

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2013) 37: 391 – 397 © TÜBİTAK doi:10.3906/mat-1101-70

Research Article

The total graph of a finite commutative ring

Ali RAMIN*

Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran-Iran

Received: 18.01.2011	•	Accepted: 29.02.2012	•	Published Online: 26.04.2013	٠	Printed: 27.05.2013

Abstract: Let R be a commutative ring with Z(R), its set of zero-divisors and $\operatorname{Reg}(R)$, its set of regular elements. Total graph of R, denoted by $T(\Gamma(R))$, is the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$, are adjacent in $T(\Gamma(R))$ if and only if $x + y \in Z(R)$. In this paper, some properties of $T(\Gamma(R))$ have been investigated, where R is a finite commutative ring and a new upper bound for vertex-connectivity has been obtained in this case. Also, we have proved that the edge-connectivity of $T(\Gamma(R))$ coincides with the minimum degree if and only if R is a finite commutative ring such that Z(R) is not an ideal in R.

Key words: Commutative rings, total graph, regular elements, zero-divisors

1. Introduction

We assume throughout that all rings are commutative with $1 \neq 0$. We denote the set of zero-divisor elements and the set of regular elements of R by Z(R) and $\operatorname{Reg}(R)$, respectively ($\operatorname{Reg}(R) = R \setminus Z(R)$). Let $Z(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ be the (induced) subgraphs of $T(\Gamma(R))$ with vertices Z(R) and $\operatorname{Reg}(R)$, respectively. In [2] Anderson and Badawi introduced the total graph of R, denoted by $T(\Gamma(R))$, as the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$ are adjacent in $T(\Gamma(R))$ if and only if $x + y \in Z(R)$. The subgraph $Z(\Gamma(R))$ of $T(\Gamma(R))$ is always connected; see Theorems 2.1 and 3.1 in [2]. Also, $Z(\Gamma(R))$ is complete if and only if Z(R) is an ideal of R.

Additionally, if Z(R) is an ideal of R, then $Z(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ are disjoint subgraphs of $T(\Gamma(R))$, and $\operatorname{Reg}(\Gamma(R))$ is the union of disjoint subgraphs, each of which is either a complete graph or a complete bipartite graph; see Theorem 2.2 in [2]. However, if Z(R) is not an ideal of R, then the subgraphs $Z(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ of $T(\Gamma(R))$ are never disjoint. In Theorems 3.3 in [2], it was proved that for every commutative ring R, if Z(R) is not an ideal of R, then $T(\Gamma(R))$ is connected if and only if the ideal generated by Z(R)is R (i.e. $R = (z_1, z_2, \dots, z_n)$ for some $z_1, z_2, \dots, z_n \in Z(R)$). In particular, if R is a finite commutative ring and Z(R) is not an ideal of R, then $T(\Gamma(R))$ is connected. Also in Theorem 3 in [1], it was proved that for every finite commutative ring R, if Z(R) is not an ideal, then $T(\Gamma(R))$ is a Hamiltonian graph.

In this paper we show that the subgraph $\operatorname{Reg}(\Gamma(R))$ with vertices $\operatorname{Reg}(R)$ is connected and its vertices have the same degree and its diameter is at most 2. Moreover for each $x \in Z(R)$ which is not nilpotent, there is $p \in \mathbb{N}$ such that $x^p - 1 \in Z(R)$ and $x \pm x^p - 1 \in \operatorname{Reg}(R)$. At the end, since the total graph of a finite commutative ring has a finite number of vertices and edges, we are able to investigate edge-connectivity and

^{*}Correspondence: ramin_2068@mathdep.iust.ac.ir

vertex-connectivity in terms of $T(\Gamma(R))$ and show that in finite commutative ring R, vertex-connectivity of $T(\Gamma(R))$ is less than $\alpha - |\operatorname{Nil}(R)|$, where $\alpha = |Z(R)|$ and $\operatorname{Nil}(R)$ is the set of nilpotent elements of R. Also if R is a finite commutative ring such that Z(R) is not an ideal, then edge-connectivity of $T(\Gamma(R))$ is always equal to $(\alpha - 1)$.

2. Preliminaries

At first, we recall various conventions and definitions from graph theory. Let G = (V(G), E(G)) be a graph, where V(G) is the set of vertices of G and E(G) is the set of edges of G. We say that G is connected if there is a path between any two distinct vertices of G. For any $x, y \in V(G)$, we define d(x, y) to be the length of the shortest path from x to y (d(x, x) = 0 and $d(x, y) = \infty$ if there is no such path). The diameter of G is defined: diam $(G) = \sup\{d(x, y) \mid x, y \in V(G)\}$.

We say that two distinct subgraph G_1 , G_2 of G are disjoint if they have no common vertices and no vertex of G_1 (respectively, G_2) is adjacent (in G) to any vertex of G_2 (respectively, G_1). If vertex v is an end point of edge e, then v and e are incident. The degree of a vertex v in a graph G, written $\deg_G(v)$ is the number of edges incident to v. The minimum degree in a graph G is denoted by $\delta(G)$. Graph G is called k-regular if degree of each vertex of G be k. If $S \subseteq V(G)$ is any subset, we denote by G - S, the graph whose vertex set is V(G) - S and whose edge set is $E(G) - \{\{x, y\} | \{x, y\} \cap S \neq \emptyset\}$. A vertex cut of G is a subset $S \subseteq V(G)$ such that G - S is disconnected. If $T \subseteq E(G)$ is any subset, we denote by G - T, the graph whose vertex set is V(G) and whose edge set is E(G) - T. An edge cut of G is a subset $T \subseteq E(G)$, such that the graph G - T is disconnected. The vertex-connectivity of G is defined by

 $\kappa(G) = \min\{n \ge 0 \mid \text{there exists a vertex cut } S \subseteq V(G) \text{ such that } |S| = n\},\$

if G has a finite vertex cut, and $\kappa(G) = \infty$ otherwise. Similarly, the edge-connectivity of G is defined by:

 $\lambda(G) = \min\{n \ge 0 \mid \text{there exist a edge cut } T \subseteq E(G) \text{ such that } |T| = n\},\$

if G has a finite edge cut, and $\lambda(G) = \infty$ otherwise. One can refer to [8] for further information.

The following lemma is a direct consequence of the definitions of $\kappa(G), \lambda(G), \delta(G)$.

Lemma 2.1 For any graph G, $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

We refer to [7] for the following lemma.

Lemma 2.2 For any graph G with diam(G) = 1 or 2; $\lambda(G) = \delta(G)$.

The group of units of a commutative ring R will be denoted by U(R) and the nonzero elements of $A \subseteq R$ will be denoted by A^* . Also we say that R is reduced if $Nil(R) = \{0\}$; one can refer to [3],[4] and [6] for further information on ring theory. Recall that for each natural number n, the function $\varphi(n)$ is the number of integers $t, 1 \leq t \leq n$, such that gcd(t, n) = 1.

If R is a finite commutative ring such that Z(R) is an ideal of R, then R is local with Z(R) = Nil(R) its unique maximal ideal.

Lemma 2.3 below follows directly from Theorem 1 in [5].

Lemma 2.3 Z(R) is finite if and only if either R is finite or an integral domain.

Corollary 2.4 Let R be a commutative ring such that Z(R) is not an ideal and $|Z(R)| < \infty$, then $T(\Gamma(R))$ is finite.

We refer to Exercise 2.26 in [4] for the following lemma.

Lemma 2.5 Let R be a commutative ring. There are non-trivial rings R_1 and R_2 such that $R \simeq R_1 \times R_2$ if and only if there exists a non-trivial idempotent $e \in R$. In this case one can choose $R_1 = Re$ and $R_2 = R(1-e)$.

According to the previous lemma, if we consider a finite commutative ring containing idempotent elements, we can write it as the product of two rings. We continue the process until we reach an idempotent-free ring. The process will always stop, because R is finite.

3. Main results

The basic properties of $T(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ are given below, independent of whether or not Z(R) is an ideal of R.

Let $|Z(R)| = \alpha$ (we allow α to be infinite cardinals); then according to Theorem 2.3, if $2 \le \alpha < \infty$ then the commutative ring R is finite.

Theorem 3.1 Let R be a commutative ring with $|Z(R)| = \alpha$, then

$$deg_{T(\Gamma(R))}(x) = (\alpha - 1) \quad \forall x \in Z(R).$$

Proof Each $x \in Z(R)^*$ is adjacent to 0. Now, assume that $z_1 \neq 0$ and $2z_1 = z_{\alpha}, z_1, z_2, \cdots z_{\alpha-1} \in Z(R)$, then

 $z_1 + (z_i - z_1) \in Z(R)$ for each integer $i; 1 \le i \le \alpha - 1$,

and proof is completed.

Theorem 3.2 Let R be a commutative ring with $|Z(R)| = \alpha$, then

- 1) If $2 \in Z(R)$ then $deg_{T(\Gamma(R))}(x) = (\alpha 1)$ for each $x \in Reg(R)$.
- 2) If $2 \notin Z(R)$ then $deg_{T(\Gamma(R))}(x) = \alpha$ for each $x \in Reg(R)$.

Proof (1) Assume that $a \in \text{Reg}(R)$, $z_{\alpha} = 2a$ and $z_1, z_2, \dots, z_{\alpha-1} \in Z(R)$, then $a + (z_i - a) \in Z(R)$; $1 \le i \le \alpha - 1$ and proof is completed in this case.

(2) Assume that $z_1, z_2, \dots z_{\alpha} \in Z(R)$ and $a \in \operatorname{Reg}(R)$. Then

 $a + (z_i - a) \in Z(R)$ for each integer $1 \le i \le \alpha$,

and proof is completed.

Corollary 3.3 Let R be a commutative ring with $|Z(R)| = \alpha$, then if $2 \in Z(R)$ then $T(\Gamma(R))$ is $\alpha - 1$ -regular.

393

Proof It is clear from Theorems 3.1 and 3.2.

When Z(R) is an ideal of R, properties of $T(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ and $Z(\Gamma(R))$ are mentioned in [2] Theorems 2.1 and 2.2. In the following we intend to investigate properties of finite commutative ring R when Z(R) is not an ideal. Note that if R is finite then for each $x \in R$ either $x \in U(R)$ or $x \in Z(R)$. Also since Z(R) is always closed under multiplication by elements of R, this just means that there are distinct $x, y \in Z(R)^*$, such that $x + y \in \operatorname{Reg}(R)$. In this case, $Z(\Gamma(R))$ is always connected (but never complete).

 $Z(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ are never disjoint subgraphs of $T(\Gamma(R))$ by Theorem 3.1 in [2] and since R is a finite commutative ring, $3 \leq |Z(R)| < \infty$ and for each $x \in T(\Gamma(R))$; $\deg_{T(\Gamma(R))}(x) \geq 2$.

Theorem 3.4 Let R be a finite commutative ring such that Z(R) is not an ideal of R. Then each $x \in Reg(R)$ is adjacent to m elements of Reg(R) and n elements of Z(R), where

$$deg_{T(\Gamma(R))}(x) = m + n = k$$

Proof Let $x \in \text{Reg}(R)$ be a vertex of degree k in $T(\Gamma(R))$, so there is $n \in \mathbb{N}$ such that $x^n = 1$. Then there is $r_i \in R$; $1 \le i \le k$ such that $x + r_i \in Z(R)$. Let $y \in \text{Reg}(R)$ then:

$$yx^{n-1}(x+r_i) = y + yx^{n-1}r_i \in Z(R)$$

since y was arbitrary; we conclude that $\deg_{T(\Gamma(R))}(y) = k$. Now if $r_i \in \operatorname{Reg}(R)(Z(R))$ then $yx^{n-1}r_i \in \operatorname{Reg}(R)(Z(R))$ and there is a bijection between those vertices of $\operatorname{Reg}(R)(Z(R))$ which are adjacent to x and those vertices of $\operatorname{Reg}(R)(Z(R))$ which are adjacent to y and proof is completed. \Box

Remark 3.5 Let R be a finite commutative ring such that Z(R) is not an ideal of R and let $x \in Z(R) - Nil(R)$; then powers of x will constitute a semigroup, and for each $x \in Z(R) - Nil(R)$, there are similar results as above(i.e. $x \in Z(R) - Nil(R)$ is adjacent to t elements of Reg(R) and s elements of Z(R)). Also each $x \in Nill(R)$ is adjacent to all elements of Z(R); therefore elements of Reg(R), Nill(R) and semigroup of powers of x in which $x \in Z(R) - Nil(R)$ have similar properties.

In the following theorem we show that $diam(\operatorname{Reg}(\Gamma(R)) \leq 2 \text{ and } \operatorname{Reg}(\Gamma(R)))$ is m-regular.

Theorem 3.6 Let R be a finite commutative ring such that Z(R) is not an ideal of R then:

- 1) $Reg(\Gamma(R))$ is connected and $diam(Reg(\Gamma(R)) \leq 2$.
- 2) $Reg(\Gamma(R))$ is m-regular.

Proof 1) Let $x \in Z(R) - \operatorname{Nil}(R)$; then powers of x will constitute a semigroup and we conclude that R has a nontrivial idempotent element. Since R is finite then according to Lemma 2.5 $R \simeq R_1 \times R_2$. Note that $\operatorname{Reg}(R) = \operatorname{Reg}(R_1 \times R_2) = \operatorname{Reg}(R_1) \times \operatorname{Reg}(R_2)$. So for distinct $(a, b), (c, d) \in \operatorname{Reg}(R_1 \times R_2), (a, b) - (-a, d) - (c, d)$ is a path of length at most two in $\operatorname{Reg}(R)$. Thus $(\operatorname{Reg}(\Gamma(R)))$ is connected with $\operatorname{diam}(\operatorname{Reg}(\Gamma(R))) \leq 2$.

2) It is clear from the proof of Theorem 3.4.

In the following theorem we show that if R is a finite commutative ring and Z(R) is not an ideal in R, then for $x \in Z(R) - \operatorname{Nil}(R)$ we can find $y \in Z(R)$ such that $x \pm y \in \operatorname{Reg}(R)$.

 \square

Theorem 3.7 Let R be a finite commutative ring such that Z(R) is not an ideal of R; then there is $p \in \mathbb{N}$ such that

 $x \pm x^p - 1 \in Reg(R)$; $x^p - 1 \in Z(R)$ $\forall x \in Z(R) - Nil(R)$.

Proof According to hypothesis we can find $m, n \in \mathbb{N}, m > n$ such that $x^m = x^n$. Without loss of generality we assume that m and n are the smallest numbers with this property. Since $x^m = x^n$, we conclude $x^n(x^{m-n}-1) = 0$ and consequently $x(x^{m-n}-1) \in \operatorname{Nil}(R)$. We claim that m - n = p. We will consider two cases:

1) If m - n = 1 then $(2x - 1)(2x^n - 1) = 2x(x^n - 1) + 1 \in \text{Reg}(R)$ and since $2x(x^n - 1) \in \text{Nil}(R)$ and $\text{Nil}(R) + \text{Reg}(R) \subset \text{Reg}(R)$ then

$$(2x-1) \in \operatorname{Reg}(R).$$

2) If m - n > 1, then

$$(x \pm (x^{m-n} - 1))(x^{(2^{t}+1)(m-n)-1} \pm x^{2^{t}(m-n)} \mp 1) =$$
$$x(x^{2^{t}(m-n)} - 1)(x^{m-n-1} \pm 1) + 1 \in \operatorname{Reg}(R),$$

where $t \in \mathbb{N}$ is chosen such that $2^t(m-n) \ge n$.

Since

$$x(x^{2^{t}(m-n)} - 1)(x^{m-n-1} \pm 1) \in \operatorname{Nil}(R),$$

and $\operatorname{Nil}(R) + \operatorname{Reg}(R) \subset \operatorname{Reg}(R)$, therefore $x \pm (x^{m-n} - 1) \in \operatorname{Reg}(R)$ and proof is completed.

Corollary 3.8 Let R be a finite commutative ring such that Z(R) is not an ideal of R. Then each $s \in \mathbb{N}$

$$x^{s} \pm (x^{p} - 1) \in Reg(R) \quad \forall x \in Z(R) - Nil(R),$$

where p is as mentioned in the above theorem.

Proof This is clear from the proof of Theorem 3.7.

Remark 3.9 In Theorem 3.6, if we let n = 1 and m = 2, then $(2x - 1)^2 = 1$. Let a = x + (x - 1) = 2x - 1, then $a^{-1} = a$; moreover, if (m - n) > 1 and $a = x + x^{m-1} - 1$, then $a^{-1} = x^{m-1} + x^{m-2} - 1$.

In the next part we will discuss $\kappa(T(\Gamma(R)))$ and $\lambda(T(\Gamma(R)))$. According to Theorem 4 in [1], if $R \simeq R_1 \times R_2$ is a finite commutative ring then $\kappa(T(\Gamma(R))) \ge |R_1| + |R_2| - 4$, which gives us a lower bound on $\kappa(T(\Gamma(R)))$, but is not very desirable. In the following we will propose an upper bound on $\kappa(T(\Gamma(R)))$ which we guess is exactly equal to $\kappa(T(\Gamma(R)))$. Note that in the next theorem there is no restriction on Z(R).

Theorem 3.10 Let R be a finite commutative ring. Then

$$\kappa(T(\Gamma(R))) \le |Z(R)| - |Nil(R)|.$$

RAMIN/Turk J Math

Proof If R is an finite commutative ring such that Z(R) is an ideal in R then by Theorem 2.1 in [2], $T(\Gamma(R))$ is not connected and therefore $\kappa(T(\Gamma(R))) = |Z(R)| - |\operatorname{Nil}(R)| = 0$. On the other hand, if Z(R) is not an ideal in R, let $Z(R) - \operatorname{Nil}(R) = S$ then $T(\Gamma(R)) - S$ is disconnected and $\kappa(T(\Gamma(R))) \leq |S|$.

Theorem 3.11 Let R be a finite commutative ring such that Z(R) is not an ideal of R with $|Z(R)| = \alpha$. Then

- 1) $\lambda(T(\Gamma(R))) = \alpha 1.$
- 2) $\lambda(Reg(\Gamma(R))) = m$ (m is as mentioned in part 2 Theorem 3.6)

Proof 1) This is clear from Theorem 3.4 in [2], Lemma 2.2 and Theorems 3.1 and 3.2, respectively.

2) It follows from Theorem 3.6 and Lemma 2.2.

Example 3.12 Let $n \ge 2$ be an integer, then $Z(\mathbb{Z}_n)$ is an ideal in \mathbb{Z}_n if and only if $n = p^{\alpha}$ for some prime p and integer $\alpha \ge 1$. Since \mathbb{Z}_n is a finite ring, then \mathbb{Z}_n is Artinian, the structure Theorem [3, p. 752, Theorem 3] implies that if $n = \prod_{i=1}^m p_i^{\alpha_i}$ for some prime p_i and integer $\alpha_i \ge 1$, then $Z_n \simeq \prod_{i=1}^m \mathbb{Z}_{p_i}^{\alpha_i}$ where $\mathbb{Z}_{p_i}^{\alpha_i}$ is a local ring with M_i , its unique maximal ideal for each i, and

$$\varphi(n) = n \prod_{i=1}^{m} (1 - \frac{1}{p_i}),$$

then according to Theorems 3.1 and 3.2 for each $x \in Z(\mathbb{Z}_n)$

$$deg_{T(\Gamma(\mathbb{Z}_n))}(x) = n - \varphi(n) - 1,$$

and for each $x \in Reg(\mathbb{Z}_n)$

$$deg_{T(\Gamma(\mathbb{Z}_n))}(x) = \begin{cases} n - \varphi(n) - 1 & 2 \in Z(\mathbb{Z}_n) \\ n - \varphi(n) & 2 \notin Z(\mathbb{Z}_n), \end{cases}$$

and if $2 \in Z(\mathbb{Z}_n)$ then $\operatorname{Reg}(\Gamma(\mathbb{Z}_n))$ is complete and $\operatorname{deg}_{\operatorname{Reg}(\Gamma(\mathbb{Z}_n))}(x) = \varphi(n) - 1$. In addition $\operatorname{Nil}(R) = (\prod_{i=1}^m p_i)R$ and $\lambda(T(\Gamma(\mathbb{Z}_n))) = n - \varphi(n) - 1$,

$$\kappa(T(\Gamma(\mathbb{Z}_n))) \leqslant n((1 - \frac{1}{\prod_{i=1}^m p_i}) - \prod_{i=1}^m (1 - \frac{1}{p_i})).$$

References

- Akbari, S., Kiani, D., Mohammadi, F., Moradi, S.: The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213, 2224–2228, 2009.
- [2] Anderson, D.F., Badawi, A.: The total graph of a commutative ring, J. Algebra 320, 2706–2719, 2008.
- [3] Dummit, D.S., Foote, R.M.: Abstract Algebra. Third Edition, Wiley and Sons, 2004.
- [4] Eisenbud, D.: Commutative Algebra with a Wiew Toward Algebraic Geometry. Springer Verlag, 1995.
- [5] Ganesan, N.: Properties of rings with a finite number of zero-divisors, Math. Ann. 157, 215–218, 1964.

RAMIN/Turk J Math

- [6] Huckaba, J. A.: Commutative Rings with Zero Divisors, Marcel Dekker, New York, Basel, 1988.
- [7] Plesnik, J.: Critical graphs of given diameter. Acta Fac. Rerum Natur. Univ. Comenian. Math. 30, 71–93, 1975.
- [8] West, D.B.: Introduction to Graph Theory, Prentice Hall, Inc, Upper Saddle River, NJ, 1996.