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Abstract: We use C∗ -algebras to determine the non-propagation estimates for a certain class of generalized Schrödinger

operators acting on the Hilbert space �2(Γ), where Γ is a tree, and we give some examples for other classes of potentials.
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1. Introduction and main result

It is well known that the algebraic approach leads to very interesting results on the spectral analysis of self-
adjoint operators. As relevant results we quote: the essential spectrum and the Mourre estimate. A good
exposition of this formalism and some applications may be found in [1], [3], [4], [10], [11], [8] and [5]. We point
out only that the main idea consists in showing that these operators are affiliated to suitable C∗ -algebras which
reflect their common properties well. A study of the quotient of these C∗ -algebras by the ideal of compact
operators leads to a formula for the essential spectrum of these operators expressed as a union of spectra of
some asymptotic operators. The quotient of the same C∗ -algebras by other ideals gives localization results of
these operators, which can be interpreted as non-propagation properties of their unitary groups. The last result
is discovered and developed in [2], [12], [6] and [13].

Let L be a self-adjoint operator in a Hilbert space H and χ a nontrivial multiplication operator (for

example the characteristic function of a set having a strictly positive measure). If κ is a continuous function

with support intersecting the spectrum of L , the operator χ κ(L) has no reason to be small in general. The
unique a priori bound would be

‖χ κ(L)‖ ≤ ‖χ‖∞ sup
λ∈σ(L)

|κ(λ)|,

where σ(L) denotes the spectrum of L . We are going to correlate χ to κ in such a way to make the norm small
without asking any of the two factors on the right hand side of the preceding inequality to be small. In order

to understand the problem better we recall the following example (see [12] for more detail). In H = L2(R) we
consider the Schrödinger operator L = L0 +V , where L0 is the positive Laplace operator and V is the operator
of multiplication with a bounded, uniformly continuous function having a limit at plus infinity: V (x) → c when

x → +∞ . Then we have that [c,∞) is included in the essential spectrum of L . The behavior of V to the left
may introduce a spectrum and even an essential spectrum below c . Now, let κ : R → R be continuous, with a
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compact support situated below the value c and {χa, a ∈ R} the family of all operators of multiplication with

characteristic functions of intervals of the form [a,∞). Then we have that for any ε > 0 there exists a ∈ R ,

positive and sufficiently large, such that ‖χaκ(L)‖ ≤ ε . As a consequence we get the following non-propagation

result: ‖χae−itLκ(L)f‖ ≤ ε‖f‖ , uniformly in t ∈ R and f ∈ H . So, at energies below c , even when the
propagation towards infinity is possible, it does not take place to the right.

The purpose of this paper is to study the non-propagation theorem on trees. Let Γ be a ν -fold tree of
an origin e equipped with its canonical metric d , where d(x, y) is the shortest path joining x to y . We denote

by x ∼ y when x and y are connected by any edge. For all x ∈ Γ, we define |x| = d(e, x). Then we set

B(x, r) = {y ∈ Γ| d(x, y) < r} and Sn = {x ∈ Γ| |x| = n} .

For each x ∈ Γ\{e} we denote by x′ = x(1) the unique element y ∼ x such that |y| = |x| − 1 and we set

x(p) = (x(p−1))′ for all 1 ≤ p ≤ |x| . Let xΓ = {y ∈ Γ| |y| ≥ |x| and y(|y|−|x|) = x} , where the convention

x(0) = x has been used.
We are interested in operators acting on the Hilbert space

�2(Γ) := {f : Γ −→ C|
∑
x∈Γ

|f(x)|2 < ∞}

endowed with the inner product 〈f, g〉 :=
∑

x∈Γ f(x)g(x). We embed Γ ⊂ �2(Γ) by identifying x with its

characteristic function χ{x} . Notice that Γ is the canonical basis in �2(Γ); indeed, each f ∈ �2(Γ) can be

written as f =
∑

x∈Γ f(x)x. We define the bounded operator ∂ given by
(
∂f

)
(x) =

∑
y′=x f(y). Its adjoint

operator is given by
(
∂∗)f(x) = f(x′) for all x ∈ Γ\{e} and ∂∗f(e) = 0. Let D be the C∗ -algebra generated

by ∂ . In order to define our algebra of potentials, we set Γ̂ = Γ ∪ ∂Γ the compactification of Γ. An element
x of the boundary at infinity ∂Γ is a Γ-valued sequence x = (xn)n∈N such that |xn| = n and xn+1 ∼ xn for

all n ∈ N . We set |x| = ∞ for x ∈ ∂Γ. The space Γ̂ is equipped with a natural ultrametric space structure.

For x ∈ ∂Γ and (yn)n∈N a sequence in Γ we have limn→∞ yn = x if for each m ∈ N there is N ∈ N such that
for each n ≥ N we have yn ∈ xmΓ. We denote the C∗ -algebra of the complex-valued continuous functions

on Γ̂ by C(Γ̂). Since Γ is dense in Γ̂ , we can view C(Γ̂) as C∗ -subalgebra of Cb(Γ), the algebra of bounded

complex-valued continuous functions on Γ. For V ∈ C(Γ̂) we denote the operator of multiplication by V in

�2(Γ) by V (Q). We denote by C(Γ̂) the C∗ -algebra generated by D and C(Γ̂). It contains the set of K(�2(Γ))

the compact operators of �2(Γ). Let

xΓ̂ :=
{
y ∈ Γ̂| ∃p ∈ N ∪ {∞}; y(p) = x

}

and x∂Γ = xΓ̂∩∂Γ. Let (xn)n∈N any sequence converging to x. Notice that {xnΓ̂}n∈N the filter basis adjacent

to xΓ̂ . The main result of this paper is the next Theorem.

Theorem 1.1 Let ν > 1 and L =
∑

α,β aα,β(Q)∂∗α∂β + K , where K is a compact operator, aα,β ∈ C(Γ̂) ,

aα,β = 0 but a finite number of pairs, be a self-adjoint operator. For any x in Γ̂ , let κ : R → R be a continuous
function with

supp(κ) ∩
⋃

γ∈x∂Γ

σ(
∑
α,β

aα,β(γ)∂∗α∂β) = ∅.
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Then for each ε > 0 and for each sequence (xn)n∈N converging to x there exists nε ∈ N such that

∥∥χxn
�Γκ(L)

∥∥ ≤ ε (1.1)

for each n ≥ nε .

In particular, ∥∥χxn
�Γe−itLκ(L)f

∥∥ ≤ ε‖f‖, (1.2)

uniformly in t ∈ R and f ∈ �2(Γ) .

The Theorem 1.1 remains true even if we consider any other closed subset F of ∂Γ and any filter basis

adjacent to it. Note the obvious fact that one may replace {e−itL} in (1.2) by any bounded family of bounded
operators commuting with L. In this result we consider a small set defined localization at infinity of the operator
L and since the essential spectrum of L can be written as a union of spectra of the fiber Hamiltonians

L(γ) :=
∑

α,β aα,β(γ)∂∗α∂β . We can also obtain the non-propagation result in the global version just by

taking the continuous function κ with a support disjoint to σess(L) =
⋃

γ∈∂Γ σ(
∑

α,β aα,β(γ)∂∗α∂β).

The preceding results on trees allow us to treat more general graphs (connected graphs). We recall
that a graph is said to be connected if two of its elements can be joined by a sequence of neighbors. Let

G =
⋃m

j=1 Γj

⋃
G0 be a finite disjoint union of Γj , each Γj being a νj -fold branching tree, with νj ≥ 1 and of

G0 , a compact connected graph.

We endow G with a connected graph structure that respects the graph structure of each Γj and the one

of G0 , such that Γk is connected to Γj (k �= j) only through G0 and such that Γj is connected to G0 only
through ej , the origin of Γj . The graph G is hyperbolic and its boundary at infinity ∂G is the disjoint union⋃m

j=1 ∂Γj .

Let us describe the content of this paper. In section 2, we introduce the framework by recalling some
results useful in the spectral theory of self-adjoint operators and explain the construction of the tree Γ and the

C∗ -algebra C(Γ̂). Section 3 is devoted to the proof of the non-propagation result (Theorem 1.1) and the study
of some applications on the generalized Schrödinger operators with specific potentials.

2. Framework

2.1. The K-essential spectra

Let L be a self-adjoint operator in a Hilbert space H . By using the spectral theorem we can associate an
operator η(L) to a large class of functions η : R → C. We denote by C0(R) the set of all continuous functions

η : R → C that vanish at infinity (i.e. satisfying limx→±∞ η(x) = 0). Some parts of the spectrum of L can

be easily expressed in terms of these functions: (i) a number λ ∈ R belongs to the spectrum σ(L) of L if

η(L) �= 0 whenever η ∈ C0(R) and η(λ) �= 0, (ii) λ belongs to the essential spectrum σess(L) of L if η(L) is

a non-compact operator whenever η ∈ C0(R) and η(λ) �= 0.

Let C be a C*-subalgebra of the C∗ -algebra B(H) of bounded operators in H and L is a self-adjoint

operator L belonging to C. We assume that the ideal K(H) of all compact operators in H is contained in C.

The notion of the spectrum has an obvious meaning and it is easy to show that the spectrum of σK(H)(L) is

just the essential spectrum σess(L) of the self-adjoint operator L .
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It is obvious that, if L is a self-adjoint operator belonging to a C*-subalgebra C of B(H) and if K1 and

K2 are two ideals in C satisfying K1 ⊂ K2, then σK2(L) ⊂ σK1(L) ⊂ σ(L).

It is easy to check the next lemma, which will be used in the proof of Theorem 1.1.

Lemma 2.1 Let K be an ideal in a C∗ -algebra C and L an operator belonging to C . If η ∈ C0(R) is such

that η(μ) = 0 for all μ ∈ σK(L), then η(L) ∈ K.

2.2. C(Γ̂)-C∗ -algebra

In this subsection we explain the construction of the C∗ -algebra C(Γ̂). Let any finite set A consist of ν objects.
Let Γ be the free monöıd over A; its elements are words and those of A letters. The word x is a map with

values in A defined on the set of the form [1, n]∩ N , with n ∈ N . x(i) is the ith -letters of the words x . The

integer n is the length of the word and will be denoted by |x| . There is a unique word e of length 0 , its domain
is the empty set. This is the neutral element of Γ. From now on we identify A with the set of the words of
length 1.

If x ∈ Γ, we denote xΓ the right ideal generated by x . We have, on Γ, a canonical order relation defined
by:

x ≤ y ⇔ y ∈ xΓ.

If Γ is an arbitrary ordered set and x, y ∈ Γ , then one says that y covers x if x < y and if x ≤ z ≤ y ⇒ z =
x orz = y . For each x ∈ Γ we denote by:

x := {y ∈ Γ| y covers x}.

In our case, y covers x if x ≤ y and |y| = |x| + 1. Then it is easy to observe that each element x of Γ\{e}
covers a unique element x′ and that each element of Γ\{e} is covered by ν elements. Hence

y covers x ⇔ y′ = x ⇔ y ∈ x.

For |x| ≥ n , we define inductively x(n) by setting x(0) = x and x(m+1) = (x(m))′ , for m ≤ n − 1. One may

also notice that: |x(m)| = |x| − m , if m ≤ |x| and for m ≤ |ab| :

(ab)(m) =
{

ab(m), if m ≤ |b|
a(m−|b|), if m ≥ |b|.

We recall that a graph is a couple G = (V, E), where V is the set of vertices and E is a set of pairs

of elements of V (the edges). If x and y are joined by an edge, one says that they are neighbors and one

abbreviates x ∼ y . The graph structure allows one to endow V with a canonical metric d , where d(x, y) is the
length of the shortest path in G joining x to y .

The graph GΓ associated to the free monöıd is defined as follows: V = Γ and x ∼ y if x covers y or y

covers x . It is usual to identify Γ and GΓ , the so-called ν -fold branching tree. (To understand the construction

more, see the following figure.)

493



ATHMOUNI and DAMAK/Turk J Math

e

{x ∈ Γ || x | = 2}

Figure. A two-fold tree

For all x ∈ Γ, we have |x| = d(e, x). Then we set B(x, r) = {y ∈ Γ|d(x, y) < r} and Sn = {x ∈ Γ| |x| =
n} . We define the boundary at the infinity of Γ as the set ∂Γ = {x : N∗ → A} . For all x ∈ ∂Γ , we set

|x| = ∞. Let Γ̂ be Γ ∪ ∂Γ. For x ∈ Γ̂ we define the sequence (xn)[0,|x|]∩N with values in Γ by setting x0 = e

and xn = x|[1,n]∩N for n ≥ 1. We observe that the map x �→ (xn)n∈[0,|x|]∩N is injective. There is a natural left

action of Γ on Γ̂. For x ∈ Γ and y ∈ Γ̂ , xy will be defined on the set [1, |x| + |y|] ∩ N by x(i) for i ≤ |x|
and by y(i − |x|) for i > |x| . Now we will endow Γ̂ with a structure of ultrametric space. We define a kind of

valuation v on Γ̂ × Γ̂ by

v(x, y) =
{

max{n| xn = yn}, if x �= y
∞, if x = y.

And we set d̂(x, y) = e−v(x,y) . It is easy to check that (Γ̂, d̂) is an ultrametric space, i.e. a metric space such

that d̂(x, y) ≤ max(d̂(x, z), d̂(z, y)), for x , y , z ∈ Γ̂ . For r > 0, we denote B̂(x, r) = {y ∈ Γ̂| d̂(x, y) < r} .

We point out that ultrametric implies that B̂(x, r) is closed for all x ∈ Γ̂ and r > 0. Notice that the topology

induced by Γ̂ on Γ coincides with the initial topology of Γ discrete one. For x ∈ ∂Γ and n ∈ N ,

xnΓ̂ = {y ∈ Γ̂| v(x, y) ≥ n} = B̂(x, e−n+1),

which is the closure of xnΓ in Γ̂. Hence, for each x ∈ ∂Γ, {xnΓ̂}n∈N is the neighborhoods basis of x in Γ̂ .

Observe that if x ∈ Γ then x∂Γ = xΓ̂ ∩ ∂Γ. It is useful to recall that Γ̂ and ∂Γ are compact spaces and Γ̂ is
the compactification of Γ (for more details see [9]) .

We denote the C∗ -algebra of continuous complex-valued functions on Γ̂ by C(Γ̂). The dense embedding

Γ ⊂ Γ̂ gives a canonical inclusion C(Γ̂) ⊂ Cb(Γ), where Cb(Γ) is the C∗ -algebra of continuous bounded
complex-valued functions on Γ. Moreover, we have

C0(Γ) = {f ∈ C(Γ̂)|f|∂Γ = 0}.

A better understanding of the functions in C(Γ̂) is given in the following result:
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Proposition 2.2 [9] Let E a metrizable topological space. A function V : Γ → E extends to a continuous

function V̂ : Γ̂ → E if and only if for each x ∈ ∂Γ the limit of V (y) when y ∈ Γ converges to x exists.

3. Proof of main result and examples

3.1. Proof of theorem 1.1

(i) Let

Kx∂Γ = {ϕ ∈ C(Γ̂)| ϕ|x∂Γ = 0}.

So if ϕ belongs to Kx∂Γ, then for any sequence (xn)n∈N converging to x and for each δ > 0 there exists nε

such that

|ϕ(y)| ≤ δ ∀y ∈ xnΓ̂ ∀ n ≥ nε.

(ii) Using Theorem 5.9 in [9] we can deduce that there is a unique morphism Φ : C(Γ̂) → D ⊗ C(x∂Γ) such

that Φ(D) = D⊗ 1 for all D ∈ D and Φ(ϕ(Q)) = 1⊗ (ϕ|x∂Γ). Since any function in C(x∂Γ) is the restriction

of a function C(Γ̂) and any element D ⊗ 1 ∈ D ⊗ C(x∂Γ) has D as an antecedent through Φ, then by taking

into account the structure of the C∗ -algebra tensor product we have that any element D⊗ϕ|x∂Γ of D⊗C(x∂Γ)

can be written as the following product:

D ⊗ ϕ|x∂Γ = (D ⊗ 1)(1 ⊗ (ϕ|x∂Γ)) = Φ(D)Φ(ϕ(Q)) = Φ(Dϕ(Q)).

Thus, Φ is surjective with kernel equal to the ideal Kx∂Γ = 〈Kx∂Γ,D〉 . Then

Φ(L) =
∑
α,β

∂∗α∂β ⊗ (aα,β)|x∂Γ

and as a consequence we obtain

σKx∂Γ(L) =
⋃

γ∈x∂Γ

σ(
∑
α,β

aα,β(γ)∂∗α∂β).

Now using the hypothesis on the support of κ we have κ(L) ∈ Kx∂Γ (see Lemma 2.1). So there is a finite

number of functions ϕ1, ...., ϕm ∈ Kx∂Γ such that

‖κ(L) −
m∑

i=1

ϕi(Q)∂∗αi∂βi‖ ≤ ε/2.

We have

‖χxn
�Γ(Q)κ(L)‖ ≤

m∑
i=1

‖ϕi‖l∞(xn
�Γ)‖∂∗αi∂βi‖ + ‖κ(L) −

m∑
i=1

ϕi(Q)∂∗αi∂βi‖.

The first term in the r. h. s. of the preceding inequality can be made less than ε/2 by using the result of (i)

with δ =
[
m supi=1,.....,m αiβiν

]−1
ε
2 , so the proof is finished. �
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Remark 3.1 Since C0(Γ) ⊂ Kx∂Γ for all x ∈ ∂Γ , we can easily deduce that the ideal of all compact operators

on �2(Γ) , K(�2(Γ)) = 〈C0(Γ),D〉 is included in Kx∂Γ . It follows that for each self-adjoint operator L belonging

to C(Γ̂) ; σKx∂Γ(L) ⊂ σess(L) . Now, with the fact that for all x y ∈ Γ̂ with x �= y , we have that Kx∂Γ is not

contained in Ky∂Γ , and since ∩x∈∂ΓKx∂Γ = K(�2(Γ)) , we obtain that

σess(L) = ∪x∈∂ΓσKx∂Γ(L).

Since ∂Γ is a compact space, we do not take the closure of the union of the sets
(
σKx∂Γ(L)

)
x∈∂Γ

. In order to

obtain the non-propagation result in the global version just take the continuous function κ with support disjoint
to ∪x∈∂ΓσKx∂Γ(L) and take any sequence (xn)n∈N in Γ converging to any x ∈ ∂Γ .

Let L be a self-adjoint operator in �2(Γ) with a spectral measure EL and let f ∈ �2(Γ) be an arbitrary vector.

We call spectral support of f with respect to L , we denote supp(f ; L) for the smallest closed set J ⊂ R such

that EL(J)f = f. Alternatively one can characterize supp(f ; L) as follows :

λ /∈ supp(f ; L) iff ∃ε > 0 such that EL(λ − ε, λ + ε)f = 0.

Notice that one has supp(f ; L) ⊂ σ(L).

Corollary 3.2 Let L and Γ be as in Theorem 1.1. Then for each ε > 0 and for each sequence (xn)n∈N

converging to x there exists nε ∈ N such that

∥∥χxn
�Γ

e−itL f
∥∥ ≤ ε‖f‖,

for all n ≥ nε , t ∈ R and all f ∈ �2(Γ) satisfying

supp
(
f ; L

)
∩

⋃
γ∈x∂Γ

σ(
∑
α,β

aα,β(γ)∂∗α∂β) = ∅.

3.2. Examples

3.2.1. Non-propagation result for Schrödinger operators with bounded, periodic potentials

We consider the Schrödinger operator L = Δ + V (Q) with the potential V in C(Γ̂). Here Δ is the bounded

operator defined on �2(Γ) by (Δf)(x) =
∑

x∼y(f(y) − f(x)). From our definition

L = ∂ + ∂∗ − νId + χ{e} + V (Q),

it is clear that L ∈ C(Γ̂) and :

σess(L) = σess(Δ + V (Q)) = [−ν − 2
√

ν,−ν + 2
√

ν ] + V (∂Γ).

Then, we obtain the conclusion of Theorem 1.1 for each function κ with support not intersecting the set

[−ν − 2
√

ν,−ν + 2
√

ν] + V (∂Γ). In particular, if V is a periodic function i.e. V satisfying that there is

integer n0 ∈ N such that V (x) = V (y) if |x| = |y| + n0 , it is enough to take κ with support disjoint from

[−ν − 2
√

ν,−ν + 2
√

ν] + V ({x ∈ Γ||x| ≤ n0}).
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3.2.2. Generalized Schrödinger operators with potentials with asymptotic vanishing oscillation

The important point in this example is the observation if Γ is a tree then �2(Γ) can be naturally viewed as a
Fock space over a finite dimensional Hilbert space. Let A be a set consisting of ν elements and let

Γ =
⋃
n≥0

An (3.3)

where An is the n-th Cartesian power of A . If n = 0 then A0 consists of a single element that we
denote e . An element x = (a1, a2, ..., an) ∈ An is written x = a1a2...an and if y = b1b2...bm ∈ Am then

xy = a1a2...anb1b2...bm ∈ An+m , with the convention xe = ex = x . This provides Γ with a monoid structure.
The graph structure on Γ is defined as follows: x ↔ y if and only if there is a ∈ A such that y = xa or x = ya .

Now, we shall explain how to pass from trees to Fock spaces. We use the following equality (or, rather,

canonical isomorphism): if A , B are sets, then �2(A × B) = �2(A) ⊗ �2(B). Thus �2(An) = �2(A)⊗n if

n ≥ 1 and clearly �2(A0) = C . Then, since the union in 3.3 is disjoint, we have H = �2(Γ) =
⊕∞

n=0 �2(An) =⊕∞
n=0 �2(A)⊗n which is the Fock space constructed over the “one particle” Hilbert space H = �2(A). Let 1n

be the orthogonal projection of H onto H⊗n . Let A be a unitary C∗ -subalgebra of B(H). We denote by 1H
its unit element. We are interested in self-adjoint operators L = D + V where D is a continuous function of ∂

and ∂∗ ; V of the form
∑

n≥0 Vn1n , where Vn are bounded operators in H⊗n and are asymptotically constant

in some sense (when n → ∞). Let Avo be the set of operators V such that Vn ∈ A⊗n , sup ‖Vn‖ < ∞ and

‖Vn − Vn−1 ⊗ 1H‖ → 0 as n → ∞ . We can define the C∗ -algebra C∞ generated by ∂ , ∂∗ and Avo . Let

us denote C0 = Cvo ∩ K(H). It is easy to check that C0 is a closed ideal of Cvo . From [7] we can deduce

that Cvo/C0 is isomorphic to Avo/C(x∂Γ) ⊗ D , then we have Φ(L) =
∑

α,β
̂Vα,β|x∂Γ ⊗ ∂∗α∂β . Therefore, if

L =
∑

k ∂∗ik∂ik + V is a self-adjoint operator and for each function κ with support not intersecting the set

[−∑
k νik,

∑
k νik] + V̂ (x∂Γ); and for any sequence (xn)n∈N converging to x there is nε ∈ N such that

∥∥χxnΓκ(L)
∥∥ ≤ ε

for each n ≥ nε .

Observe that the algebras A⊗n are embedded in the infinite tensor product C∗ -algebra A⊗∞ . Thus
we may also introduce the C∗ -algebra A∞ of Avo consisting of the operators V such that V∞ := limn→∞ Vn

exists in norm in A∞ . For us the algebras of Hamiltonians of interest can now be defined as the C∗ -algebra
C∞ generated by the operators of the form L = D + V where D is a polynomial in ∂ , ∂∗ and V ∈ A∞ . We

consider the operator L =
∑

k V kDk . If L is a self-adjoint operator and V k ∈ A∞ , then

σKxA∞ (L) =
⋃

a∈xA∞
σ
( ∑

k

V k
∞(a)Dk

)
.

It is given that for any sequence (xn)n∈N in Γ converging to x in ∂Γ and all κ not intersecting the set σKxA∞ (L)
for all ε > 0 there is nε ∈ N such that

∥∥χxnΓκ(L)
∥∥ ≤ ε

for each n ≥ nε .
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Remark 3.3 Using the affiliation notion, we can go further by taking an unbounded potential V ∈ C(Γ̂, R) ,

where R = R ∪ {−∞, +∞} i.e. V ∈ C(Γ̂, R) if and only if for each γ ∈ ∂Γ we have either limx→γ V (x) = l

where l ∈ R or for each M ≥ 0 there is N ∈ N such that |V (x)| ≥ M for all n ≥ N and x ∈ γnΓ. It is

obvious that the domain of V (Q) is

D(V ) = {f ∈ �2(Γ)|‖V (Q)f‖ < ∞}.

Let L0 ∈ D be a self-adjoint operator. Since L0 is bounded, the operator L = L0 +V (Q) with the domain D(V )

is self-adjoint and it is affiliated to C(Γ̂) ( i.e. its resolvent belongs to C(Γ̂)). In fact, we have (V (Q) + z)−1 ∈
C(Γ̂) for all z ∈ C\R and for large such z we have also

(L + z)−1 = (V (Q) + z)−1
∑
n≥0

(L0(V (Q) + z)−1)n,

where the series is norm convergent. Now, with the same z , we use Theorem 5.9 in [9] and the fact that

D ⊗ C(x∂Γ) � C(x∂Γ,D) ; we obtain:

Φγ((L + z)−1) ≡ Φ((L + z)−1)(γ) = (V (γ) + z)−1
∑
n≥0

(Φ(L0)(V (γ) + z)−1)n.

Note that (V (γ) + z)−1 = 0 if V (γ) = ∞ . By analytic continuation we get

Φγ((L + z)−1) = (Φ(L0) + V (γ) + z)−1.

We used the convention (Φ(L0)+V (γ)+z)−1 = 0 if V (γ) = ∞ . It follows that if V (γ) = ∞ then σ(Φγ(L)) = ∅.

Otherwise, one has σ(Φγ(L)) = σ(Φ(L0)) + V (γ) . Therefore, we obtain

σ(Φx∂Γ(L)) = σ(Φ(L0)) + V (x∂Γ0),

where ∂Γ0 is the set of γ ∈ ∂Γ such that V (γ) is a finite value. By using Lemma 1 in [2], we get that κ : R → R

be a continuous function with
supp(κ) ∩ σ(Φx∂Γ(L)) = ∅.

Then for any sequence (xn)n∈N in Γ converging to x and for each ε > 0 there exists nε ∈ N such that

∥∥χxn
�Γκ(L)

∥∥ ≤ ε,

for each n ≥ nε .
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