ

−
(
a − 1

2

∑d
i=1 ω2

ii

)
cot2

√
λπ

λ + O
(

1
λ
√

λ

)]
dλ

= 2(N0−2)+1
π

∑d
i=1 ωii +

∑d
i=1 ω1,ii + a − 1

2

∑d
i=1 ω2

ii + O
(

1
N0

)
,

which implies that

∑d
j=1

(
λ

(j)
0 +λ

(j)
1

)
+

∑N0
n=2

[∑d
j=1

(
λ

(j)
n −(n − 2)2

)
− 2

π

∑d
i=1 ωii

]
= 1

π

∑d
i=1 ωii +

∑d
i=1 ω1,ii + a − 1

2

∑d
i=1 ω2

ii + O
(

1
N0

)
.

(3.13)

Passing to the limit as N0 → ∞ in (3.13), we find that

∑d
j=1

(
λ

(j)
0 + λ

(j)
1

)
+

∑∞
n=2

[∑d
j=1

(
λ

(j)
n − (n − 2)2

)
− 2

π

∑d
i=1 ωii

]
= 1

π

∑d
i=1 ωii +

∑d
i=1 ω1,ii + a − 1

2

∑d
i=1 ω2

ii.

From (3.3) and (3.6), it yields that

∑d
i=1 ωii = tr

[
L + H + 1

2

∫ π

0
Q(t)dt

]
,∑d

i=1 ω1,ii = tr
[
L1 + H1 + HL + Q(0)+Q(π)

4

+1
2

∫ π

0
Q(t)dt(L + H) + 1

8

(∫ π

0
Q(t)dt

)2
]
,

1
π

∑d
i=1 ωii +

∑d
i=1 ω1,ii + a − 1

2

∑d
i=1 ω2

ii =

tr(Q(0)+Q(π))
4

− 1
2π

tr
∫ π

0
Q(t)dt + tr (L1 + H1)

− 1
π
tr(L + H) − 1

2
tr(L2 + H2) − ∑

i<j ωijωji,

hence we find that the formula (2.6) holds. The proof of the theorem is finished. �
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