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Abstract: Let R be a commutative ring with Z(R), its set of zero-divisors and Reg(R), its set of regular elements.
Total graph of R, denoted by T(I'(R)), is the graph with all elements of R as vertices, and two distinct vertices z,y € R,
are adjacent in T(I'(R)) if and only if z+y € Z(R). In this paper, some properties of T'(I'(R)) have been investigated,
where R is a finite commutative ring and a new upper bound for vertex-connectivity has been obtained in this case.
Also, we have proved that the edge-connectivity of T(I'(R)) coincides with the minimum degree if and only if R is a

finite commutative ring such that Z(R) is not an ideal in R.
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1. Introduction

We assume throughout that all rings are commutative with 1 # 0. We denote the set of zero-divisor elements
and the set of regular elements of R by Z(R) and Reg(R), respectively (Reg(R) = R\Z(R)). Let Z(T'(R))
and Reg(T'(R)) be the (induced) subgraphs of T(I'(R)) with vertices Z(R) and Reg(R), respectively. In [2]
Anderson and Badawi introduced the total graph of R, denoted by T(T'(R)), as the graph with all elements
of R as vertices, and two distinct vertices z,y € R are adjacent in T(T'(R)) if and only if  +y € Z(R). The
subgraph Z(T'(R)) of T(T'(R)) is always connected; see Theorems 2.1 and 3.1 in [2]. Also, Z(T'(R)) is complete
if and only if Z(R) is an ideal of R.

Additionally, if Z(R) is an ideal of R, then Z(T'(R)) and Reg(I'(R)) are disjoint subgraphs of T(T'(R)),
and Reg(I'(R)) is the union of disjoint subgraphs, each of which is either a complete graph or a complete
bipartite graph; see Theorem 2.2 in [2]. However, if Z(R) is not an ideal of R, then the subgraphs Z(T'(R))
and Reg(T'(R)) of T(T'(R)) are never disjoint. In Theorems 3.3 in [2], it was proved that for every commutative
ring R, if Z(R) is not an ideal of R, then T(I'(R)) is connected if and only if the ideal generated by Z(R)
is R (i.e R= (21,22, "+ ,2,) for some z1,29, -+ ,2, € Z(R)). In particular, if R is a finite commutative ring
and Z(R) is not an ideal of R, then T(I'(R)) is connected. Also in Theorem 3 in [1], it was proved that for
every finite commutative ring R, if Z(R) is not an ideal, then T(I'(R)) is a Hamiltonian graph.

In this paper we show that the subgraph Reg(I'(R)) with vertices Reg(R) is connected and its vertices
have the same degree and its diameter is at most 2. Moreover for each € Z(R) which is not nilpotent, there
is p € N such that 2P — 1 € Z(R) and x + 2P — 1 € Reg(R). At the end, since the total graph of a finite

commutative ring has a finite number of vertices and edges, we are able to investigate edge-connectivity and
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vertex-connectivity in terms of T(T'(R)) and show that in finite commutative ring R, vertex-connectivity of
T(T(R)) is less than « — |Nil(R)|, where a = |Z(R)| and Nil(R) is the set of nilpotent elements of R. Also
if R is a finite commutative ring such that Z(R) is not an ideal, then edge-connectivity of T(T'(R)) is always

equal to (o —1).

2. Preliminaries

At first, we recall various conventions and definitions from graph theory. Let G = (V(G), E(G)) be a graph,
where V(G) is the set of vertices of G and E(G) is the set of edges of G. We say that G is connected if there
is a path between any two distinct vertices of G. For any z,y € V(G), we define d(z,y) to be the length of
the shortest path from z to y (d(z,2) = 0 and d(x,y) = oo if there is no such path). The diameter of G is
defined: diam(G) = sup{d(z,y) | z,y € V(G)}.

We say that two distinct subgraph G; , G2 of G are disjoint if they have no common vertices and no
vertex of Gy (respectively, G2) is adjacent (in G) to any vertex of Gy (respectively, G1). If vertex v is an
end point of edge e, then v and e are incident. The degree of a vertex v in a graph G, written degq(v) is
the number of edges incident to v. The minimum degree in a graph G is denoted by §(G). Graph G is called
k-regular if degree of each vertex of G be k. If S C V(G) is any subset, we denote by G — S, the graph whose
vertex set is V(G) — S and whose edge set is E(G) — {{z,y}{z,y} NS # 0}. A vertex cut of G is a subset
S C V(G) such that G — S is disconnected. If T C E(G) is any subset, we denote by G —T', the graph whose
vertex set is V(G) and whose edge set is E(G) —T. An edge cut of G is a subset T'C F(G), such that the
graph G — T is disconnected. The vertex-connectivity of G is defined by

k(G) = min{n > 0 | there exists a vertex cut S C V(G) such that |S| = n},
if G has a finite vertex cut, and k(G) = co otherwise. Similarly, the edge-connectivity of G is defined by:
A(G) = min{n > 0 | there exist a edge cut T C E(G) such that |T| = n},

if G has a finite edge cut, and A(G) = oo otherwise. One can refer to [8] for further information.

The following lemma is a direct consequence of the definitions of x(G), A\(G), d(G).

Lemma 2.1 For any graph G, k(G) < A(G) < §(G).

We refer to [7] for the following lemma.

Lemma 2.2 For any graph G with diam(G) =1 or2; A(G) = §(G).

The group of units of a commutative ring R will be denoted by U(R) and the nonzero elements of A C R will
be denoted by A*. Also we say that R is reduced if Nil(R) = {0}; one can refer to [3],[4] and [6] for further
information on ring theory. Recall that for each natural number n, the function ¢(n) is the number of integers
t, 1 <t <mn, such that ged(t,n) =1.

If R is a finite commutative ring such that Z(R) is an ideal of R, then R is local with Z(R) = Nil(R)
its unique maximal ideal.

Lemma 2.3 below follows directly from Theorem 1 in [5].

392



RAMIN/Turk J Math

Lemma 2.3 Z(R) is finite if and only if either R is finite or an integral domain.

Corollary 2.4 Let R be a commutative ring such that Z(R) is not an ideal and |Z(R)| < oo, then T(I'(R))

is finite.

We refer to Exercise 2.26 in [4] for the following lemma.

Lemma 2.5 Let R be a commutative ring. There are non-trivial rings Ry and Rs such that R ~ Ry X Ry if

and only if there exists a non-trivial idempotent e € R. In this case one can choose Ry = Re and Re = R(1—e).

According to the previous lemma, if we consider a finite commutative ring containing idempotent elements, we
can write it as the product of two rings. We continue the process until we reach an idempotent-free ring. The

process will always stop, because R is finite.

3. Main results
The basic properties of T(I'(R)) and Reg(I'(R)) are given below, independent of whether or not Z(R) is an

ideal of R.
Let |Z(R)| = « (we allow « to be infinite cardinals); then according to Theorem 2.3, if 2 < o < co then

the commutative ring R is finite.

Theorem 3.1 Let R be a commutative ring with |Z(R)| = «, then

degrrry)(x) = (@ — 1) Vr € Z(R).

Proof Each x € Z(R)* is adjacent to 0. Now, assume that z; # 0and 2z; = 24, 21,22, 2a—-1 € Z(R),

then
z1 4 (zi — z1) € Z(R) for each integer ;1 <i<a—1,

and proof is completed. O

Theorem 3.2 Let R be a commutative ring with |Z(R)| = «, then
1) If 2 € Z(R) then degpr(ry)(z) = (a—1)  for each x € Reg(R).

2) If 2¢ Z(R) then degpr(ry(z) =a  for each x € Reg(R).

Proof (1) Assume that a € Reg(R), zo = 2a and 21,22, -+, 2a—1 € Z(R), then a+ (2, —a) € Z(R);1 <4 <

a — 1 and proof is completed in this case.
(2) Assume that 21,22, 24 € Z(R) and a € Reg(R). Then
a+(z; —a) € Z(R) for each integer 1 <i < «,

and proof is completed. O

Corollary 3.3 Let R be a commutative ring with |Z(R)| = «, then if 2 € Z(R) then T(I'(R)) is a—1-regular.
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Proof 1t is clear from Theorems 3.1 and 3.2. g
When Z(R) is an ideal of R, properties of T(T'(R)) and Reg(T'(R)) and Z(T'(R)) are mentioned in [2] Theorems
2.1 and 2.2. In the following we intend to investigate properties of finite commutative ring R when Z(R) is
not an ideal. Note that if R is finite then for each x € R either x € U(R) or « € Z(R). Also since Z(R) is
always closed under multiplication by elements of R, this just means that there are distinct x,y € Z(R)*, such
that = + y € Reg(R). In this case, Z(T'(R)) is always connected (but never complete).

Z(T'(R)) and Reg(T'(R)) are never disjoint subgraphs of T(I'(R)) by Theorem 3.1 in [2] and since R is
a finite commutative ring, 3 < |Z(R)| < co and for each x € T(I'(R)); degy(r(gy) () > 2.

Theorem 3.4 Let R be a finite commutative ring such that Z(R) is not an ideal of R. Then each x € Reg(R)
is adjacent to m elements of Reg(R) and n elements of Z(R), where

degT(p(R))(w) =m-+n=Kk.

Proof Let x € Reg(R) be a vertex of degree k in T(T'(R)), so there is n € N such that 2™ = 1. Then there
isr;€ R; 1<4i<ksuchthat x+r; € Z(R). Let y € Reg(R) then:

yz" Nz + 1) =y +yz" 'r; € Z(R),

since y was arbitrary; we conclude that degr gy (y) = k. Now if 7; € Reg(R) (Z(R)) then yz"'r; €

Reg(R)(Z(R)) and there is a bijection between those vertices of Reg(R)(Z(R)) which are adjacent to = and
those vertices of Reg(R)(Z(R)) which are adjacent to y and proof is completed. O

Remark 3.5 Let R be a finite commutative ring such that Z(R) is not an ideal of R and let x € Z(R)—Nil(R);
then powers of x will constitute a semigroup, and for each x € Z(R) — Nil(R), there are similar results
as above(i.e © € Z(R) — Nil(R) is adjacent to t elements of Reg(R) and s elements of Z(R)). Also each
x € Nill(R) is adjacent to all elements of Z(R); therefore elements of Reg(R), Nill(R) and semigroup of powers
of x in which x € Z(R) — Nil(R) have similar properties.

In the following theorem we show that diam(Reg(T'(R)) < 2 and Reg(T'(R)) is m-regular.

Theorem 3.6 Let R be a finite commutative ring such that Z(R) is not an ideal of R then:
1) Reg(T'(R)) is connected and diam(Reg(T'(R)) < 2.

2) Reg(T'(R)) is m-regular.

Proof 1) Let x € Z(R) — Nil(R); then powers of x will constitute a semigroup and we conclude that R
has a nontrivial idempotent element. Since R is finite then according to Lemma 2.5 R ~ R; X Ry. Note that
Reg(R) = Reg(R1 X R2) = Reg(R1)xReg(Rz). So for distinct (a,b), (¢, d) € Reg(R1xR2) , (a,b)—(—a,d)—(c, d)
is a path of length at most two in Reg(R). Thus (Reg(T'(R)) is connected with diam(Reg(T'(R))) < 2.

2) It is clear from the proof of Theorem 3.4. O
In the following theorem we show that if R is a finite commutative ring and Z(R) is not an ideal in R, then
for x € Z(R) — Nil(R) we can find y € Z(R) such that = +y € Reg(R).
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Theorem 3.7 Let R be a finite commutative ring such that Z(R) is not an ideal of R; then there is p € N
such that
xtaP —1€ Reg(R) ;2?—1€ Z(R) Vze Z(R)— Nil(R).

Proof According to hypothesis we can find m,n € N;m > n such that z™ = z"™ . Without loss of
generality we assume that m and n are the smallest numbers with this property. Since x™ = z, we conclude

2™(x™ ™ — 1) = 0 and consequently a(z™ ™ — 1) € Nil(R). We claim that m —n = p. We will consider two
cases:

1) If m —n =1 then (2 —1)(22™ — 1) = 22(2™ — 1) + 1 € Reg(R) and since 2z(z™ — 1) € Nil(R) and
Nil(R) 4+ Reg(R) C Reg(R) then
(22 — 1) € Reg(R).

2) If m—n>1, then
(LL' + (xm—n _ 1))(x(2t+1)(m—n)—1 + x2t(m—n) ¥ 1) —
2(z® " — 1)(@™ " +£1) + 1 € Reg(R),

where ¢ € N is chosen such that 2!(m —n) > n.

Since

2(z? " — 1) (™" 4 1) € Nil(R),

and Nil(R) + Reg(R) C Reg(R), therefore z &+ (2™ ™ — 1) € Reg(R) and proof is completed.

O
Corollary 3.8 Let R be a finite commutative ring such that Z(R) is not an ideal of R. Then each s € N
2+ (2P — 1) € Reg(R) Vz € Z(R) — Nil(R),
where p is as mentioned in the above theorem.
Proof This is clear from the proof of Theorem 3.7. O

Remark 3.9 In Theorem 3.6, if we let n =1 and m =2, then 2z —1)2=1. Let a=x+ (z — 1) =22 — 1,

1

then a=! = a; moreover, if (m —n)>1 and a=x+2™ 1 —1, then a= ! =a™m 1 4 2m"2 - 1.

In the next part we will discuss «(T(I'(R))) and A(T(T'(R))). According to Theorem 4 in [1], if R ~ Ry X Rs
is a finite commutative ring then x(T(I'(R))) > |R1| + |Rz| — 4, which gives us a lower bound on «(T(I'(R))),
but is not very desirable. In the following we will propose an upper bound on «(T(I'(R))) which we guess is
exactly equal to k(T(T'(R))). Note that in the next theorem there is no restriction on Z(R).

Theorem 3.10 Let R be a finite commutative ring. Then

#(T(T(R))) < |Z(R)| — [Nil(R)|.
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Proof If R is an finite commutative ring such that Z(R) is an ideal in R then by Theorem 2.1 in [2], T(T'(R))
is not connected and therefore x(T(T'(R))) = |Z(R)|— |Nil(R)| = 0. On the other hand, if Z(R) is not an ideal
in R, let Z(R) — Nil(R) = S then T(T'(R)) — S is disconnected and «(T(I'(R))) < |S|. O

Theorem 3.11 Let R be a finite commutative ring such that Z(R) is not an ideal of R with |Z(R)| = «.
Then

1) NT((R))) = a — 1.

2) MReg(T'(R))) =m (m is as mentioned in part 2 Theorem 3.6)

Proof 1) This is clear from Theorem 3.4 in [2], Lemma 2.2 and Theorems 3.1 and 3.2, respectively.
2) It follows from Theorem 3.6 and Lemma 2.2. O

Example 3.12 Let n > 2 be an integer, then Z(Z,) is an ideal in Z,, if and only if n = p® for some prime p
and integer o > 1. Since Zy, is a finite ring, then Z, is Artinian, the structure Theorem [3, p. 752, Theorem
3] implies that if n = [[;2, pi"" for some prime p; and integer o; > 1, then Z, ~ [[;, ZSi where Z3: is a

local Ting with M; , its unique mazimal ideal for each i, and
N 1
p(n) = nH(l - _.)7
i=1 pi

then according to Theorems 3.1 and 3.2 for each x € Z(Z,,)

degrr(z,))(®) =n —p(n) — 1,

and for each x € Reg(Zy,)

n— o(n) — 2(Z
degr(r(z,) (*) = { n— ign; 1 32 ZEZ |

and if 2 € Z(Z,) then Reg(T'(Z,)) is complete and degReg(F(zn))(x) = ¢(n) — 1. In addition Nil(R) =
(ITZy pi) R and N(T(T(Zn))) =n—@(n) -1,

1 " 1
ST @) < (1= ) = T10 - 0o
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