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Abstract: A regularized trace formula of first order for the matrix Sturm-Liouville equation with eigenparameter in the

boundary conditions is obtained.
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1. Introduction

As is known, the trace of a finite-dimensional matrix is the sum of all the eigenvalues. But in an infinite-
dimensional space, in general, ordinary differential operators do not have a finite trace. Gelfand and Levitan
[9] firstly obtained a trace formula for a self-adjoint Sturm-Liouville differential equation. After these studies
several mathematicians were interested in developing trace formulae for different differential operators. For the
scalar Sturm-Liouville problems, there is an enormous literature on estimates of large eigenvalues and regularized
trace formulae which may often be computed explicitly in terms of the coefficients of operators and boundary
conditions. A detailed list of publications related to the present aspect can be found in [13].

Note that the trace formulae are used in the numerical computation of the first eigenvalue of the Sturm-
Liouville problem [6].

As a generalization of the scalar Sturm-Liouville equation, the matrix Sturm-Liouville equations were
found to be important in the study of particle physics [16]. Starting with Faddeev’s study of the regularized
trace formula [7], matrix Sturm-Liouville operators have raised some interesting new problems. Trace formulae
for the matrix Sturm-Liouville problems were considered in [3, 4, 5] and for the Sturm-Liouville problems with
eigenparameter in boundary conditions in [1, 2, 10], etc. Problems with a spectral parameter in the equation and
boundary conditions form an important part of spectral theory of linear differential operators. A bibliography
of papers in which such problems were considered in connection with specific physical processes can be found in
[8, 14]. However, a trace formula for the matrix Sturm-Liouville equation with eigenparameter in the boundary

conditions has never been considered before.

2. Results
The main objective of this paper is to obtain the regularized trace formula for the matrix Sturm-Liouville

problem
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=Y"(z) + Q)Y (z) = \Y(x), x € (0,7) (2.1)

with eigenparameter dependent boundary conditions

{ A(Y'(0) — LY (0)) = L1 Y'(0) — LoY(0) (2.2)

)
AY'(r)+ HY (7)) = H1Y'(7) + HoY (7),

where the entries of the d x d matrix-valued function @Q(z) belong to the space C'[0,7], L, L1, L2, H, H; and

Hs are d x d scalar matrices and
LiLo=1ILoLy, 1L =LL,. (2.3)

The corresponding scalar problem (d = 1) was considered by the authors in [2, 8, 10, 14]. The matrix
case has required developing a new apparatus, called the theory of V-Bezoutians of matrix polynomials, see
details in [12]. If the boundary conditions of problem (2.1) and (2.2) do not contain the eigenvalue parameter
A, then the boundary conditions are reduced to the conditions of self-adjointness of problem (2.1) and (2.2) in
the form given by F. S. Rofe-Beketov [11].

Theorem 2.1 Let )\slj),j = 1,d,n = 0,1,2,--- be the spectrum of the problem (2.1) and (2.2), then for
sufficiently large n

A = (n-2)%+ 2w+ 0 (), (2.4)
where w;; denotes entry of matriz w at the i-th row and j-th column, ¢,5 =1,2,---,d and

w=L+H+ 3 [ Q(t)dt.
It is seen from formula (2.4) that the series
SO0 A0 LS |y 2
A +27) (AP = (n=2)?) = ¢ 2.5
j; ( o TAT)F 7;2 ; —2) - rw (2.5)

is absolutely convergent, where trA denotes the trace of a matrix A. In this work, we will find formula for the

sum of series (2.5), which is so-called a regularized trace.
Theorem 2.2 We have the trace formula
Z;l:l ()\éj) )\(J)) +3, [Z » ()\(J) (n— 2)2) _ %trw}
— WMQOMQM) _ Ly [T Q(t)dt+tr(Ly + Hy)—2tr(L + H)— L tr(L2 + H?).

Remark 2.3
(1) We note that the trace formula (2.6) is a new and natural generalization of the well-known results on

the trace theory for the classical Sturm-Liouville operators which were studied in [9] and other works.
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(2) For a special case Ly = Ly = Hy = Ho = 04, the trace formula (2.6) implies

Sz [Sim (A = n2) = Lr [T QUydt — 2un(L + H)
— t7“<Q<0>4+Q<w>> — otr [ Q(t)dt — 2tr(L + H) — Str(L* + H?)
where )\slj) are eigenvalues of the matriz Sturm-Liouville problem with the separated boundary conditions

“Y"(2)+ Q)Y (z) =AY (z), O<z<m
Y'(0) = LY (0) = 0 = Y'(r) + HY (n)

and for sufficiently large n
, 2 1
)\slj) =n? + ;wjj +0 (ﬁ) .
3. Proofs
Let ®(x,\) be the solution of (2.1) satisfying the initial conditions
D(0,\) =Ly — My, ®'(0,\) =Ly — AL,

where I; is a d x d unit matrix. Then ®(x,\) satisfies the integral equation

®(x,)) = (L1 = Ma)cosVAz + (Lp — AL)Syds

T sin \/X r—
+ [y 2EO@) @ (t, A)dt.

As |A| tends to infinity through any part of the complex plane one can obtain the following representations
1 X
®(x,\) = —Acos VAxly — (L + 5/ Q(t)dt) Vasin Vaz + 0(e™) (3.1)
0

and
(x,)) =MWAsinVAzly — (L+ 3 [; Q(t)dt) Acos v Az
_ [Ll + QOEQE) 1T O ar, (3.2)
+%(f0:£ Q(t)dt)z] Vsinvz 4+ 0(e™),
where 7 = [Imv/)|.

We see that ®(x, \) satisfies boundary condition at the point zero in (2.2), thus the general solutions of

systems (2.1) have the form
d(z, A) = O(z, \)C,

where C = (c1,¢2,++,cq)t e € C,k=1,2,---,d, and A' denotes transpose of the matrix A. If ¢(z,\) =
®(x,\)C is a nontrivial solution of the problem (2.1) and (2.2) there exists a non-vanishing vector C' satisfying

the matrix equation (i.e., boundary condition at the point 7 in (2.2))

(Mg — Hy)® (7, \) + (AH — Hy)®(, \)) C = 0.
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Therefore, X is an eigenvalue of the problem (2.1) and (2.2) if and only if the matrix
W(A) = (Ma = H)®'(m,A) + (AH — Hy)®(, A)
is singular. Define the matrices

w=L+H+ 3 [ Q(t)dt,
wi=Ly+Hy+HL+ QO59m  1 (T Oar(L+H)+ L (T Q(t)dt)”.

From (3.1) and (3.2) we have

W) = (AVAsin VAT) Iy — (A2 cos VAT)w — (AW Asin VAT)w; + O(|Ale™).

(3.3)

(3.4)

The eigenvalues of the problem (2.1) and (2.2) coincide with the zeros of the function detW (). Using

the Laplace expansion of determinants, from (3.4) we obtain

w(A): =detW(A)
- Hle [)\2\/Xsin VAT — wiiA2 cos VAT

—w1iAVAsin VAT + O (|)\|e”)}

(3.5)
d—2
+a ()\2\/Xsin \/Xw) A cos? VT
+0 ()\2d—1 \/Xd_ledrﬂ')
where
—Yicjwijwii  (d=2)
a= T (3.6)
0 (d=1),
and A;; denotes entry of d x d matrix A at the i-th row and j-th column, i,j =1,2,---,d.
Define
d
wo(\) = ()\2\/Xsin \/Xw) , (3.7)
and denote by pu,, zeros of the function wg(A), then
pi) =u =0, uP=m-2?% n>2 j=14
and zeros of the function wp(\) are multiplicities d.
Let I'n, be the counterclockwise square contours ABCD as in Figure, integer No = 0,1,2,--- — o0,

with
A= (No—2+5)?>(1—i), B=(No—2+3)°(1+1i),
C=(No—2+3)%(-1+1i), D= (No—2+2)%(-1—1).
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T'n,

> T

Dx oA

Figure. Contour I'n, in A-complex plane.

To obtain the trace formula we need the following lemma.

Lemma 3.1 (see [15]) For Ny large enough, on the contour Ty, , there holds uniformly for t € [0,7]:

sin(\t)
cos(Ar)

sin(\t)
sin( )

— )

Proof
For A on the side AB, let A = Ny — % + i1, —(Np — 5) <7< Ny-— % Then we have

sin((Ng — % +i7)t) e~ TtHi(No—3)t _ oTt—i(No—3)t

sin((No — 2 +i7)m)

sin(\t)
sin( )

e—TT(-‘ri(N()—%)T( _ eTﬂ'—i(No—%)ﬂ'

Since
oTt—i(N —%)t‘

‘e—-rt-i-i(No—%)t _ ort—i(N —%)t‘ < ‘e—-rt-i-i(No—%)t‘ n

— e—Tt + e'rt7
‘e—TT(-'ri(N()—%)T( _ e'rﬂ'—i(N -3 =TT LT
for A on the side AB, we get
Sin()\t) _ et 4Tt _ elTlt +e—|r|t _ elT(t=) +e—|'r|(t+7r) < el"’l(t—ﬂ) +e_|"'|(t+’7) oy
Sin()\ﬂ') T eTTT 4 T e|'r|7r + e—|'r|7r 1+ e—2|'r|7r -

As X locates on the side BC, let A =0 +i(No — 3), —(No— 2) <o < Ny — 3. Then we have

sin(At) | | sin(ot +i(No — 3)t) B e—(No—3)t+iot _ ,(No—3)t—ict
sin(Ar)|  |sin(om 4 i(Nog — 3)m) e~ WNo—3)mtion _ o(No—§)m—iom |
Since
‘e_(NO_%)H‘iUt — e(No—%)t—iUt < e(No—%)t + e—(No—%)t7
‘e—(N —)mtion _ e(N —3)m—iom > e(N —3)m _ 6_(N —%)71'7
we have
sin(\t) eNo=3)t L o= (No—=3)t  o(No—3)(t—m) 4 o—(No—3)(t+m)
< =
sin(Am)| =~ eMNo—3)m _ g—(No—3)7 1_ - @No—3)m
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Since limp, oo e~ (2No=3)7™ = 0 there holds e~ (No=3)7 < % for Ny large enough. Thus, for Ny large enough,
1 — e~ @No=3)m % Taking into account eWNo=3)(t=m) 4 o=(No=5)(t4+m) < 2 a5 0 < ¢ < 7, for A on the side

BC', there holds uniformly for ¢ € [0, 7]:

sin(\t)
sin( )
For A on the side C'D and the side DA, the same conclusions are true. Applying a similar method, for
Ny large enough, on the contour I'y, , we obtain :1(:&3 ‘ <4 for t € [0,7]. O

By Rouché’s theorem, we can obtain a proof of the theorem 2.1 and omit it. Now we can give a proof

of theorem 2.2.
Proof of Theorem 2.2
Asymptotic formula (2.4) imply that, for all sufficiently large Ny, the numbers ), which are the zeros
of the function w(\), with n < Ny, are inside 'y, and the number A, , with n > Ny are outside T'y, .
Obviously, p, = n?, which are the zeros of function wo()\), don’t lie on the contour Ty, .
Combining (3.5), (3.7) and (3.8), and arranging the terms on the right-hand side in decreasing order of

powers of \ gives

wo(N) AVA
_ 774 VA w1,ii 1 2w 1
=1, [1 — wyy S 2Lt +O(ﬁ)} +a%+0(ﬁ)
=1 Z;i_l Wij COt\/\éXﬂ - Z;i_l wl,zz% + Zi<j WiiWsj cot” VAm
2 s
—i—aCOt VX +O(ﬁ) on FN()
Expanding log :)(a)) by the Maclaurin formula, we find that on I'y,
w(X d x d
log wo(()\)) =—in wii% — Yim1 Wi (3.9)
d 2 /ar :
+ (a— %Zi:lw?i) % +O(ﬁ) :
By residue theorem, it follows that
) 4) _ 1 w’' (A w, (A)
ZFNO ()‘nj = i ) =~ 2m erO A [w(()\)) - wﬁ(x)} dA
‘0 o (3.10)
1 w 1 w
= 5 fFNO Adlog oty = 3w fFNO log wo(}\)d)\,

where )\slj ) are zeros of entire functions w(A) inside the contour Ty, listed with multiplicity, respectively.
Using well-known formulae

o0

1
Z (z +nm)?’

n=—oo

o0
1 1 9
cotz:—+2zg 55 ¢ z=
z 122 —nm
n=

we get
1 cot VAT _ 2(No—2)+1
27 §FN0 VN dA = T ) (3 11)
2 .
o5 oy, CSPTAN = ~1+0()
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and for large Ny

f.0G)»

Thus, from (3.9), (3.10), (3.11) and (3.12), we have

-0 (N%) : (3.12)

Z",l_ ()\(j) N )\(j)) Ly ;l:l ()\glj) —(n— 2)2)

w(A
271'1 fl"N 1Og (( )) dA

= 271'1 fl"N [ =1 w”COt\/\i_ﬂ + Zz 1 W1 zz)\
—(a- it w) 2 10 ()] an
2 1=1 "1 PNVAN

= w Z;i:l wii + Zi:l wiii ta—3 Zi:l wi; +0 (NLO) )

which implies that

Sy (A 0, i (W (= 2) -2 1wl

d J (3.13)
= 2 Wit Wit a— g Zz (Wi +0 (NL)
Passing to the limit as Ny — oo in (3.13), we find that
d d
Zj:l ()‘éj) )‘(J)) + Zn 2 [Z ()‘(J) ( - 2)2) - %Zi:l wii}
= LS wi+ Y wne Fa— 3 Y W
From (3.3) and (3.6), it yields that
S wi =tr[L+ H+ 1 [T Q(tdt],
S Wi = tr [L1 + Hy + HL + O040@
+1 7 QWAL+ H) + & (J7 Qwt)*]
13w+ Zi:l wigiba—§ Vi wh =
BQOHQm) _ wtr [ Q(t)dt + tr (L1 + H)
—1tr(L+ H) — 1tr(L? + H?) — D i WiiWiis
hence we find that the formula (2.6) holds. The proof of the theorem is finished. O
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