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Abstract: Difference sets with parameters
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, where q is a prime power and d ≥ 1, are known to

exist in cyclic groups and are called classical Singer difference sets. We study a special case of this family with q = 7 and

d = 3 in search of more difference sets. According to GAP, there are 220 groups of order 400 out of which 10 are abelian.

E. Kopilovich and other authors showed that the remaining nine abelian groups of order 400 do not admit (400, 57, 8)

difference sets. Also, Gao and Wei used the (400, 57, 8) Singer difference set to construct four inequivalent difference

sets in a non-abelian group. In this paper, we demonstrate using group representation and factorization in cyclotomic

rings that, out of the remaining 209 non-abelian groups of order 400, only 15 could possibly admit (400, 57, 8) difference

sets.
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1. Introduction

Suppose that G is a multiplicative group of order v . A non-trivial (v, k, λ) difference set D is a subset of G

consisting of k elements, where 1 < k < v − 1, in which every non-identity element of G can be replicated

precisely λ times by the multi-set {d1d
−1
2 : d1, d2 ∈ D, d1 �= d2}. The natural number n := k − λ is known

as the order of the difference set. The group type determines the kind of difference set. For instance, if G

is abelian (resp. non-abelian or cyclic), then D is abelian (resp. non-abelian or cyclic) difference set. Singer

difference sets with parameters (v, k, λ), where

v =
qd+1 − 1

q − 1
, k =

qd − 1
q − 1

, λ =
qd−1 − 1

q − 1
, (1.1)

q is a prime power and d ≥ 1, are known to exist in cyclic groups and there exist corresponding symmetric
designs with these parameters. Singer’s conjecture is that there is only one equivalence class of difference set with
parameters (1.1) when λ = 1 is still open [1]. Gao and Wei [3] used multipliers to construct non-abelian difference

sets from the Singer difference sets. In particular, in the case q = 7 and d = 3 in (1.1), their construction

produced four inequivalent difference sets in the group G = C25 � C16 = 〈x, y : x25 = y16 = 1, yxy−1 = x−1〉 .
The existence or otherwise of (400, 57, 8) difference sets in 10 abelian groups of order 400 has been decided.
Our focus in this paper is on the remaining 209 non-abelian groups but our approach incorporates both abelian
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and non-abelian groups. Our search for other non-isomorphic (400, 57, 8) difference sets yields the following
main result.

Theorem 1.1 There are no non-isomorphic Singer (400, 57, 8) difference sets in other groups of order 400

except possibly in [400, cn ], where cn = 3, 49, 50, 52, 56, 57, 58, 59, 116, 132, 133, 206, 207, 212, 213.

[400, cn ], is the GAP[4] catalog number of these groups. In this paper, G represents a group of order 400 and

N is a suitable normal subgroup of G such that G/N is isomorphic to a group of order 16, 20 or 40. Section
2 gives basic results while in sections 3 and 4 we establish the main result.

2. Preliminary results

We look at background materials.

2.1. Difference sets

Z and C denote ring of integers and field of complex numbers, respectively. Let G be a group of order v and
D be a (v, k, λ) difference set in a group G . For convenience, we view the elements of D as members of the

group ring Z[G] , which is a subring of the group algebra C[G] . Thus, D represents both subset of G and

element
∑

g∈D g of Z[G] . The sum of inverses of elements of D is D(−1) =
∑

g∈D g−1 . Consequently, D is a

difference set if and only if

DD(−1) = n + λG and DG = kG. (2.1)

If g is a non-identity element and α is an automorphism of G , then the left translates of D , gD , and right
translates of D , Dg and Dα := {α(d) : d ∈ D} are difference sets. If we take the left translates of D as

blocks, then the resulting structure is called the development of D , Dev(D) and G is the automorphism group

of Dev(D). Difference sets are often used in the construction of symmetric design in that symmetric design
admitting a sharply transitive automorphism group G is isomorphic to the development of a difference set in G

(Theorem 4.2 [8]). The existence of symmetric designs does not necessarily imply the existence of corresponding

difference sets (see [5]). The only known (400, 57, 8) symmetric designs are those associated with Singer and
Gao et al. difference sets.

Given that D is a difference set in a group G of order v and N is a normal subgroup of G , suppose
that ψ : G −→ G/N is a homomorphism. We can extend ψ by linearity to corresponding group rings. The

difference set image in G/N is the multi-set D/N = ψ(D) = {dN : d ∈ D} . Let T ∗ = {1, t1, . . . , th} be a

left transversal of N in G . We can write ψ(D) =
∑

tj∈T∗ djtjN , where the integer dj = |D ∩ tjN | is known

as the intersection number of D with respect to N . In this work we shall always use the notation D̂ for
ψ(D), and denote the number of times di equals i by mi ≥ 0 and ΩG/N is the set of inequivalent difference

set images in G/N . Also, the phrase group |G/N | denotes groups of order |G/N | . The following lemma is a

necessary but not sufficient condition for the existence of difference set image in G/N .

Lemma 2.1 (The Variance Technique). Suppose that G is a group of order v and N is a normal subgroup

of G . Suppose that D is a difference set in G and its image in G/N is D̂ . Suppose also that T ∗ is a left

transversal of N in G such that {di} is a sequence of intersection numbers and {mi} , where mi the number
of times di equals i. Then
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|N|∑
i=0

mi = |G/N |;
|N|∑
i=0

imi = k;
|N|∑
i=0

i(i − 1)mi = λ(|N | − 1) (2.2)

2.2. A little about representation and algebraic number theories

A C-representation of G is a homomorphism χ : G → GL(d, C), where GL(d, C) is the group of invertible

d × d matrices over C . The positive integer d is the degree of χ . A linear representation (character) is a
representation of degree one. The set of all linear representations of G is denoted by G∗. G∗ is an abelian
group under multiplication and if G′ is the derived group of G , then G∗ is isomorphic to G/G′. Two characters
of G are algebraic conjugate if and only if they have the same kernel and we denote the set of equivalence
classes of G∗ by G∗/ ∼ . Suppose that G is a group with exponent m′ , then Km′ := Q(ζm′ ) is the cyclotomic

extension of the field of rational numbers, Q , where ζm′ := e
2π
m′ i is a primitive m′ -th root of unity. Without

loss of generality, we may replace C by the field Km′ . This field is a Galois extension of degree φ(m′), where

φ is the Euler function. If G is a cyclic group, then a basis for Km′ over Q is S = {1, ζm′ , ζ2
m′ , . . . , ζ

φ(m′)−1
m′ } .

S is also the integral basis for Z[ζm′ ] . The central primitive idempotents in C[G] is

eχi =
χi(1)
|G|

∑
g∈G

χi(g)g−1 =
1
|G|

∑
g∈G

χi(g)g, (2.3)

where χi is an irreducible character of G and the set {eχi : χi ∈ G∗} is a basis for C[G] . Two difference sets

D and D′ are equivalent if there exists a group element g and automorphism σ such that D = gσ(D′).

Aliases are members of group ring and they enable us to transfer information from C[G] to group algebra

Q[G] and then to Z[G] . Let G be an abelian group and Ω = {χ1, χ2, . . . , χh} be the set of characters of

G . The element β ∈ Z[G] is known as Ω-alias if for A ∈ Z[G] and all χi ∈ Ω, χi(A) = χi(β). Since

A =
∑

χ∈G∗ χ(A)eχ , we can replace the occurrence of χ(A), which is a complex number, by Ω-alias, and β is

an element of Z[G] . If Km′ is the Galois over Q , then central rational idempotents in Q[G] are obtained

by summing over the equivalence classes Xi = {eχi |χi ∼ χj} ∈ G∗/ ∼ on the eχ ’s under the action of the
Galois group of Km′ over Q . That is,

[eχi ] =
∑

eχj
∈Xi

eχj , i = 1, . . . , s.

In particular, if G is a cyclic group of the form Cpm = 〈x : xpm

= 1〉 (p is prime) whose characters are of the

form χi(x) = ζi
pm , i = 0, . . . , pm − 1, then the rational idempotents are

[eχ0 ] =
1

pm
〈x〉 (2.4)

[eχpj ] =
1

pj+1

(
p〈xpm−j 〉 − 〈xpm−j−1 〉

)
, 0 ≤ j ≤ m− 1. (2.5)

The following is the general formula employed in the search of difference set [12].
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Theorem 2.2 Let G be an abelian group and G∗/ ∼ the set of equivalence classes of characters. Suppose

that {χo, χ1, . . . , χs} is a system of distinct representatives for the equivalence classes of G∗/ ∼. Then for

A ∈ Z[G] , we have

A =
s∑

i=o

αi[eχi ], (2.6)

where αi is any χi -alias for A .

Equation (2.6) is known as the rational idempotent decomposition of A .

The following lemma extends the properties of D to D̂ .

Lemma 2.3 Let D be a difference set in a group G and N be a normal subgroup of G . Suppose that
ψ : G −→ G/N is a natural epimorphism. Then

1. D̂D̂(−1) = n · 1G/N + |N |λ(G/N)

2.
∑

d2
i = n + |N |λ

3. χ(D̂)χ(D̂) = n · 1G/N , where χ is a non-trivial representation of G/N .

The method used in this paper is known as a representation theoretic method made popular by Leibler
[12]. Some authors like Iiams and Smith [6, 18] have used this method in search of difference sets. This approach
entails obtaining comprehensive lists ΩG/N , of difference set image distribution in factor groups of G . We start

by finding difference set image in factor group of least order and garner more information about D as we
gradually increase the size of the factor group.

To successfully obtain the difference set images, we need the aliases. In our case, if χ is not a principal

character, then |χ(D̂)| = 7 and we require how the ideal generated by 7 factors in Z[ζm′ ] , m′ = 2, 4, 5, 8, 10,

16, 20 and 50. Let δ := χ(D̂). By (2.6), we seek a group ring Z[G/N ] element, say α such that χ(α) = δ .

The task of solving the algebraic equation δδ̄ = n is sometimes made easier if we consider the factorization

of principal ideals 〈δ〉〈δ̄〉 = 〈n〉 . Suppose we are able to find δ =
∑φ(m′)−1

i=0 diζ
i
m′ ∈ Z[ζm′ ] such that δδ̄ = n ,

where φ is the Euler φ -function. We use a theorem due to Kronecker [16, 17] that states that any algebraic
integer whose conjugates have absolute value 1 must be a root of unity. If there is any other solution to the

algebraic equation, then it must be of the form δ′ = δu [13], where u = ±ζj
m′ is a unit. To construct alias from

this information, we choose a group element g that is mapped to ζm′ and set α :=
∑φ(m′)−1

i=0 dig
i such that

χ(α) = δ . Hence, the set of complete aliases is {±αgj : j = 0, 1, . . . , m′ − 1} .

We use the following result to determine the number of factors of an ideal in a ring. Suppose p is any
prime and m′ is an integer such that gcd (p, m′) = 1. Suppose that d is the order of p in the multiplicative

group Z∗
m′ of the modular number ring Zm′ . Then the number of prime ideal factors of the principal ideal 〈p〉

in the cyclotomic integer ring Z[ζm′ ] is φ(m′)
d , where φ is the Euler φ -function, i.e. φ(m′) = |Z∗

m′ | [9]. For

instance, the ideal generated by 2 has two factors in Z[ζ7] , the ideal generated by 7 has four factors in Z[ζ16],

while the ideal generated by 7 has two factors in Z[ζ20]. On the other hand, since 2s is a power of 2, then the

ideal generated by 2 is said to completely ramify as power of 〈1 − ζ2s〉 = 〈1 − ζ2s〉 in Z[ζ2s] .
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According to Turyn [19], an integer n is said to be semi-primitive modulo m′ if for every prime factor

p of n , there is an integer i such that pi ≡ −1 mod m′ . In this case, −1 belongs to the multiplicative group
generated by p . Furthermore, n is self conjugate modulo m′ if every prime divisor of n is semi-primitive
modulo m′

p , m′
p is the largest divisor of m′ relatively prime to p . This means that every prime ideals over n in

Z[ζm′ ] are fixed by complex conjugation. For instance, 72 ≡ −1 (mod m′), where m′ = 5, 10, 50 and 7 ≡ −1

(mod m′), m′ = 2, 4, 8. Thus 〈7〉 is fixed by conjugation in Z[ζm′ ] , m′ = 2, 4, 5, 8, 10, 50. In this paper, we

shall use the phrase m factors trivially in Z[ζm′ ] if the ideal generated by m is prime (or ramifies) in Z[ζm′ ]

or m is self conjugate modulo m′ . Consequently, if D̂ is the difference set image of order n = m2 in the cyclic
factor group G/N , a group with exponent m′, where m′ = 2, 4, 5, 8, 10, 50 and χ is a non-trivial representation

of G/N , then χ(D̂) = mζi
m′ , ζm′ is the m′ -th root of unity [17].

The ideal generated by 7 has four factors in Z[ζ16] . Suppose σ ∈ Gal(Q(ζ16)/Q), where σ(ζ16) = ζ7
16 .

This automorphism split the basis elements of Q(ζ16) into four orbits as ζ16 + ζ7
16 , ζ3

16 + ζ5
16 , ζ9

16 + ζ15
16 and

ζ11
16 + ζ13

16 . It is easy to see that (7) = (1 + ζ16 + ζ7
16)(1 + ζ3

16 + ζ5
16)(1 + ζ9

16 + ζ15
16 )(1 + ζ11

16 + ζ13
16). Put

π1 = (1 + ζ16 + ζ7
16) and π2 = (1 + ζ3

16 + ζ5
16). Let δ1 = 1 + ζ16 + ζ7

16 and δ2 = 1 + ζ3
16 + ζ5

16 be representatives

of these ideals. Then the nine solutions to δδ̄ = 72 are δ1δ2δ̄1δ̄2 = 7, δ2
1δ2

2 , δ̄2
1δ2

2 , δ2
1 δ̄2

2 , δ̄2
1 δ̄2

2 , δ2
1δ2δ̄2 , δ2

2δ1δ̄1 ,

δ̄2
1δ2δ̄2 or δ̄2

2δ1δ̄1 . The Galois automorphism σ(ζ16) = ζ3
16 divides the solution set into three equivalence classes:

δ1δ2 δ̄1δ̄2 = 7; δ2
1δ2

2 , δ̄2
1δ2

2 , δ2
1 δ̄

2
2 , δ̄2

1 δ̄2
2 ; δ2

1δ2δ̄2 , δ2
2δ1δ̄1 , δ̄2

1δ2δ̄2 or δ̄2
2δ1δ̄1 . As we need solutions up to equivalence,

we pick a representative from each class. Thus, δ = 7, δ2
1δ2

2 = −1 + 2ζ16 − 4ζ2
16 − 2ζ3

16 − 2ζ5
16 + 4ζ6

16 + 2ζ7
16 or

δ2
1δ2δ̄2 = −1 + 4ζ16 + 2ζ2

16 + 2ζ3
16 + 2ζ5

16 − 2ζ6
16 + 4ζ7

16 . Similarly, in Z[ζ20] if θ = ζ20 + ζ3
20 + ζ7

20 + ζ9
20 , then

δ = 7, 2 + 3θ , −2 + 3θ or their conjugates. In summary, suppose that D̂ is a (400, 57, 8) difference set image

in Cm′ and χ is any non-trivial character of Cm′ such that χ(D̂)χ(D̂) = 49. If

• m′ = 2, 4, 5, 8, 10, 50, then χ(D) is one of ±7u, u is appropriate root of unity.

• m′ = 16, then χ(D) is one of ±7ζj
16 , ±(−1 + 2ζ16 − 4ζ2

16 − 2ζ3
16 − 2ζ5

16 + 4ζ6
16 + 2ζ7

16)ζ
j
16 , ±(−1 + 4ζ16 +

2ζ2
16 + 2ζ3

16 + 2ζ5
16 − 2ζ6

16 + 4ζ7
16)ζ

j
16 , j = 0, . . . , 15.

• m′ = 20, then χ(D) is ±7ζj
20 , (2 + 3(ζ20 + ζ3

20 + ζ7
20 + ζ9

20)ζ
j
20 or (−2 + 3ζ20 + ζ3

20 + ζ7
20 + ζ9

20)ζ
j
20,

j = 0, . . . , 19.

Consequently, for (400, 57, 8) difference sets in C16 , the alias α in the rational idempotent decomposition of

D̂ is one of the two forms:

1. α = ±7xj ,

2. ±(−1 +2x− 4x2 − 2x3 − 2x5 +4x6 +2x7)xj , ±(−1 +4x +2x2 +2x3 +2x5 − 2x6 +4x7)xj , j = 0, . . . , 15.

Other aliases for the remaining cases are obtained in a similar manner.

2.3. Characteristics of difference set images in subgroup of a group

Dillon [2] proved the following results which will be used to obtain difference set images in dihedral group of a
certain order if the difference images in the cyclic group of same order are known.
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Theorem 2.4 (Dillon Dihedral Trick) Let H be an abelian group and let G be the generalized dihedral

extension of H . That is, G = 〈q, H : q2 = 1, qhq = h−1, ∀h ∈ H〉. If G contains a difference set, then so does
every abelian group which contains H as a subgroup of index 2.

Corollary 2.5 If the cyclic group Z2m does not contain a (non-trivial) difference set, then neither does the
dihedral group of order 2m.

The next result describes geometrically how properties of a factor group of a group can be lifted, under
certain conditions, to the group itself [15].

Theorem 2.6 Let D be a (v, k, λ) difference set in group G with a factor group H . Suppose that q is a prime

such that qs | |H | and E ⊂ C(H) is an elementary abelian subgroup of order qm , m ≤ s. Suppose also that

E1, E2, . . . , Et , where t = qm−d( qm−1
q−1 ) are the subgroups of E and their cosets, each of order qd, d < m with

D̂ and ˆ̂
Di being the corresponding difference set images in H and H/Ei respectively. Suppose there exists an

integer a and prime p with p | (k−λ) such that for each i, ˆ̂
Di ≡ a(H/Ei) mod p , then there exists an integer

k′ such that D̂ ≡ a(k′)−1H mod p .

Proof See [14] or [15]. �

It turns out that k′ = qd . We will use this result to determine the non-existence of (400, 57, 8) difference set

images in some groups of order 16 with q = 2, p = 7, k′ = 2, m = 2 and d = 1.

Finally, suppose that H is a group of order 2h with a central involution z. We take T = {ti : i = 1, . . . , h}
to be the transversal of 〈z〉 in H so that every element in H is viewed as tiz

j , 0 ≤ i ≤ h, j = 0, 1. Denote the

set of all integral combinations,
∑h

i=1 aiti of elements of T, ai ∈ Z by Z[T ]. Using the two representations of

subgroup 〈z〉 and Frobenius reciprocity theorem [10], we may write any element X of the group ring Z[H ] in
the form

X = X

(
1 + z

2

)
+ X

(
1 − z

2

)
. (2.7)

Furthermore, let A be the group ring element created by replacing every occurrence of z in X by 1. Also, let
B be the group ring element created by replacing every occurrence of z in H by −1. Then

X = A

( 〈z〉
2

)
+ B

(
2 − 〈z〉

2

)
, (2.8)

where A =
∑h

i=1 aiti and B =
∑h

j=1 bjtj, ai, bj ∈ Z. As X ∈ Z[H ] , A and B are both in Z[T ] and A ≡ B

mod 2. We may equate A with the homomorphic image of X in G/〈z〉 . Consequently, if X is a difference

set, then the coefficients of ti in the expression for A will be intersection number of X in the coset 〈z〉 . In
particular, it can be shown that if K is a subgroup of a group H such that

H ∼= K × 〈z〉, (2.9)

then the difference set image in H is

D̂ = A

( 〈z〉
2

)
+ gB

(
2 − 〈z〉

2

)
, (2.10)
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where g ∈ H , A is a difference set in K , α = k+
√

n
|K| or α = k−√

n
|K| , B = A − αK and k is the size of the

difference set. (2.10) is true as long as |K| | (k +
√

n) or |K| | (k − √
n). In the next two sections, we shall

analyze the non-existence of difference set images in factor groups of orders 16, 20 and 40.

3. Some group 16 images do not exist

3.1. The Group 8 images

We first obtain (400, 57, 8) difference set images in groups of order 8.

3.1.1. The C2 image

Suppose that G/N ∼= C2 = 〈x : x2 = 1〉 and D̂ = d0 + d1x is the (400, 57, 8) difference set image in G/N .
The distribution scheme, ΩC2 for C2 consists of A = 32 + 25x .

3.1.2. The C4 image

Suppose that G/N ∼= C4 = 〈x : x4 = 1〉 and D̂ =
∑3

s=0 dsx
s is the (400, 57, 8) difference set image in G/N .

We view this group ring element as a 1 × 4 matrix with columns indexed by powers of x . The distribution
scheme, ΩC4 for C4 (up to translation), consists of only A1 = −7 + 16〈x〉 .

3.1.3. The C2 × C2 image

Using (2.10) with α = 32, K = C2 and |K| = 2, the difference set image in C2 × C2 = 〈x, y : x2 = y2 = 1 =

[x, y]〉 is A2 = −7 + 16(1 + x)(1 + y).

3.1.4. The C8 images

Suppose that G/N ∼= C4 = 〈x : x4 = 1〉 and D̂ =
∑3

s=0 dsx
s is the (400, 57, 8) difference set image in G/N .

Up to translation, the only element in ΩC8 is A′ = −7 + 8〈x〉 .

3.1.5. The D4 image

Suppose that G/N ∼= D4 = 〈x, y : x4 = y2 = 1, yxy = x−1〉 . Let D̂ =
∑1

t=0

∑3
s=0 dstx

syt be the difference set

image in G/N . Using the Dillon Dihedral trick, it can be shown that B′
1 = −7 + 8〈x〉〈y〉 is the only element

of ΩD4 up to equivalence.

3.1.6. The C4 × C2 image

Consider G/N ∼= C4 × C2 = 〈x, y : x4 = y2 = 1 = [x, y]〉 . We view the difference set image D̂ =∑3
i=0

∑1
j=0 dijx

iyj in C4 × C2 as a 2 × 4 array with columns indexed by powers of x and rows indexed

by powers of y . Using (2.10) with α = 16, |K| = 4, and B1 = A1 − 16K , where A1 ∈ ΩC4 , B′
2 = −7 +8〈x〉〈y〉

is the only viable difference set image in C4 × C2 up to equivalence.
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3.1.7. The (C2)3 image

Suppose that G/N ∼= (C2)3 = 〈a, b, c : a2 = b2 = c2 = 1 = [a, b] = [b, c] = [a, c]〉. Take K = (C2)2 , |K| = 4, and

B1 = A − 16K , where A ∈ ΩC2×C2 . By (2.10), B′
3 = −7 + 8(1 + a)(1 + b)(1 + c) is the only viable difference

set image in (C2)3 up to equivalence.

Remark 1 Notice that the characteristics of the difference set images in (C2)3 and C4 × C2 are described by

Theorem 2.6, but we need more than that in this paper. The difference set images in (C2)2 and C4 satisfy

A ≡ 2 (mod 7) . If we choose a = 2 , p = 7 and k′ = 2 , then the difference set images in (C2)3 and C4 × C2

satisfy the condition B′
j ≡ 1 (mod 7) . This condition is also satisfied by the difference set image in D4 .

3.1.8. The Q4 image

Consider G/N ∼= Q4 = 〈x, y : x4 = 1, xy = yx−1, x2 = y2〉 . The derived subgroup of G/N is isomorphic to

〈x2〉 . Let the difference set image in G/N be D̂ =
∑1

t=0

∑3
s=0 dstx

syt . We view this object as a 2 × 4 matrix

with rows indexed by powers of y and columns indexed by powers of x . Since Q4/〈x2〉 ∼= C2 × C2 , G/N has

four characters. By applying these four characters to D̂ , we get A∗ = 1
2{9 + 16x + 9x2 + 16x3 + 16〈x〉y} . The

only degree two representation of G/N is

χ : x �→
(

i 0
0 −i

)
, y �→

(
0 1
−1 0

)
.

In a non-abelian group like this, the idempotents are obtained by applying the diagonal entries of χ to D̂ .
Thus, the idempotents are

f =
1
4

[
1 −i −1 i
0 0 0 0

]
, f̄ =

1
4

[
1 i −1 −i
0 0 0 0

]

fy =
1
4

[
0 0 0 0
1 −i −1 i

]
, f̄y =

1
4

[
0 0 0 0
1 i −1 −i

]
.

Therefore, the two rational idempotents (from χ) are

[f ] = f + f̄ = 1
4

[
2 0 −2 0
0 0 0 0

]
and [fy] = fy + f̄y = 1

4

[
0 0 0 0
2 0 −2 0

]
.

Consequently, the difference set equation is

D̂ = A∗ + α1[f ] + α2[fy], (3.1)

where αj, j = 1, 2 is an alias. To find the aliases, αj , we apply χ to D̂ so that

χ(D̂) =
(

z w
w z

)
,

where z = (d00 − d20) + (d10 − d30)i and w = (d01 − d21) + (d11 − d31)i , w, z ∈ Z[i] . Thus

χ(D̂)(χD̂) =
(

zz + ww 0
0 zz + ww

)
= 49I2,
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where I2 is the 2 × 2 identity matrix and zz + ww = 49. By expanding this equation, we get

(d00 − d20)2 + (d10 − d30)2 + (d01 − d21)2 + (d11 − d31)2 = 49. (3.2)

Up to permutations, the set of all possible values satisfying (3.2) is listed in Table 1.

Table 1. Up to permutations, the set of all possible coefficients satisfying (3.2).

S/N d00 − d20 d10 − d30 d01 − d21 d11 − d31

i. ±7 0 0 0
ii. ± 6 ±3 ±2 0
iii. ±5 ±4 ±2 ±2
iv. ±4 ±4 ±4 ±1

Our next task is to find all sets of equivalent solutions to (3.2). The following facts assist with this
objective:

1. {1, i} is a basis of Z[i] and we can replace either z or w with zik or wij or their conjugates, where i is
the fourth root of unity, if necessary.

2. In (3.1), observe that 2 entries of A∗ are congruent to 1 mod 2 while 6 entries are congruent to zero
modulo mod 2.

3. The sum of the last two terms in (3.1) must have the above property, also.

Hence, up to negatives and permutations, we consider only the coefficients in Table 2.

By choosing aliases according to values in Table 2 and up to equivalence, the elements of ΩQ4 are

• F1 = −7 + 8〈x〉〈y〉 , F2 = 6 + 11x + 3x2 + 5x3 + 9y + 8xy + 7x2y + 8x3y ;

• F3 = 3 + 8x + 6x2 + 8x3 + 11y + 9xy + 5x2y + 7x3y , F4 = 6 + 9x + 3x2 + 7x3 + 11y + 8xy + 5x2y + 8x3y ;

• F5 = 5+10x+4x2 +6x3 +10y +10xy +6x2y +6x3y , F6 = 7+10x+2x2 +6x3 +9y +9xy +7x2y +7x3y ;

• F7 = 7 + 9x + 2x2 + 7x3 + 10y + 9xy + 6x2y + 7x3y .

Table 2. Possible coefficients.

S/N d00 − d20 d10 − d30 d01 − d21 d11 − d31

i. −7 0 0 0
ii. 3 6 2 0
iii. 3 2 6 0
iv. 3 0 6 2
v. 1 4 4 4
vi. 5 4 2 2
vii. 5 2 4 2
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3.2. The C16 images

Consider the group G/N ∼= C16 = 〈x : x16 = 1〉 . Suppose that the difference image in this group is
∑15

s=0 dsx
s.

We view this element as a 1 × 16 matrix. Using (2.4) and (2.5), the five rational idempotents of C16 are

[eχ0 ] = 〈x〉
16 , [eχ8] = 2〈x2〉−〈x〉

16 , [eχ4] = 2〈x4〉−〈x2〉
8 , [eχ1 ] = 2−〈x8〉

2 , and [eχ2 ] = 2〈x8〉−〈x4〉
4 . Four of these rational

idempotents have 〈x8〉 in their kernel and we write their linear combination as

Y =
∑

j=0,2,4,8

αχj [eχj ] = A′
(〈x8〉

2

)
,

where A′ ∈ ΩC8 and αχj is an alias. Hence, the difference set equation is

D̂ = Y + αχ1[eχ1 ], (3.3)

where αχ1 ∈ {±7xs,±a1x
u,±a2x

t} , a1 = −1 + 2x− 4x2 − 2x3 − 2x5 + 4x6 + 2x7 , a2 = −1 + 4x + 2x2 + 2x3 +

2x5 − 2x6 + 4x7, s, t = 0, . . . , 15. Define Z1 = 7 · [eχ1 ] = 7
2(2 − 〈x8〉), Z2 = a1[eχ1 ] = (−1 + 2x − 4x2 − 2x3 −

2x5 + 4x6 +2x7)(1− x8) and Z3 = a2[eχ1] = (−1 +4x+ 2x2 +2x3 +2x5 − 2x6 +4x7)(1− x8). Rewrite (3.3) as

D̂ = Y ± xlZk, k = 1, 2, 3; l = 0, . . . , 15. (3.4)

The fractions in Y compelled (3.4) to be

D̂ = Y ± xlZk, k = 1, 2, 3; l = 0, 8. (3.5)

The solutions to (3.5) are

1. E1 = −7+4〈x〉 , E2 = 5x+2x2+3x3+4x4+3x5+6x6+5x7+x8+3x9+6x10+5x11+4x12+5x13+2x14+3x15 ;

2. E3 = 6x + 5x2 + 5x3 + 4x4 + 5x5 + 3x6 + 6x7 + x8 + 2x9 + 3x10 + 3x11 + 4x12 + 3x13 + 3x14 + 2x15 .

As intersection number cannot be negative, up to equivalence, the elements of ΩC16 are Ek, k = 2, 3.

3.3. There is no D8 image

Suppose that G/N ∼= D8 = 〈θ, y : θ8 = y2 = 1, yθy = θ−1〉 and the difference set image is D̂ =∑7
s=0

∑1
t=0 dstθ

syt . This group ring element is perceived as a 2 × 8 matrix. In order to take advan-

tage of the Dillon Dihedral trick using the difference set images in C16 = 〈x : x16 = 1〉 , set θ = x2 in
C16 and rewrite each of the two difference images as a 2 × 8 matrix. For instance, E2 ∈ ΩC16 becomes

E′
2 = (5θ + 4θ2 + 3θ3 + θ4 + 3θ5 + 4θ6 + 2θ7) + (6 + 5θ + 5θ2 + 6θ3 + 2θ4 + 3θ5 + 3θ6 + 2θ7)y . The factor group

G/N has two equivalent degree two representations. One of them is:

χ : θ �→
(

ζ8 0
0 ζ7

8

)
, y �→

(
0 1
1 0

)

We now apply this degree two representation to the transformed C16 difference set image E′
j, j = 2, 3 and

verify whether or not χ(E′
j)χ(E′

j) = 49I2, j = 2, 3. In the case of E′
2 , χ(E′

2) =
(

β α
ᾱ β̄

)
, where α =
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2(1 − ζ8 − ζ2
8 + ζ3

8 ) �= 0, β = −4
√

2i, i = ζ2
8 . Notice that χ(E2)χ(E2) �= 49I2 since αβ = −16(ζ8 − ζ2

8) �= 0.

Similarly, χ(E′
3)χ(E3) �= 49I2 , where E′

3 is the transformed E3 . Thus, D8 does not admit (400, 57, 8) difference
set.

3.4. There is no C8 × C2 image

Let G/N ∼= C8 × C2 = 〈x : x8 = y2 = 1 = [x, y]〉 = K × 〈y〉 , K = 〈x〉 and suppose that the difference

set image D̂ =
∑7

s=0

∑1
t=0 dstx

syt exists in G/N . Since this group is of the form (2.9), we choose α = 8,

K = C8 , |K| = 8 and B = A′ − 8K , where A′ is the unique difference set image in C8 . Thus, (2.10) becomes

A′( 1+y
2

)
+ gB

(
1−y
2

)
, where g ∈ C8 × C2 . However, this equation has no integer solution because A′( 1+y

2

)
has 14 integer entries with 2 fractions while B

(
1−y
2

)
has 2 integer entries with 14 fractions. Hence, ΩC8×C2 is

empty.

3.5. There is no C4 �−1 C4 image

Suppose G/N ∼= C4 �−1 C4 = H = 〈x, y : x4 = y4 = 1, yxy−1 = x−1〉 . We assume that this factor group

has a difference image, say, D̂ =
∑3

s,t=0 dstx
syt . Consequently, to each point xiyj in H , we assign a weight

dij equal to the size of the intersection of the coset xiyjN and putative difference set D . The center of H is

C(H) = {1, x2, y2, x2y2} ∼= C2 × C2 , which is an elementary abelian 2-group of order 4. The three non-trivial

subgroups of C(H) are {1, x2} , {1, y2} and {1, x2y2} . It turns out that these three subgroups are in fact

normal subgroups of H . Thus, H/〈y2〉 ∼= D4 , H/〈x2〉 ∼= C4×C2 and H/〈x2y2〉 ∼= Q4 . The center of H , C(H)

along with its three cosets generates four copies of a (4, 6, 3, 2, 1) design. These designs are viewed as a plane
in the form

di,j d2+i,j

di,2+j d2+i,2+j

where i, j = 0, 1. The terminology row sum denotes the sum di,j + d2+i,j or di,2+j + d2+i,2+j ; column sum

denotes the sum di,j + di,2+j or d2+i,j + d2+i,2+j ; diagonal sum represents di,j + d2+i,2+j or di,2+j + d2+i,j

and plane weight is the sum β = di,j + d2+i,j + di,2+j + d2+i,2+j . We also use the abbreviation β -plane for

plane of weight β [6]. The fact that H/〈y2〉 ∼= D4 , H/〈x2〉 ∼= C4 × C2 and H/〈x2y2〉 ∼= Q4 implies that the
sets of row, column and diagonal sums of each of the planes are valid sets of intersection numbers in ΩC4×C2 ,

ΩD4 , and ΩQ4 respectively. Also, as H/C(H) ∼= C2 × C2 , each plane weight is a valid intersection number of
the unique difference set image in C2 × C2 . Hence, the possible plane weights are 9 and 16. Precisely, in the
collection of these four planes, there are three 16-planes and one 9-plane. Without loss of generality, take row
sums to be intersection numbers of difference set image in C4×C2 and column sums to be intersection numbers
of difference set image in D4 . Finally, the diagonal sums will be intersection numbers of difference set images
in Q4 . Q4 has seven difference set images. We split these seven difference set images Fs, s = 1, . . . , 7 into two
categories. In the first case, we look at 9-plane and, in the other, we look at one of the three 16-planes.

Case 1: Fs, s �= 6, 7 We rearrange the four plane, if necessary, such that the 9-plane is

d00 d20

d02 d22
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As C4 × C2 and D4 have unique difference set image, the row and column sums of the 9-plane must be of

the form 1
8 (up to equivalence) while the diagonal sums must be one of the forms 1

8 , 5
4 , or 3

6 (up to

equivalence). Thus, the system d00 + d20 = c1 , d02 + d22 = c2 , d00 + d02 = c3 , d20 + d22 = c4 , d00 + d22 = c5

and d02 + d20 = c6 does not have a solution, where c1, c2, c3, c4 ∈ {1, 8} , c5, c6 ∈ {1, 8} . Similar result holds

for c5, c6 ∈ {3, 6} or c5, c6 ∈ {4, 5}.

Case 2: Fs, s = 6, 7 Consider the 16-plane.

d01 d21

d03 d23

The diagonal sums are of the form 10
6 or 9

7 (up to equivalence). In particular, take the diagonal sums to

be of the form 9
7 . As the row and column sums of this plane are always of the form 8

8 , then the system

d01 + d21 = c1 , d03 + d23 = c2 , d01 + d03 = c3 , d21 + d23 = c4 , d01 + d23 = c5 and d03 + d21 = c6 does not have
a solution, where c1, c2, c3, c4 ∈ {8, 8} , c5, c6 ∈ {7, 9} . The same conclusion holds for the other diagonal sums.
Hence, ΩC4�C4 is empty.

3.6. There are no C4 × C4, C4 × (C2)2, D4 × C2, (C2)4 or (C4 × C2) � C2 images

Let N be an appropriate normal subgroup of G such that G/N ∼= H , where H is one of the above groups.

Each H has a normal subgroup that is isomorphic to (C2)2 and let h be a non-trivial element of this normal

subgroup. Then H/〈h〉 is isomorphic to D4 , (C2)3 or C4 ×C2 (see remark 1). Theorem 2.6 with p = 7, a = 1

and k′ = 2 indicates that the difference set image in H satisfies D̂ ≡ 3 (mod 7). We verify this claim using

the variance trick, Lemma 2.1. Since |N | = 25 and D̂ ≡ 3 (mod 7), the intersection numbers in D̂ must be 3,
10, 17 or 24. Thus, we use variance trick to find the values of mi , where i = 3, 10, 17, 24 and

m3 + m10 + m17 + m24 = 16 (3.6)

m3 + 3m10 + 17m17 + 24m24 = 57

6m3 + 90m10 + 272m17 + 552m24 = 192.

The coefficients of m17 and m24 in the third equation are more than 192. Consequently, m17 = m24 = 0 and
system (3.6) becomes

m3 + m10 = 16 (3.7)

m3 + 3m10 = 57

6m3 + 90m10 = 192.

The system (3.7) has no viable solution and G/N does not admit (400, 57, 8) difference sets.

4. Difference set images in groups of orders 20 and 40

In this section, we show that some factor groups of order 20 and 40 do not admit (400, 57, 8) difference sets.
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4.1. The C5 image

Suppose that G/N ∼= C5 = 〈x : x5 = 1〉 . Then the difference set image is A′ = 7 + 10〈x〉 .

4.2. The C10 and D5 images

Suppose that G/N ∼= C10 = 〈x, y : x5 = y2 = [x, y] = 1〉 . Then the difference set image is E = 7 +5〈x〉〈y〉 . We

can also show using the Dillon trick that E is the only difference set image in G/N ∼= D5 = 〈x, y : x5 = y2 =

yxyx = 1〉 .

4.3. The C25 image

If G/N ∼= C25 = 〈x : x25 = 1〉 , then the unique difference set image is 7 + 2〈x〉 .

4.4. The C50 image

If G/N ∼= C25 = 〈x, y : x25 = y2 = [x, y] = 1〉 , then the unique difference set image is 7 + 〈x〉〈y〉 .

4.5. There are no C10 × C2 and D10 images

Suppose that N are normal subgroups of G such that G/N ∼= C10 × C2 or G/N ∼= D10
∼= D5 × C2 . These

groups are of the form (2.9) and we choose K = C10 or D5 , α = 5, |K| = 10, and B = E − 5K , where

E ∈ ΩD5 or E ∈ ΩC10 . Let z be the generator of C2 . Then, by (2.10)

D̂ = E

( 〈z〉
2

)
+ gB

(
2 − 〈z〉

2

)
, (4.1)

g ∈ D10 or g ∈ C10 ×C2. Notice that E
( 〈z〉

2

)
consists of 2 integers and 18 fractions while B

( 2−〈z〉
2

)
consists of

18 integers and 2 fractions. These observations show that the two terms on the right-hand side of (4.1) are not

compatible to produce integer solutions. Hence, (C2)2 × C5 and D10 do not admit (400, 57, 8) difference set.

4.6. There are no C50 × C2 and D25 × C2 images

It can be shown that if G/N ∼= C50 × C2 or D25 × C2 , then G does not admit (400, 57, 8) difference sets.

4.7. The C20 image

Consider G/N ∼= C20 = 〈x, y : x5 = y4 = 1 = [x, y]〉 . We view the difference set in G/N , D̂ =
∑3

t=0

∑4
s=0 xsyt

as a 4 × 5 matrix with the columns indexed by the powers of x and rows indexed by powers of y . This group

has 6 rational idempotents out of which four have 〈y2〉 in their kernel. The linear combination of these four

rational idempotent is
∑

j=0,1

∑
k=0,2 αχ(j,k)[eχ(j,k) ] = E

2 〈y2〉 , where E is the difference set image in C10 and

αχ(j,k) is an alias. The remaining two rational idempotents are

[eχ(0,1) ] =
1
10

〈x〉(1 − y2) and [eχ(1,1) ] =
1
10

(5 − 〈x〉)(1 − y2).

Thus, the difference set image in C20 is

D̂ =
E

2
〈y2〉 + αχ(0,1) [eχ(0,1) ] + αχ(1,1) [eχ(1,1) ] (4.2)
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with αχ(1,1) ∈ {±7(xy)p1 ,±(2 + 3(x + x3 + x7 + x9))(xy)p2} and αχ(0,1) ∈ {±7(xy)p3}, p1, p2, p3 = 0, . . . , 19.

Put
B1 = (2 + 3(xy + (xy)3 + (xy)7 + (xy)9)[eχ(1,1) ] = 1

10

(
(10− 2〈x〉) + 15(x− x2 − x3 + x4) − (10 − 2〈x〉) −

15(x − x2 − x3 + x4)
)
, B2 = 7[eχ(1,1) ] = 7

10

(
(5 + 〈x〉) − (5 + 〈x〉)

)
and C = 7[eχ(0,1) ] = 7

10
〈x〉(1 − y2). Then

(4.2) becomes

D̂ =
E

2
〈y2〉 ± xtysBl ± yjC, t = 0, · · · , 4; s, j = 0, 1, 2, 3; l = 1, 2. (4.3)

It turns out that 18 entries of E
2
〈y2〉 are congruent to 10 mod 20 while the remaining entries are

congruent to 10 mod 20. Thus, (4.3) has solutions if and only if t = 0 and s = j . Up to equivalence, the

unique difference set image is E′ = 6 + x + 4x2 + 4x3 + x4 + (4 + 3x + 3x2 + 3x3 + 3x4)y + (6 + 4x + x2 + x3 +

4x4)y2 + (1 + 2x + 2x2 + 2x3 + 2x4)y3 .

4.8. The Frob(20) image

Suppose that G/N ∼= Frob(20) = C5 � C4 = 〈x, y : x5 = y4 = 1, yx = x2y〉, the Frobenius group of order

20. Suppose that D̂ =
∑3

k=0

∑4
j=0 djkx

jyk is the difference set image in Frob(20). This group ring element is

perceived as a 4 × 5 matrix, where the rows are indexed by powers of y and columns are indexed by powers
of x . By using permutation representation of Frob(20) and Smith’s approach [18], we can show that the only

difference set image in Frob(20) is A1 = 4 +3x +x3 +x4 +(1 +3x +3x2 +4x3 +5x4)y +(2 +3x +3x2 +2x3 +

6x4)y2 + (3 + x + 4x2 + 3x3 + 5x4)y3.

4.9. There are no Frob(20)× C2 images

Suppose that there is a normal subgroup of G such that G/N ∼= Frob(20) × C2 = 〈x, y, z : x5 = y4 =

z2 = 1, yx = x2y, xz = zx, yz = zy〉 . Let D̂ =
∑4

k=0

∑1
j=0

∑3
i=0 dijkx

iyjzk be the difference set image in

Frob(20)× C2 . This group ring element is viewed as a 8× 5 matrix. The derived group of G/N is isomorphic

to 〈x〉 and (Frob(20) × C2)/〈x〉 ∼= C4 × C2 . Also, (Frob(20) × C2)/〈z〉 ∼= Frob(20). By applying the eight

characters of Frob(20) × C2 to D̂ , we get the following equations:

4∑
i=0

di00 = c00,
4∑

i=0

di10 = c10,
4∑

i=0

di20 = c20,
4∑

i=0

di30 = c30, (4.4)

4∑
i=0

di01 = c01,

4∑
i=0

di11 = c11,

4∑
i=0

di21 = c21,

4∑
i=0

di31 = c31, .

where the 2 × 4 matrix (cij) is the unique difference set image in C4 × C2 . Also, using the map z �→ 1 we get
20 more linear equations

di00 + di01 = bi0, di10 + di11 = bi1 (4.5)

di20 + di21 = bi2, di30 + di31 = bi3, i = 0, . . . , 4,

where the 4 × 5 matrix (bij) is the unique element of ΩFrob(20). One of the two equivalent degree four repre-

sentations of Frob(20)× C2 is
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χ : x �→

⎛
⎜⎜⎝

ζ 0 0 0
0 ζ2 0 0
0 0 ζ4 0
0 0 0 ζ3

⎞
⎟⎟⎠ , y �→

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , z �→

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

ζ is the fifth root of unity. By applying this representation to D̂ , we get

χ(D̂) =

⎛
⎜⎜⎝

A B C D
σ(D) σ(A) σ(B) σ(C)

C̄ D̄ Ā B̄

σ(B) σ(C) σ(D) σ(A)

⎞
⎟⎟⎠ ,

where A =
∑4

s=0 asζ
s , B =

∑4
s=0 bsζ

s , C =
∑4

s=0 csζ
s , D =

∑4
s=0 dsζ

s , as = ds00 − ds01 , bs = ds10 − ds11 ,

cs = ds20 − ds21 , ds = ds30 − ds31 and σ(ζ) = ζ2 .

By solving χ(D̂)χ(D̂) = 49I4 , where I4 is a 4 × 4 identity matrix, we get 16 equations which are
equivalent to the following system:

AĀ + BB̄ + CC̄ + DD̄ = 49 (4.6)

AC + BD = 0 (4.7)

Aσ(D) + Bσ(A) + Cσ(B) + Dσ(C) = 0 (4.8)

Aσ(B) + Bσ(C) + Cσ(D) + Dσ(A) = 0 (4.9)

Conditions (4.6)-(4.9) generate 14 more linear equations. We now use a computer to search for possible values

of dijk by combining these 14 linear equations with (4.4) and (4.5). In order to have an exhaustive search, we

fix the values of bij from the Frob(20) image and allow csk in (4.4) to vary. This search yielded no result.

Consequently, there is no difference set image in Frob(20) × C2 .

Based on the above results and exploration with GAP, we conclude that if there are non-isomorphic (400,

57, 8) Singer difference sets, it must be in groups with GAP identification number [400, cn] , where cn = 3, 49,
50, 52, 56, 57, 58, 59, 116, 132, 133, 206, 207, 212, 213.
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