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Abstract: Let S be a Polish space, and let MΣ be the Banach space of finite signed measures on the Borel Σ-algebra

Σ of S . Given a constrictive Markov operator T : MΣ → MΣ , we use the asymptotic periodic decomposition of

T to determine the set of T -invariant distributions in MΣ and the set of T -ergodic distributions. We also give the

relationship between the asymptotic periodic decomposition and the cycles of the process relative to the operator T .
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1. Introduction

A bounded linear operator T on a Banach space X is called constrictive if there is a compact set F ⊂ X such

that the iterates Tnx tend to F if ‖x‖ ≤ 1. If there is a periodic operator T̂ such that lim
n→∞

‖Tnx− T̂nx‖ = 0

for all x ∈ X we say T is asymptotically periodic. There are several results about conditions that imply the
equivalence between constrictivity and asymptotic periodicity. Lasota, Li and Yorke [10] showed the equivalence

when X = L1(μ) with the strong topology, where μ is a Σ-finite measure. Komorńık [6] gave the equivalence

for the case in which L1(μ) has the weak topology. Komorńık and Lasota [8] extended those results for ‘quasi-

constrictive’ (see Section 2 for a definition) instead of ‘constrictive’ Markov operators. Komorńık in [7] collects
results concerning asymptotic properties of the iterates of positive contractions or power bounded operators

on L1(μ); this subject is also studied by Lasota and Mackey in [11]. Bartoszek [1] and Räbiger [15] studied

the case in which X is a real Banach lattice and T is a positive contraction. Bartoszek [2] and Emelýanov [4]

studied the case in which X is an AL Banach space. Bartoszek [3] studied the asymptotic periodicity when X
is ordered F -spaces with the Riesz decomposition property and T is constrictive positive operators.

In all previous cases we have that the operator T̂ is of the form T̂nx =
∑r

k=1 λk(x)xσn(k) , where σ

is a permutation of {1, 2, . . . , r} , each λk is a linear functional and x1, x2, . . . , xr are normalized linearly

independent elements of X . We say that such a representation of T̂ is an asymptotic periodic decomposition of
T .

We are interested in the case in which X is the Banach space MΣ of finite signed measures with the
total variation norm ‖ · ‖ on a Σ-algebra Σ of a set S , and T is of the form ·P , for a Markov transition

probability P relative to a time-homogeneous Markov chain (Xn)∞n=0 whose state space is S . That is to say
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P n(s, A) = P(Xn ∈ A|X0 = s), s ∈ S and A ∈ Σ, (1)

for all n ∈ N ∪ {0} and

Tnμ = μP n :=
∫

P n(s, ·)μ(d s), n ∈ N. (2)

Komorńık and Thomas [9] proved an extension of the equivalence between the constrictivity and the
asymptotic periodicity. This extension states the existence of the asymptotic periodicity decomposition of
constrictive Markov operators on a kind of subset of MΣ . Such extension is reproduced in Section 2. We shall
establish a relationship between the periodic asymptotic decomposition and the Harris decomposition of the
Markov chain (Xn), and its cyclic decomposition in the case where S is a Polish space. We also shall describe
the ergodic and invariant measures.

The Harris decomposition describes a recurrence structure of some Markov chain; Meyn and Tweedie
gave [12] several results related with the Harris decomposition in which the state space is composed of a disjoint
collection of “recurrent” sets plus a “transient” set.

In Section 3 we enunciate the cyclic decomposition theorem. We use this theorem to prove our main
result (Theorem 3.8), which formulates the relation between the asymptotic decomposition and the cycles of
the process.

In the next section we give a standard terminology, some of which can be found in Orey [14], and we give
necessary previous results to prove the results given in Section 3.

2. Preliminaries
A topological space is said to be a Polish space if it is homeomorphic to a complete separable metric space.

Let S be a Borel subset of a Polish space. We denote by Σ the Σ-algebra of Borel subsets of S .

Let us fix the measurable space (S, Σ) and a time-homogeneous Markov chain (Xn)∞n=0 on (S, Σ) whose

n-step Markov transition probability is P n , for n ∈ N ∪ {0} .

The Dirac measure at x is denoted as δx , that is δx(A) = 1 if x ∈ A , and δx(A) = 0 if x /∈ A , for x ∈ S

and A ∈ Σ .
Note that if we have the linear operator ·P : MΣ → MΣ given by (2), then we can recuperate the

Markov transition probability given in (1) by means of the formula

P n(x, ·) = δxP n.

If μ is a probability measure and A ∈ Σ , then μP n(A) represents the probability of Xn ∈ A given that

the probability of X0 ∈ B is μ(B), for all set B ∈ Σ .

A set M is a band in MΣ if M ⊂ MΣ and it is a Banach lattice such that (μ ∈ M and ν � μ) ⇒ ν ∈ M .

Let M be a band in MΣ , and let DM denote the subset of nonnegative normalized elements of M ,
called the distributions of M . (In other words, DM is the set of probability measures in M .)

A linear operator T : M → M is called a Markov operator if T maps DM into itself.

Let M be a band in MΣ . A Markov operator T : M → M is said to be quasi-constrictive if there exists
a weakly compact set F ⊂ M and a nonnegative number δ < 1 such that

lim sup
n→∞

d(Tnμ, F ) ≤ δ for μ ∈ DM ,
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where d(ν, F ) := inf{‖ν − ρ‖ : ρ ∈ F } .

We say that μ ∈ M is P -periodic if there exists a nonnegative integer n such that μP n = μ . The
minimum positive integer n such that μ = μP n is called the P -period of μ . If the P -period of μ is 1, we
say that μ is P -invariant. We say that a P -periodic distribution μ ∈ DM is minimal if for any P -periodic
measure ν � μ there exists a scalar t such that ν = tμ .

An arbitrary set A ∈ Σ is called absorbing (or stochastically closed) if P (s, A) = 1 for s ∈ A . We say
that an absorbing set is indecomposable if it contains no disjoint pair of absorbing sets.

A P -invariant probability measure μ is said to be P -ergodic if for all absorbing set A , we have μ(A) = 0

or μ(A) = 1.

The following theorem is the version of Komorńık and Thomas [9] of the asymptotic periodic decompo-
sition.

Theorem 2.1 Asymptotic periodic decomposition theorem (APDT). Let M be a band in MΣ and ·P
be a quasi-constrictive Markov operator on M . Then:

(a) There exists

• a finite set F0 = {ν1, ..., νr} of pairwise orthogonal P -periodic elements of DM ,

• a set {λ1, ..., λr} of continuous linear functionals on M , and

• a permutation σ of the integers 1, ..., r such that

lim
n→∞

∥∥∥∥∥μP n −
r∑

i=1

λi(μ)νσn(i)

∥∥∥∥∥ = 0 for each μ ∈ M, (3)

and
νiP = νσ(i) for i ∈ {1, ..., r}. (4)

(b) The functionals λi are positive, that is, λi(μ) ≥ 0 if μ ≥ 0 . Moreover,

r∑
i=1

λi(ν) = 1 for ν ∈ DM

and
|λi(μ)| ≤ ‖μ‖ for μ ∈ M. (5)

(c) The measures νi , for i ∈ {1, ..., r} , are minimal.

(d) The sets {ν1, ..., νr} and {λ1, ..., λr} satisfying (3) and (4) are unique.

From APDT we can get the next corollary.

Corollary 2.2 For a band in MΣ the concepts of constrictivity and quasi-constrictivity are equivalents.
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We shall denote DMΣ simply by D ; that is, D is the set of probability measures on Σ .

Let ·P : MΣ → MΣ be a quasi-constrictive Markov operator. Let us denote the set {μP n : μ ∈ D} by

[D]P n and let D∞ :=
∞⋂

n=1
[D]P n be the set of all the limit points of the sequences (μP n)∞n=1 , with μ ∈ D .

By the APDT, ν ∈ D∞ if and only if it is a convex combination of the distributions ν1, ..., νr . That is,
D∞ is the convex hull of the finite set F0 = {ν1, ..., νr} given in the APDT.

We shall now identify the set DI
∞ ⊂ D∞ of P -invariant distributions and the subset DE

∞ ⊂ DI
∞ of all

the P -ergodic distributions.

Two integers i and j in {1, ..., r} are said to be equivalent (denoted by i ↔ j ) if νiP
k = νj for some

positive integer k . Observe that ↔ is an equivalence relation, and denote by O1, O2, ..., Od the different

equivalence classes of {1, ..., r} . Let Ōl := {νi : i ∈ Ol} . For j ∈ {1, ..., d} , let #Oj be the number of elements

in Oj , and let

τj :=
1

#Oj

∑
i∈Oj

νi (6)

be the “average” of the elements in Ōj . Observe that ·P : Ōj → Ōj is a bijection and νiP ∈ Ōj ⇔ νi ∈ Ōj .
Therefore,

∑
i∈Oj

νi =
∑

ν∈Ōj

ν =
∑

ν∈Ōj

νP =
∑
i∈Oj

νiP =

⎛
⎝ ∑

i∈Oj

νi

⎞
⎠P,

which gives that τj is a P -invariant distribution. Also note that τ1, ..., τd are mutually singular. The proof

of the following theorem proceeds in the same way as in [17] (Theorem 20), in which S was assumed to be a
countable set.

Theorem 2.3 Ergodic decomposition theorem. Let ·P : MΣ → MΣ be a quasi-constrictive Markov

operator and let DI
∞ ⊂ D∞ be the set of all the P -invariant distributions. Then DI

∞ is a convex set and, in

fact, it is the convex hull of {τ1, ..., τd} with τj as in (6), i.e.

DI
∞ =

⎧⎨
⎩μ ∈ D : μ =

d∑
j=1

αjτj with αj ≥ 0 and
d∑

j=1

αj = 1

⎫⎬
⎭ . (7)

Hence, DE
∞ = {τ1, ..., τd} is the collection of all the P -ergodic distributions.

We denote by Q(s, A) the probability that Xn ∈ A for infinitely many n , given X0 = s , and we denote

by L(s, A) the probability that Xn ∈ A for some n ∈ N , given X0 = s , that is to say

Q(s, A) := P

( ∞⋂
m=1

∞⋃
n=m

[Xn ∈ A]|X0 = s

)

and

L(s, A) := P

( ∞⋃
n=1

[Xn ∈ A]|X0 = s

)
,
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for s ∈ S and A ∈ Σ . An absorbing set A is called Harris if there exists a Σ-finite measure ϕ on Σ with
ϕ(A) > 0 such that ϕ(B) > 0 ⇒ Q(s, B) = 1 for all s ∈ A . If we want to be specific, we say the set A

is ϕ-Harris. The Harris sets are indecomposable. A set A is said to be uniformly transient if there exists
M < +∞ such that

∞∑
n=1

P n(s, A) ≤ M for s ∈ S. (8)

The sum given in (8) is the expectation of the number of times that the chain visits the set A given X0 = s .
A set is Σ-transient if it can be represented as a countable union of uniformly transient sets.

A set A ∈ Σ said to be strongly transient if

∞∑
n=1

P n(s, A) < +∞ for s ∈ S. (9)

It is easy to prove the next lemma.

Lemma 2.4 If a set is strongly transient, then it is Σ-transient.

We say that the Markov chain (Xn) admits a Harris decomposition for S if there exists a countable

disjoint family {Hn} of Harris sets and a Σ-transient set E such that

S =

(⋃
n

Hn

)
∪ E. (10)

We shall prove that if the Markov chain (Xn) admits a Harris decomposition, then each ergodic measure

μ is concentrated in one of the Harris sets Hn given in (10). We say that a measure μ on Σ is concentrated in

a set A ∈ Σ , if μ(S \ A) = 0.

Lemma 2.5 If μ is a finite invariant measure and E is a Σ-transient set, then μ(E) = 0 .

Proof Note that it is sufficient to prove the lemma when E is uniformly transient. Suppose that μ(E) > 0.
As μ is invariant, we have

μ(E) = μP j(E) =
∫

P j(z, E)μ(d z) for j ∈ N.

On the other hand, as E is uniformly transient, there exists M < +∞ such that

∞∑
j=1

P j(s, E) ≤ M, for s ∈ S,

hence, as μ(E) > 0, we have

+∞ =
∞∑

j=1

μ(E) =
∞∑

j=1

∫
P j(z, E)μ(d z)

=
∫ ⎛

⎝ ∞∑
j=1

P j(z, E)

⎞
⎠ μ(d z) ≤

∫
Mμ(d z) = Mμ(S),
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which is a contradiction. Therefore μ(E) = 0. �

Theorem 2.6 If ν is a finite periodic measure and E is a Σ-transient set, then ν(E) = 0 .

Proof Suppose that ν is periodic with period n and E is a Σ-transient set. Let μ = ν + νP + · · ·+ νP n−1

and observe μ is invariant. As ν � μ , from Lemma 2.5 it follows ν(E) = 0. �

Theorem 2.7 If the Markov chain (Xn) admits a Harris decomposition

S =

(⋃
n

Hn

)
∪ E,

then:

(a) each P -invariant probability measure is concentrated in
⋃

n Hn ,

(b) each P -ergodic measure is concentrated in some Hn .

Proof Part (a) follows directly from Theorem 2.6. If μ is an ergodic measure, then we have from (a) that

μ(
⋃

n Hn) = 1. Hence, μ(Hn) > 0 for some n . Now, since Hn is absorbing and μ is ergodic, μ(Hn) = 1. �

From Theorems 2.3 and 2.7 and Equation (6), we have the next corollary.

Corollary 2.8 If the hypothesis of Theorem 2.7 is fulfilled and the operator ·P is quasi-constrictive on MΣ ,
then:

(a) each distribution μ ∈ D∞ (see Theorem 2.3) is concentrated in
⋃

n Hn ,

(b) each distribution νi given in APDT is concentrated in some Hn .

3. The cyclic decomposition

We begin this section defining the concept of cycle.

A finite sequence (C1, C2, . . . , Cq) of q disjoint sets is a cycle (of length q ) if each Cj ∈ Σ and

P (s, Cj+1) = 1 for s ∈ Cj and 1 ≤ j ≤ q − 1, and

P (s, C1) = 1 for s ∈ Cq.

In order to establish the cyclic decomposition we need some terminology.

Let ϕ bea Σ-finite measure on Σ . If ϕ(A) > 0 ⇒ L(s, A) > 0, for all A ∈ Σ and s ∈ S , we say that

the Markov chain (Xn) is ϕ-irreducible. If ϕ(A) > 0 ⇒ L(s, A) = 1, for all A ∈ Σ and s ∈ S , we say that the

Markov chain (Xn) is ϕ-recurrent.

An equivalent way to define a ϕ-recurrent Markov chain is saying that ϕ(A) > 0 ⇒ Q(s, A) = 1, for all
A ∈ Σ and s ∈ S . We can use both versions according to our convenience.

A set A ∈ Σ is said to be inessential if Q(s, A) = 0 for all s ∈ S .

A Σ-algebra is separable if it is generated by a countable collection of sets.

545



VILLARREAL-RODRÍGUEZ/Turk J Math

Remark 3.1 In our context S has structure of separable metric space (S is Polish), so its topology is generated
by a denumerable collection of sets. Thus, the Borel Σ-algebra Σ is separable.

Keeping in mind Remark 3.1, we have the hypothesis of Theorem 3.1, Ch. 1 in [14], Theorem 1 in [5] or

Theorem 1.3 of Ch. 5 in [16], whose results are given in the following theorem.

Theorem 3.2 Cyclic decomposition theorem. If the Markov chain on (S, Σ) is ϕ-irreducible, then there

is a cycle (C1, C2, . . . , Cq) , such that the following conditions hold:

(a) The measure ϕ is concentrated in
q⋃

j=1
Cj and the set S \

q⋃
j=1

Cj is a countable union of inessential sets.

(b) If (C ′
1, C

′
2, . . . , C

′
q′) is a cycle, then q′ divides q , and each C ′

i differs from a union of q/q′ members of

{C1, C2, . . . , Cq} only by a ϕ-null set.

Corollary 3.3 If the Markov chain on (S, Σ) is ϕ-irreducible, then there is a cycle (C1, C2, . . . , Cq) , such that
the following conditions hold:

(a) The measure ϕ is concentrated in
q⋃

j=1
Cj and the set S \

q⋃
j=1

Cj is Σ-transient.

(b) If (C ′
1, C

′
2, . . . , C

′
q′) is a cycle, then q′ divides q , and each C ′

i differs from a union of q/q′ members of

{C1, C2, . . . , Cq} only by a ϕ-null set.

Proof Theorem 6 in [12] claims that any inessential set is a countable union of strongly transient sets. So,
any countable union of inessential sets is a countable union of strongly transient sets, and by Lemma 2.4, it is
Σ-transient. �

If a cycle (C1, C2, . . . , Cq) holds the condition (b) of the cyclic decomposition theorem we say that it is

a ϕ-maximal cycle.

Notation 3.4 In the context of Equation (6), let us denote qj := #Oj and let νj,1, νj,2, . . . , νj,qj probability

measures such that {νj,1, νj,2, . . . , νj,qj} = Oj , νj,kP = νj,k+1 for k ∈ {1, 2, . . . , qj − 1} , and νj,qjP = νj,1 ,

where j ∈ {1, 2, . . . , d} .

We denote the Cesàro sums by

P (n) :=
1
n

n−1∑
k=0

P k.

If we see P k as a transition probability, we denote

P (n)(s, ·) :=
1
n

n−1∑
k=0

P k(s, ·)

and it is called the n-step expected occupation measure with initial state s .
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If ν ∈ Oj then νP qj = νP r! = ν and νP (qj) = νP (r!) = τj , where r is the number given in the APDT

(Theorem 2.1). Furthermore, there are positive continuous linear functionals λ̂1, λ̂2, . . . , λ̂d on MΣ such that
if μ ∈ MΣ , then

lim
k→∞

∥∥∥∥∥μP (k) −
d∑

k=1

λ̂k(μ)τk

∥∥∥∥∥ = 0, where
d∑

k=1

λ̂k(μ) = 1. (11)

We shall see that any constrictive operator admits a Harris decomposition.

Lemma 3.5 The set Sj :=
{

s ∈ S : lim
k→∞

∥∥δsP
(k) − τj

∥∥ = 0
}

is τj -Harris.

Proof Let us probe first that Sj is nonempty. Note that if s /∈ Sj , then there is an i �= j such that λ̂i(δs) > 0.

We have

τj = τjP
(n) =

∫
P (n)(s, ·)τj(d s) =

∫
δsP

(n)(·)τj(d s), (12)

for all n ∈ N , so from (11) and (12) we get

τj =
∫ d∑

k=1

λ̂k(δs)τk(·)τj(d s) =
d∑

k=1

(∫
λ̂k(δs)τj(d s)

)
τk(·). (13)

Now, if Sj were empty the coefficient of some τk �= τj in the right part of (13) would be different than 0, in

contradiction with the fact that the measures τ1, τ2, . . . , τd are mutually singular, therefore Sj �= ∅ .

Let us probe now that Sj is absorbing. Let s0 ∈ Sj and p0 := P (s0, Sj). If p0 < 1, then

μ0 :=
P (s0, (S \ Sj) ∩ ·)

1 − p0

is a probability measure concentrated in S \ Sj , but

P n+1(s0, ·) = P n+1(s0 , Sj ∩ ·) + (1 − p0)μ0P
n,

so
P (n+1)(s0, ·) = P (n+1)(s0 , Sj ∩ ·) + (1 − p0)μ0P

(n). (14)

Using the definition of Sj and making n to tend to ∞ in (14), we have

τj = τj(Sj ∩ ·) + (1 − p0)
d∑

k=1

λ̂k(μ0)τk(·). (15)

Since μ0 is concentrated in S \ Sj we get that λ̂i(μ0) > 0 for some i �= j , and therefore Equation (15) and

the fact that τ1, τ2, . . . , τd are mutually singular are in conflict with the assumption that p0 < 1; thus, Sj is
absorbing.

We turn now to show that Sj is τj -Harris. From Equation (13) we can conclude that τj is concentrated

in Sj . Let A ⊂ Sj be a set such that τj(A) > 0 and let s0 ∈ Sj . Since there is an N ∈ N such that

‖P (n)(s0, ·) − τj‖ <
τj(A)

4 for all integers, n ≥ N , we have that for all integers, N ′ ≥ N there is an n ≥ N ′
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such that P n(s0, A) >
τj(A)

2
, which implies L(s0 , A) = 1. �

From Lemma 3.5 and from Equation (11) we get the next lemma.

Lemma 3.6 If S1, S2, . . . , Sd are as in Lemma 3.5, then the set E = S \
d⋃

i=1

Si is inessential.

From Lemmas 3.5 and 3.6 we get the next theorem.

Theorem 3.7 If the Markov chain (Xn) admits a spectral decomposition as in the APDT, then there is a
Harris decomposition of the form

S =

(
d⋃

i=1

Si

)
∪ E, (16)

where each Si is τi -Harris and E is inessential.

Watching one absorbing set Sj as if it were all the space S and remembering that it is τj -Harris, we

shall use Notation 3.4 and the cyclic decomposition theorem to show that there is a cycle (Cj,1, Cj,2, . . . , Cj,qj)

with the properties of such a theorem (replacing S by Sj , Ci by Cj,i , q by qj and ϕ by τj ), and moreover

each νj,k is concentrated in Cj,k .

If we take the process (Xn) restricted to the set Sj , we shall denote the corresponding Markov operator
by Pj .

The spectral decomposition of the Markov operator Pj is given by the formula

lim
n→∞

∥∥∥∥∥μP n
j −

qj∑
i=1

λj,i(μ)νj,σn
j (i)

∥∥∥∥∥ = 0, (17)

for each finite measure μ concentrated in Sj , where σj(k) = k + 1 for k ∈ {1, 2, . . . , qj − 1} , σj(qj) = 1 and∑qj

i=1 λj,i(μ) = 1. So, the spectral decomposition of the operator P
qj

j is of the form

lim
n→∞

∥∥∥∥∥μP
nqj

j −
qj∑

i=1

λj,i(μ)νj,i

∥∥∥∥∥ = 0,

thus the ergodic measures of the operator P
qj

j are νj,1, νj,2, . . . , νj,qj . Therefore, in a similar way to the

construction of the Harris decomposition given in Equation (16), we take

Cj,i :=
{

s ∈ Sj : lim
k→∞

‖δsP
nqj

j − νj,i‖ = 0
}

(18)

and we have the Harris decomposition of Sj relative to the operator P qj in the form

Sj =

(
qj⋃

i=1

Cj,i

)
∪ Ej , (19)
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where each νj,i is concentrated in Cj,i and Ej is inessential. We claim that the finite sequence (Cj,1, Cj,2, . . . , Cj,qj)

of sets given in (18) is a cycle of the process relative to the operator Pj . Effectively, if s ∈ Cj,i then, by for-

mulae (17) and (18), we have lim
n→∞

∥∥∥δsP
nqj+1
j − νj,σj(i)

∥∥∥ = 0, but δsP
nqj+1
j = Pj(s, ·)P nqj

j , therefore Pj(s, ·)

is concentrated in Cj,σj(i) , that is Pj(s, Cj,σj(i)) = 1 so (Cj,1, Cj,2, . . . , Cj,qj) is a cycle of length qj and τj is

concentrated in
⋃qj

i=1 Cj,i .

Let us show that (Cj,1, Cj,2, . . . , Cj,qj) is a τj -maximal cycle. If we had another cycle (C∗
1 , C∗

2 , . . . , C∗
q∗) of

length q∗ > qj such that qj divides q∗ and each Cj,i differs from a union of q∗/qj members of {C∗
1 , C∗

2 , . . . , C∗
q∗}

only by a τj -null set, then we would have q∗/qj different points s1, s2, . . . , sq∗/qj
∈ Cj,1 with the property that

s1, s2, . . . , sq∗/qj
are in q∗/qj different sets of {C∗

1 , C∗
2 , . . . , C∗

q∗} and, for all positive integers, k , the probability

measures δs1P
kqj

j , δs2P
kqj

j , . . . , δsq∗/qj
P

kqj

j would be mutually singular, in contradiction with (18). Hence, from

the cycle decomposition theorem, (Cj,1, Cj,2, . . . , Cj,qj) is a τj -maximal cycle.

In view of (19) and the above discussion, we have proved the next theorem.

Theorem 3.8 Let ·P be a constrictive operator on MΣ and let us use the notation of this article. We have a
decomposition of the space S as a finite disjoint union given by

S = E ∪

⎛
⎝ d⋃

j=1

(
Ej ∪

qj⋃
i=1

Cj,i

)⎞
⎠ =

⎛
⎝E ∪

d⋃
j=1

Ej

⎞
⎠ ∪

⎛
⎝ d⋃

j=1

qj⋃
i=1

Cj,i

⎞
⎠ ,

where

(a) The set E ∪ ⋃d
j=1 Ej is inessential.

(b) We have each Sj = Ej ∪
⋃qj

i=1 Cj,i and each Sj is τj -Harris.

(c) Each set
⋃qj

i=1 Cj,i is also τj -Harris.

(d) Each finite sequence (Cj,1, Cj,2, . . . , Cj,qj) is a τj -maximal cycle.

(e) Each probability measure of the form νj,i is concentrated in Cj,i .
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