

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Erratum to: "Null Mannheim curves in the Minkowski 3-space \mathbb{E}_1^3 "

Handan ÖZTEKİN,* Mahmut ERGÜT

Department of Mathematics, Fırat University, 23119 Elazığ, Turkey

Received: 04.04.2012 • Accepted: 23.04.2012	•	Published Online: 26.04.2013	٠	Printed: 27.05.2013
---	---	------------------------------	---	----------------------------

Abstract: In this paper, Theorem 3.2 and Proposition 3.2 in the paper which is cited in the title are corrected.

We give the following Theorem 3.2^* instead of Theorem 3.2 on page 111 in [1]. Its proof had been done in [2].

Theorem 3.2*. A Cartan framed null curve α in \mathbb{E}_1^3 is a null Mannheim curve with timelike or spacelike Mannheim partner curve β if and only if torsion τ of α is a nonzero constant.

According to the above Theorem 3.2^* , we have following proposition 3.2^* instead of Proposition 3.2 which is given in [1].

Proposition 3.2*. If a timelike or spacelike generalized helix is the Mannheim partner curve of some Cartan framed null curve $\alpha = \alpha(s)$, then the curvature of the Cartan framed null curve α is

$$\kappa(s) = \frac{c_2}{(s+2c_1)^2}$$

for some nonzero constants c_1 and c_2 .

Proof Let α be a null Mannheim curve and β be its timelike Mannheim partner curve. Assume that β is a timelike generalized helix; then we have

$$\langle B, p \rangle = ch\theta_0$$
 (1)

for some constant vector p and some constant angle θ_0 . If we consider Proposition 3.1 in [1], we have

$$ch\theta_0 \neq 0 \text{ and } \frac{\kappa}{\tau} \neq const.$$
 (2)

Since u is in the binormal direction of β , also we have from (1)

$$\langle u, p \rangle = ch\theta_0 = const. \neq 0.$$
 (3)

If we derivate of (3) with respect to s twice and use $\tau = const.$, we obtain

$$\tau < l, p > +\kappa < n, p >= 0$$

$$\langle n, p \rangle = -\frac{2\kappa\tau ch\theta_0}{\kappa'}$$
 (4)

^{*} Correspondence: handanoztekin@gmail.com

ÖZTEKİN and ERGÜT/Turk J Math

$$< l, p >= \frac{2\kappa^2 ch\theta_0}{\kappa'}.$$

Taking the derivative second or third equation of (4), we get nonlinear differential equation

$$2\kappa\kappa'' - 3(\kappa')^2 = 0.$$

Solving this equation, we obtain

$$\kappa(s) = \frac{c_2}{(s+2c_1)^2}$$

for some nonzero constants c_1 and c_2 . Thus, the proposition is proved.

In case the spacelike generalized helix is the Mannheim partner curve of some Cartan framed null curve $\alpha = \alpha(s)$, the proof is similar.

The authors would like to thank Professor Jaewon Lee for his invaluable comments.

References

- B. Öztekin, H. and Ergüt, M.: Null Mannheim curves in the Minkowski 3-space E₁³, Turk. J. Math. 35, 107-114 (2011).
- [2] Lee, J.W.: No null-helix Mannheim curves in the Minkowski space E_1^3 , Int. J. of Math. and Mathematical Sci., Article ID 580537, 7 pages (2011).