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Abstract: In this paper, we show that there is a close relationship between generalized paracomplex manifolds and

Lie groupoids. We obtain equivalent assertions among the integrability conditions of generalized almost paracomplex

manifolds, the condition of compatibility of source and target maps of symplectic groupoids with symplectic form and

generalized paraholomorphic maps.
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1. Introduction

A groupoid is a small category in which all morphisms are invertible. More precisely, a groupoid (G, G0) consists
of two sets G and G0 , called arrows and objects, respectively, with maps s, t : G → G0 called source and target.
It is equipped with a composition m : G2 → G defined on the subset G2 = {(g, h) ∈ G × G | s(g) = t(h)} ; an
inclusion map of objects e : G0 → G and an inverse map i : G → G . For a groupoid, the following properties

are satisfied: s(gh) = s(h), t(gh) = t(g), s(g−1) = t(g), t(g−1) = s(g), g(hf) = (gh)f whenever both sides

are defined, g−1g = 1s(g) , gg−1 = 1t(g) . Here we have used gh, 1x and g−1 instead of m(g, h), e(x) and i(g),

respectively. Generally, a groupoid (G, G0) is denoted by the set of arrows G . A topological groupoid is a
groupoid G whose set of arrows and set of objects are both topological spaces whose structure maps s, t, e, i, m

are all continuous and s, t are open maps.

A Lie groupoid is a groupoid G whose set of arrows and set of objects are both manifolds whose structure
maps s, t, e, i, m are all smooth maps and s, t are submersions. The latter condition ensures that s and t-fibres
are manifolds.

One can see from the above definition that the space G2 of composable arrows is a submanifold of G×G .
We note that the notion of Lie groupoids was introduced by Ehresmann [3].

On the other hand, Lie algebroids were first introduced by Pradines [8] as infinitesimal objects associated
with the Lie groupoids. More precisely, a Lie algebroid structure on a real vector bundle A on a manifold M is
defined by a vector bundle map ρA : A → TM , the anchor of A , and an R-Lie algebra bracket on Γ(A), [, ]A
satisfying the Leibniz rule

[α, fβ]A = f [α, β]A + LρA(α)(f)β

for all α, β ∈ Γ(A), f ∈ C∞(M), where LρA(α) is the Lie derivative with respect to the vector field ρA(α),

where Γ(A) denotes the set of sections in A .
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On the other hand, Hitchin [5] introduced the notion of generalized complex manifolds by unifying and
extending the usual notions of complex and symplectic manifolds. Later the notion of generalized Kähler
manifold was introduced by Gualtieri [4] and submanifolds of such manifolds have been studied in many papers.

As an analogue of generalized complex structures on even dimensional manifolds, the concept of gener-
alized almost paracomplex manifolds was introduced in [6] and such manifolds have been studied in [6] and

[9].

Recently, Crainic [2] showed that there is a close relationship between the equations of a generalized
complex manifold and a Lie groupoid. More precisely, he obtained that the complicated equations of such
manifolds turn into simple structures for Lie groupoids.

In this paper, we investigate relationships between the complicated equations of generalized paracomplex
structures and Lie groupoids. We showed that the equations of such manifolds are useful to obtain equivalent
results on a symplectic groupoid.

2. Preliminaries
In this section we recall basic facts of Poisson geometry, Lie groupoids and Lie algebroids. More details can
be found in [7] and [10]. A central idea in generalized geometry is that TM ⊕ T ∗M should be thought of as
a generalized tangent bundle to manifold M . If X and ξ denote a vector field and a dual vector field on M ,
respectively, then we write (X, ξ) (or X + ξ ) as a typical element of TM ⊕ T ∗M . The Courant bracket of two

sections (X, ξ), (Y, η) of TM ⊕ T ∗M = T M is defined by

[(X, ξ), (Y, η)] = [X, Y ] + LXη − LY ξ − 1
2
d(iXη − iY ξ), (2.1)

where d , LX and iX denote exterior derivative, Lie derivative and interior derivative with respect to X ,
respectively. The Courant bracket is antisymmetric but it does not satisfy the Jacobi identity. Here, we use the

notations β(π�α) = π(α, β) and ω�(X)(Y ) = ω(X, Y ), which are defined as π� : T ∗M → TM , ω� : TM → T ∗M

for any 1-forms α and β , 2-form ω and bivector field π , and vector fields X and Y . Also we denote by [, ]π
the bracket on the space of 1-forms on M defined by

[α, β]π = Lπ�αβ − Lπ�βα − dπ(α, β).

On the other hand, a symplectic manifold is a smooth (even dimensional) manifold M with a non-

degenerate closed 2-form ω ∈ Ω2(M). ω is called the symplectic form of M . Let G be a Lie groupoid on M

and ω a form on Lie groupoid G ; then ω is called multiplicative if

m∗ω = pr∗1ω + pr∗2ω,

where pri : G× G → G , i = 1, 2 are the canonical projections.

Similar to 2-forms, given a Lie groupoid G , a (1, 1)-tensor J : TG → TG is called multiplicative [2] if

for any (g, h) ∈ G × G and any vg ∈ TgG , wh ∈ ThG such that (vg , wh) is tangent to G × G at (g, h), so is

(Jvg , Jwh), and

(dm)g,h(Jvg , Jwh) = J((dm)g,h(vg , wh)).

A symplectic groupoid (G, ω) is a Lie groupoid G with a symplectic form ω on G such that ω is
multiplicative. In this case, one says that G is a symplectic groupoid over G0 .
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We now recall the notion of Poisson manifolds. A Poisson manifold is a smooth manifold M whose
function space C∞(M, R) is a Lie algebra with bracket {, } , such that the following properties are satisfied:

(i) {f, g} = −{g, f}

(ii) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

(iii) {fg, h} = f{g, h} + g{f, h} .

If (M, {, }) is a Poisson manifold, then there is a unique bivector π called the Poisson bivector, defined by

π(df, dg) = {f, g},

and a unique homomorphism π� : T ∗M → TM with the vector bundle map given by

π�(dh) = Xh = {h, ·},

where Xh is the Hamiltonian vector field determined by h ∈ C∞(M, R).

It is also possible to define a Poisson manifold by using the bivector π . Indeed, a smooth manifold is a
Poisson manifold if [π, π] = 0, where [, ] denotes the Schouten bracket on the space of multivector fields.

We now give a relation between Lie algebroid and Lie groupoid. Given a Lie groupoid G on M , the
associated Lie algebroid A = Lie(G) has fibres Ax = Ker(ds)x = Tx(G(−, x)), for any x ∈ M . Any α ∈ Γ(A)
extends to a unique right-invariant vector field on G , which will be denoted by same letter α . The usual Lie
bracket on vector fields induces the bracket on Γ(A), and the anchor is given by ρ = dt : A → TM .

Given a Lie algebroid A , an integration of A is a Lie groupoid G together with an isomorphism
A ∼= Lie(G). If such a G exists, then it is said that A is integrable. In contrast with the case of Lie
algebras, not every Lie algebroid admits an integration. However if a Lie algebroid is integrable, then there
exists a canonical source-simply connected integration G , and any other source-simply connected integration is
smoothly isomorphic to G . From now on we assume that all Lie groupoids are source-simply connected.

In this section, finally, we recall the notion of IM form (infinitesimal multiplicative form) on a Lie

algebroid [1]. More precisely, an IM form on a Lie algebroid A is a bundle map

u : A → T ∗M

satisfying the properties

(i) 〈u(α), ρ(β)〉 = −〈u(β), ρ(α)〉 ,

(ii) u([α, β]) = Lα(u(β)) − Lβ(u(α)) + d〈u(α), ρ(β)〉

for α, β ∈ Γ(A), where ρ = ρA and 〈, 〉 denotes the usual pairing between a vector space and its dual.

If A is a Lie algebroid of a Lie groupoid G , then a closed multiplicative 2-form ω on G induces an IM

form uω of A by

〈uω(α), X〉 = ω(α, X).

For the relationship between IM form and closed 2-form we have the following theorem.

Theorem 1 [1] If A is an integrable Lie algebroid and if G is its integration, then ω �→ uω is a one to one
correspondence between closed multiplicative 2-forms on G and IM forms of A .
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3. Lie groupoids and generalized paracomplex structures

In this section we first give a characterization for generalized paracomplex manifolds, then we obtain certain
relationships between generalized paracomplex manifolds and symplectic groupoids. We recall that a generalized

almost paracomplex structure J is an endomorphism on T M such that J 2 = Id , where Id is the identity
map on T M . A generalized almost paracomplex structure can be represented by classical tensor fields as

J =
[

a π�

σ� −a∗

]
, (3.1)

where π is a bivector on M , σ is a 2-form on M , a : TM → TM is a bundle map, and a∗ : T ∗M → T ∗M is
dual of a , for almost paracomplex structures; see [9] and [11].

A generalized almost paracomplex structure is called integrable (or just paracomplex structure) if J
satisfies the condition

[Jα,Jβ] + [α, β]−J ([Jα, β] + [α,Jβ]) = 0, (3.2)

for all sections α, β ∈ T M .

In the sequel, we give necessary and sufficient conditions for a generalized almost paracomplex structure
to be integrable in terms of the above tensor fields. We note that the following result was stated in [9], but its
proof was not given in there. In fact, the proof of the conditions of the following proposition is similar to the
proposition given in [2] by Crainic for generalized complex structures. Although the conditions are similar to
the generalized complex case, their proofs are slightly different from the complex case. Therefore we give one
part of the proof of the following proposition.

Proposition 1 A manifold with J given by (3.1) is a generalized paracomplex manifold if and only if

(PC1) π satisfies the equation

π�([ξ, η]π) = [π�(ξ), π�(η)];

(PC2) π and a are related by the two formulas

aπ� = π�a∗,

a∗([ξ, η]π) = Lπ�ξ(a
∗η) − Lπ�η(a∗ξ) − dπ(a∗ξ, η); (3.3)

(PC3) π, a and σ are related by the two formulas

a2 + π�σ� = Id, (3.4)

Na(X, Y ) = π�iX∧Y (dσ), (3.5)

where Na is the torsion tensor of a ; and

(PC4) σ and a are related by the two formulas

a∗σ� = σ�a,

dσa(X, Y, Z) = dσ(aX, Y, Z) + dσ(X, aY, Z) + dσ(X, Y, aZ)

for all 1-forms ξ and η , and all vector fields X, Y and Z , where σa(X, Y ) = σ(aX, Y ) .
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Proof We will obtain only the condition (PC3). The first equation of (PC3) is obtained from the equation

J 2 = Id . To prove the second part of (PC3), we take α = (X, 0), β = (Y, 0) in (3.2) such that X and Y are

vector fields. Since Jα = (aX, σ�X) and Jβ = (aY, σ�Y ), using (2.1) we get

[Jα,Jβ] = ([aX, aY ], LaXσ�Y − LaY σ�X +
1
2
d(σ�X(aY ) − σ�Y (aX)), (3.6)

−J [Jα, β] = (−a[aX, Y ] − π�(−LY σ�X +
1
2
d(iY σ�X),−σ�[aX, Y ]

+ a∗(−LY σ�X +
1
2
d(iY σ�X)) (3.7)

and

−J [α,Jβ] = (−a[X, aY ]− π�(−LXσ�Y − 1
2
d(iXσ�Y ),−σ�[X, aY ]

+ a∗(LXσ�Y − 1
2
d(iXσ�Y )). (3.8)

Thus, from (3.6), (3.7) and (3.8) we obtain

[aX, aY ] + [X, Y ] − a[aX, Y ] − π�
(
− LY σ�X +

1
2
d(iY σ�X)

)
−a[X, aY ] − π�

(
− LXσ�Y − 1

2
d(iXσ�Y )

)
= 0,

where we have used [α, β] = ([X, Y ], 0). Rearranging the above expression, we arrive at

[aX, aY ] + [X, Y ] − a[aX, Y ] − a[X, aY ] − π�
(
− LY (iXσ) + LX(iY σ)

+
1
2
d(iX∧Y σ) +

1
2
d(iX∧Y σ)

)
= 0. (3.9)

On the other hand, making use of the formula

iX∧Y (dσ) = LX(iY σ) − LY (iXσ) + d(iX∧Y σ) − i[X,Y ]σ, (3.10)

we get

−π�
(
LX(iY σ) − LY (iXσ) + d(iX∧Y σ)

)
= −π�

(
iX∧Y (dσ) + i[X,Y ]σ)

= −π�
(
iX∧Y (dσ)

)
− π�

(
i[X,Y ]σ

)
. (3.11)

Since

π�
(
i[X,Y ]σ

)
= π�

(
σ�[X, Y ]

)
,

from (3.4) we have

π�
(
i[X,Y ]σ

)
= −a2[X, Y ] + [X, Y ]. (3.12)
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Using (3.12) in (3.11), we derive

−π�
(
LX(iY σ) − LY (iXσ) + d(iX∧Y σ)

)
= −π�

(
iX∧Y (dσ) + i[X,Y ]σ

= −π�
(
iX∧Y (dσ)

)
+ a2[X, Y ]

− [X, Y ]. (3.13)

Thus putting (3.13) in (3.9), we obtain (3.5). The other assertions can be obtained in a similar way. �

We note that if (3.1) is a generalized paracomplex structure, then

J =
[

a −π�

−σ� −a∗

]

is also a generalized paracomplex structure. J is called the opposite of J . In this paper we denote a generalized

paracomplex manifold endowed with J by M .
As an analogue of a Hitchin pair on a generalized complex manifold, a Hitchin pair on a generalized

almost paracomplex manifold M is a pair (ω, a) consisting of a symplectic form ω and a (1, 1)-tensor a with

the property that ω and a commute (i.e. ω(X, aY ) = ω(aX, Y )) and dωa = 0, where ωa(X, Y ) = ω(aX, Y ).

Lemma 1 If π is a non-degenerate bivector on a generalized almost paracomplex manifold M , ω is the inverse

2-form (defined by ω� = (π�)−1 ) and π satisfies (3.4), then σ = ω − a∗ω .

Proof For X ∈ χ(M), we apply ω� to (3.4) and using the dual paracomplex structure a∗ , we have

(a∗)2ω�(X) + σ�(X) = ω�(X).

Now for Y ∈ χ(M), since ω and a commute, we obtain

ω(aX, aY ) + σ(X, Y ) = ω(X, Y ).

Thus we get
a∗ω(X, Y ) + σ(X, Y ) = ω(X, Y ). (3.14)

Since the equation (3.14) holds for all X and Y , we get

σ = ω − a∗ω.

�

We say that 2-form σ is the twist of Hitchin pair (ω, a).

A symplectic+paracomplex structure on M is a couple (ω, J) consisting of a symplectic form ω and a
paracomplex structure J on M , which commute.

Lemma 2 Let (M, ω) be a symplectic manifold. (ω, a) is a symplectic+paracomplex structure if and only if
dωa = 0 , ω − a∗ω = 0 .

Proof We will only prove the sufficient condition. Since (M, ω) is a symplectic manifold, then dω = 0. Since

dωa = 0, ω = a∗ω , by using the equation (see [2])

iNa(X,Y )(ω) = iaX∧Y +X∧aY (dωa) − iaX∧aY (dω) − iX∧Y (d(a∗ω)) (3.15)
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we get iNa(X,Y )(ω) = −iX∧Y (d(a∗ω)) = −iX∧Y (dω) = 0. Hence, ω(Na(X, Y ), •) = 0. Since ω is non-

degenerate, then Na = 0. Thus a is a paracomplex structure. On the other hand, ω − a∗ω = 0 implies that ω

and a commute.
The converse is clear. �

Next we relate (PC1) and the 2-form ω .

Lemma 3 If π is a non-degenerate bivector on a generalized almost paracomplex manifold M , and ω is the
inverse 2-form, then π satisfies (PC1) if and only if ω is closed.

Proof Applying ξ = iX(ω) and η = iY (ω) to (PC1), we get

π�(LX(iY (ω)) − LY (iX(ω)) − d(ω�Y (π�ω�X)) = [X, Y ].

Since ω� = (π�)−1 , we have

π�(LX(iY (ω)) − LY (iX(ω)) − d(ω�Y )(X)) = [X, Y ]. (3.16)

Then applying ω� to (3.16), we derive

LX(iY (ω)) − LY (iX(ω)) − d(ω�Y )(X) = ω�([X, Y ]).

Using (3.10), then we get

LX(iY ω) − LY (iXω) + d(iX∧Y ω) − i[X,Y ]ω = iX∧Y dω.

Since the left hand side vanishes in the above equation, then iX∧Y dω = 0. Thus dω = 0. The rest of the proof
is completely analogous to the above calculations, and hence it can be omitted. �

Thus, we have the following result, which shows that there is close relationship between the condition
(PC1) and a symplectic groupoid.

Theorem 2 Let M be a generalized almost paracomplex manifold. There is a 1-1 correspondence between:

(i) Integrable bivectors π on M satisfying (PC1),

(ii) Symplectic groupoids (Σ, ω) over M .

Since π� and [, ]π define a Lie algebroid structure on T ∗M , one can obtain the above theorem by the following

steps given in ([2],Theorem 3.2). We now give the conditions for (PC2) in terms of ω and ωa .

Lemma 4 Let M be a generalized almost paracomplex manifold and ω a symplectic form. Given a non-

degenerate bivector π (i.e. π� = (ω�)−1 ) and a map a : TM → TM , then π and a satisfy (PC2) if and only

if ω and a commute and ωa is closed.

Proof For a 1-form ξ , we use ξ = iXω = ω�X such that X is an arbitrary vector field. Since

aπ�(iXω) = π�a∗(iXω), (3.17)

applying ω� to (3.17) and using π� = (ω�)−1 , we have

ω(aX, Y ) = a∗(iXω)(Y ),
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for a vector field Y . Hence we get

ω(aX, Y ) = ω(X, aY ).

Let ξ and η be 1-forms such that ξ = iXω = ω�(X) and η = iY ω = ω�(Y ) for arbitrary vector fields X and

Y . Then from (3.3) we have

a∗(Lπ�ω�(X)(ω�(Y )) − Lπ�ω�(Y )(ω�(X)) − dπ(iXω, iY ω)) = Lπ�ω�(X)(a
∗ω�(Y ))

− Lπ�ω�(Y )(a
∗ω�(X))

− dπ(a∗iXω, iY ω).

Since π� = (ω�)−1 and a∗iY ω = iY ωa , we obtain

a∗(LX(iY ω) − LY (iXω) − d(iY ∧Xω)) = LX(iY ωa)

− LY (iXωa)

− d(iY ω(π�(ω�(aX)))).

Using (3.10) for the left hand side, we get

a∗(iX∧Y (dω) + i[X,Y ]ω) = LX(iY ωa) − LY (iXωa) − d(ω(Y, aX)).

Since ω and a commute, using this also for the right hand side, we have

a∗(iX∧Y (dω)) + i[X,Y ]ωa = iX∧Y (dωa) + i[X,Y ]ωa. (3.18)

Since ω is closed, (3.18) implies that iX∧Y (dωa) = 0, i.e. ωa is closed. �

Let (M, ω) be a symplectic manifold. Then it is easy to see that there is a one to one correspondence between

(1, 1)-tensors a commuting with ω and 2-forms on M . On the other hand, it is easy to see that (PC2) is
equivalent to the fact that a∗ is an IM form on the Lie algebroid T ∗M associated Poisson structure π . Thus,
from the above discussion, Lemma 4 and Theorem 1, one can conclude with the following theorem.

Theorem 3 Let M be a generalized almost paracomplex manifold. Let π be an integrable Poisson structure
on M , and (Σ, ω) a symplectic groupoid over M . Then there is a natural 1-1 correspondence between

(i) (1, 1)-tensors a on M satisfying (PC2),

(ii) multiplicative (1, 1)-tensors J on Σ with the property that (J, ω) is a Hitchin pair.

For the generalized complex manifold case, see [2].

We recall the notion of generalized paraholomorphic map between generalized paracomplex manifolds.
This notion was given in [9] similar to the generalized holomorphic map given in [2].

Let (Mi,Ji), i = 1, 2, be two generalized paracomplex manifolds, and let ai, πi, σi be the components of

Ji in the matrix representation (3.1). A map f : M1 → M2 is called generalized paraholomorphic iff f maps

π1 into π2 , f∗σ2 = σ1 and (df) ◦ a1 = a2 ◦ (df)[9].

We now state and prove the main result of this paper. This result gives equivalent assertions between
the condition (PC3), twist σ of (ω, J) and paraholomorphic maps for a symplectic groupoid over M .
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ŞAHİN et al./Turk J Math

Theorem 4 Let M be a generalized almost paracomplex manifold and (Σ, ω, J) an induced symplectic groupoid

over M with the induced multiplicative (1, 1)-tensor. Assume that (π, J) satisfy (PC1), (PC2) with integrable
π . Then for a 2-form on M , the following assertions are equivalent.

(i) (PC3) is satisfied,

(ii) ω − J∗ω = t∗σ − s∗σ ,

(iii) (t, s) : Σ → M ×M is a generalized paraholomorphic map; condition of generalized paraholomorphic map

on M is (dt) ◦ a1 = a2 ◦ (dt) , this condition on M is (ds) ◦ a1 = −a2 ◦ (ds)).

Proof (i)⇔ (ii): Define φ = σ̃ − t∗σ + s∗σ , such that σ̃ = ω − J∗ω and A = ker(ds)|M . We know from

Theorem 1 that closed multiplicative 2-form θ on Σ vanishes if and only if IM form uθ = 0, i.e. θ(X, α) = 0,
such that X ∈ TM , α ∈ A . This case can be applied for forms with higher degree, i.e. 3-form θ vanishes if
and only if θ(X, Y, α) = 0.

Since ω and ωJ are closed, from (3.15) we get iX∧Y (d(J∗ω)) = −iNJ (X,Y )ω . Putting σ̃ = ω − J∗ω , we

obtain
iX∧Y (dσ̃) = iNJ (X,Y )ω. (3.19)

Since dφ = 0 ⇔ dφ(X, Y, α) = 0, we have

dφ(X, Y, α) = 0 ⇔ dσ̃(X, Y, α) − d(t∗σ)(X, Y, α) + d(s∗σ)(X, Y, α) = 0.

On the other hand, we obtain
d(t∗σ)(X, Y, α) = dσ(dt(X), dt(Y ), dt(α)). (3.20)

If we take dt = ρ in (3.20) for A , we get

d(t∗σ)(X, Y, α) = dσ(dt(X), dt(Y ), ρ(α)). (3.21)

On the other hand, from [1] we know that

IdΣ = m ◦ (t, IdΣ). (3.22)

Differentiating (3.22), we obtain

X = dt(X). (3.23)

Using (3.23) in (3.21), we get

d(t∗σ)(X, Y, α) = dσ(X, Y, ρ(α)).

In a similar way, we see that
d(s∗σ)(X, Y, α) = dσ(ds(X), ds(Y ), ds(α)).

Since α ∈ kerds , then ds(α) = 0. Hence d(s∗σ) = 0.
Thus we obtain

dσ̃(X, Y, α) = dσ(X, Y, ρ(α)). (3.24)

Using (3.19) in (3.24), we derive

ω(NJ (X, Y ), α) = dσ(X, Y, ρ(α)). (3.25)
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On the other hand, it is clear that φ = 0 ⇔ σ̃ − t∗σ + s∗σ = 0. Thus we obtain

σ̃(X, α) = σ(X, ρ(α)).

Since σ̃ = ω − J∗ω , we get

ω(α, X) − ω(JX, Jα) = σ(X, ρ(α)). (3.26)

Since Poisson bivector π is integrable, it defines a Lie algebroid whose anchor map is ρ = π� . Let us use π�

instead of ρ in (3.25) and (3.26); then we get

ω(NJ (X, Y ), α) = dσ(X, Y, π�(α)), (3.27)

ω(α, X) − ω(JX, Jα) = σ(X, π�(α)).

Since ω(α, X) = α(X), ωJ(α, X) = α(JX), from (3.27) we have

−α(NJ (X, Y )) = dσ(X, Y, π�(α))

= iX∧Y dσ(π�(α))

= π(α, iX∧Y dσ)

= −α(π�(iX∧Y dσ)),

i.e. α(NJ(X, Y )) = α(π�(iX∧Y dσ)).
Since the above equation holds for all non-degenerate α , we get

NJ (X, Y ) = π�(iX∧Y dσ). (3.28)

On the other hand, from (3.26) we obtain

−α(X) + α(a2X) = iXσ(π�(α))

= π(α, iXσ)

= −α(π�σ�X).

Thus we get

a2 + π�σ� = I. (3.29)

Then (i)⇔(ii) follows from (3.28) and (3.29).

(ii)⇔(iii): ω − J∗ω = t∗σ − s∗σ says that (t, s) is compatible with 2-forms. Also it is clear that (t, s)

and bivectors are compatible due to Σ being a symplectic groupoid. We will check the compatibility of (t, s)

and (1, 1)-tensors. From the compatibility condition of t and s , we will get dt◦J = a◦dt and ds◦J = −a◦ds .

For all α ∈ A and V ∈ χ(Σ), we have

ω(α, V ) = ω(α, dtV )
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which is equivalent to

α(V ) = 〈uω(α), dtV 〉.

Since uω = Id and uωJ = a∗ , we get

〈α, a(dt(V ))〉 = α(a(dt(V )))

= a∗α(dt(V ))

= 〈uωJ α, V 〉
= ω(α, JV )

= ω(α, dt(JV ))

= 〈α, dt(JV )〉

since this equation holds for all α ∈ A , a(dt) = dt(J). Using s = t ◦ i ,

a(ds(V )) = ad(t ◦ i)V

= a(dt(di(V )))

= −a(dt(V ))

= −ds(JV ),

which shows that a(ds) = −ds(J). Thus the proof is completed. �
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