Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $398-403$
(C) TÜBİTAK
doi:10.3906/mat-1112-18

Derived and residual Sylvester-Hadamard designs and the Smith normal form

İlhan HACIOĞLU*
Çanakkale Onsekiz Mart University, Department of Mathematics, Çanakkale, Turkey

Received: 13.12.2011 • Accepted: 20.03.2012 • Published Online: 26.04.2013 • Printed: 27.05 .2013

Abstract

We computed the Smith normal form of Sylvester-Hadamard designs and its complement, their derived and residual Sylvester-Hadamard designs and their complementary derived and residual Sylvester-Hadamard designs.

Key words: Sylvester-Hadamard design, Smith normal form, derived, residual designs

1. Preliminaries

The p-ranks of Sylvester-Hadamard designs play an important role in shift registers and pseudo-noise matrices [1]. In this article by finding the Smith normal form we completely solve this problem, give formulas for their derived and residual Sylvester-Hadamard designs and their complementary derived and residual SylvesterHadamard designs.

By a balanced incomplete block design $(B I B D)$ with parameters (v, b, r, k, λ) we mean an arrangement of v treatments into b subsets of these treatments called "blocks", such that
(i) each block consists of k distinct treatments;
(ii) each treatment occurs in r different blocks;
(iii) each pair of distinct treatments occur together in λ different blocks.

The following equations are satisfied by any $B I B D$:

$$
v r=b k \quad \text { and } \quad \lambda(v-1)=r(k-1)
$$

A $B I B D$ is said to be symmetric if $v=b$ and in consequence $r=k$. We call such a design a (v, k, λ) design.
Existence of a (v, k, λ) design implies the existence of its derived and residual design with parameters $(k, b-1, r-1, \lambda, \lambda-1)$ and $(v-k, b-1, r, k-\lambda, \lambda)$, respectively. They are obtained, respectively, by deleting a block of the (v, k, λ) design retaining all the treatments in $b-1$ blocks that appear (or do not appear) in the deleted block.

If $b_{1}, b_{2}, \ldots, b_{v}$ and $B_{1}, B_{2} \ldots B_{b}$ denote the treatments and blocks of the $B I B D$ respectively then the incidence matrix $N=\left(n_{i j}\right)$ of the design is defined by

$$
n_{i j}= \begin{cases}1, & \text { if } b_{j} \in B_{i} \\ 0, & \text { if } b_{j} \notin B_{i}\end{cases}
$$

[^0]If N^{T} denotes the transpose of N then $N^{T} N=(r-\lambda) I+\lambda J$, where I is the identity matrix of order v and J is the square matrix of order v with all elements 1 .

For any $B I B D$ with incidence matrix N there exists the complementary design with parameters $(v, b, b-$ $r, v-k, b-2 r+\lambda)$ with incidence matrix N^{c}, which is obtained by interchanging 0 and 1 in N.

Integral Equivalence: If A and B are matrices over the ring \mathbb{Z} of integers, A and B are called equivalent $(A \sim B)$ if there are \mathbb{Z}-matrices P and Q, of determinant ± 1, such that

$$
B=P A Q
$$

which means that one can be obtained from the other by a sequence of the following operations:

- Reorder the rows,
- Negate some row,
- Add an integer multiple of one row to another, and the corresponding column operations.

Note: In the next section we use block \mathbb{Z}-equivalent row or column operations.
Smith Normal Form: If A is any n by $n \mathbb{Z}$-matrix, then there is a unique \mathbb{Z}-matrix

$$
D=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

such that $A \sim D$ and

$$
a_{1}\left|a_{2}\right| \ldots \mid a_{r}, a_{r+1}=\ldots=a_{n}=0
$$

where the a_{i} are non-negative. The a_{i} are called invariants factors of A and D is the Smith normal form $(S N F(A))$ of A.

A Hadamard matrix H of order m is an m by m matrix with elements ± 1 such that $H H^{T}=m I_{m}$. A Sylvester-Hadamard matrix of order 2^{m} is a Hadamard matrix that can be partitioned into

$$
\left[\begin{array}{cc}
H & H \tag{1}\\
H & -H
\end{array}\right]
$$

where $H_{1}=[1], H_{2}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and
$H_{2^{m}}=\left[\begin{array}{cc}H_{2^{m-1}} & H_{2^{m-1}} \\ H_{2^{m-1}} & -H_{2^{m-1}}\end{array}\right]=H_{2} \otimes H_{2^{m-1}}$ for $2 \leq m \in \mathbb{N}$ where \otimes denotes the Kronecker product.

2. Sylvester-Hadamard Matrix

We have the following theorem from [3] that gives us the Smith normal of the matrix defined in (1).
Theorem 1. Let H denote the Sylvester-Hadamard matrix of order 2^{m}. Then the Smith normal form of H is

$$
\operatorname{diag}[1, \underbrace{2, \ldots, 2}_{C(m, 1)}, \underbrace{4, \ldots, 4}_{C(m, 2)}, \underbrace{8, \ldots, 8}_{C(m, 3)}, \ldots, \underbrace{2^{m-1}, \ldots, 2^{m-1}}_{C(m, m-1)}, 2^{m}]
$$

where $C(m, k)$ denotes the binomial coefficients.
Without loss of generality, assume that H is of the form in (1). Then if we multiply row 1 with -1 and add row 1 to all other rows, and then subtract column 1 from all other columns, we see that H is integrally equivalent to the direct sum $[1] \oplus(-2 A)=[1] \oplus(2 A)$, where A is the incidence matrix of Sylvester-Hadamard $\left(2^{m}-1,2^{m-1}, 2^{m-2}\right)$-design. Since we have the direct sum we can state immediately the following theorem.

3. Sylvester-Hadamard Designs

Theorem 1 Let A denote the incidence matrix of the Sylvester-Hadamard $\left(2^{m}-1,2^{m-1}, 2^{m-2}\right)$-design. Then the Smith normal form of A is

$$
\operatorname{diag}[\underbrace{1, \ldots, 1}_{C(m, 1)}, \underbrace{2, \ldots, 2}_{C(m, 2)}, \underbrace{4, \ldots, 4}_{C(m, 3)}, \ldots, \underbrace{2^{m-2}, \ldots, 2^{m-2}}_{C(m, m-1)}, 2^{m-1}]
$$

4. Complementary Sylvester-Hadamard Designs

Before computing the Smith normal form of the Complementary Sylvester-Hadamard $\left(2^{m}-1,2^{m-1}-1,2^{m-2}-\right.$ 1)-design we need the following two results from [2].

Theorem 2 Let A be the incidence matrix for $a(v, k, \lambda)$ design with k and λ relatively prime and $n=k-\lambda$. Then $a_{1}=a_{2}=1$, $a_{i}=n / a_{v-i+2}$ for $3 \leq i \leq v-i, a_{v}=n k$.

Corollary 3 Suppose that $n=p^{t}, p$ a prime. Let n_{j} be the number of invariant factors of A equal to p^{j}, $0 \leq j \leq t$. Then

$$
n_{0}=n_{t}+2, \quad n_{j}=n_{t-j}, \quad 1 \leq j \leq t-1 .
$$

Now we state the theorem.
Theorem 4 Let A denote the incidence matrix of the Complementary Sylvester-Hadamard ($2^{m}-1,2^{m-1}-$ $\left.1,2^{m-2}-1\right)$-design. Then the Smith normal form of A is

$$
\operatorname{diag}[\underbrace{1, \ldots, 1}_{C(m, 1)+1}, \underbrace{2, \ldots, 2}_{C(m, 2)}, \underbrace{4, \ldots, 4}_{C(m, 3)}, \ldots, \underbrace{2^{m-2}, \ldots, 2^{m-2}}_{C(m, m-1)-1}, 2^{m-2}\left(2^{m-1}-1\right)]
$$

Proof Since the parameters of our design satisfy the conditions of theorem 3 we get the last term $a_{v}=n k=$ $\left(2^{m-1}-1-2^{m-2}+1\right)\left(2^{m-1}-1\right)=2^{m-2}\left(2^{m-1}-1\right)$. By using the determinant of this design and corollary 1 we get the rest of the terms in the Smith normal form.

5. Derived and Residual Sylvester-Hadamard Designs

Theorem 5 Let N_{1} denote the incidence matrix of the derived design of the Sylvester-Hadamard $\left(2^{m+1}-\right.$ $\left.1,2^{m}, 2^{m-1}\right)$-design. Then the Smith normal form of N_{1} is of the form $\operatorname{SNF}\left(N_{1}\right)=\left[D_{1} \mid 0\right]$ where

$$
D_{1}=\operatorname{diag}[\underbrace{1, \ldots, 1}_{C(m, 1)+1}, \underbrace{2, \ldots, 2}_{C(m, 2)}, \underbrace{4, \ldots, 4}_{C(m, 3)}, \ldots, \underbrace{2^{m-2}, \ldots, 2^{m-2}}_{C(m, m-1)}, 2^{m-1}]
$$

Theorem 6 Let N_{0} denote the the incidence matrix of residual design of the Sylvester-Hadamard $\left(2^{m+1}-\right.$ $\left.1,2^{m}, 2^{m-1}\right)$-design. Then the Smith normal form of N_{0} is of the form $\operatorname{SNF}\left(N_{0}\right)=\left[D_{0} \mid 0\right]$, where

$$
D_{0}=\operatorname{diag}[\underbrace{1, \ldots, 1}_{C(m, 1)}, \underbrace{2, \ldots, 2}_{C(m, 2)}, \underbrace{4, \ldots, 4}_{C(m, 3)}, \ldots, \underbrace{2^{m-2}, \ldots, 2^{m-2}}_{C(m, m-1)}, 2^{m-1}] .
$$

Proof Since Sylvester-Hadamard design is transitive on points and on blocks, the incidence matrix of the Sylvester-Hadamard $\left(2^{m+1}-1,2^{m}, 2^{m-1}\right)$-design can be put in the form
$\left[\begin{array}{c|c|c}A & \underline{0} & A \\ \hline \underline{0} & 1 & \underline{1} \\ \hline A & \underline{1} & A^{c}\end{array}\right]$,
where A is the incidence matrix of the Sylvester-Hadamard $\left(2^{m}-1,2^{m-1}, 2^{m-2}\right)$-design, A^{c} the complementary design of $A, \underline{1}, \underline{0}$ are the column or row vectors of appropriate size with all 1 's and all 0 's, respectively, and $\mathbf{0}$ is the appropriate size of the zero matrix. So the derived design takes the form

$$
\left[\begin{array}{c|c}
\underline{0} & \underline{1} \\
\hline A & A^{c}
\end{array}\right]
$$

and the residual design takes the form

$$
[A \mid A]
$$

We compute the SNF of the derived design by doing the following \mathbb{Z}-equivalent block operations:

1. Add the first block column to the second block column.
2. Then multiply the first row by -1 and add it to every other row.
3. Then swap the first block column and the second one.
4. Multiply the first column by -1 and add to every column in the first block.
5. Swap the second and the third column.

Namely, the operations we did are as follows:

$$
\begin{aligned}
& {\left[\begin{array}{c|c}
\underline{0} & \underline{1} \\
\hline A & A^{c}
\end{array}\right] \longrightarrow\left[\begin{array}{l|l}
\underline{0} & \underline{1} \\
\hline A & A^{c}+A
\end{array}\right]=\left[\begin{array}{l|l}
\underline{0} & \underline{1} \\
\hline A & J
\end{array}\right] \longrightarrow\left[\begin{array}{l|l}
\underline{0} & \underline{1} \\
\hline A & \mathbf{0}
\end{array}\right] \longrightarrow} \\
& {\left[\begin{array}{c|c}
\underline{1} & \underline{0} \\
\hline \mathbf{0} & A
\end{array}\right] \longrightarrow\left[\begin{array}{l|l|l}
1 & \mathbf{0} & \underline{0} \\
\hline \underline{0} & \mathbf{0} & A
\end{array}\right] \rightarrow\left[\begin{array}{c|c|c}
1 & \underline{0} & \mathbf{0} \\
\hline \underline{0} & A & \mathbf{0}
\end{array}\right] \rightarrow\left[\begin{array}{l|c|c}
1 & \underline{0} & \mathbf{0} \\
\hline \underline{0} & \operatorname{SNF}(A) & \mathbf{0}
\end{array}\right] .}
\end{aligned}
$$

Now the result for the derived design follows by theorem 2. Similarly, if we multiply the first column block by -1 and add it to the second block column we get

$$
[A \mid A] \longrightarrow[A \mid \mathbf{0}] \longrightarrow[S N F(A) \mid \mathbf{0}]
$$

and the result for the residual design follows by theorem 2.

HACIOĞLU/Turk J Math

6. Derived and Residual Complementary Sylvester-Hadamard Designs

Theorem 7 Let N_{1}^{c} denote the incidence matrix of the derived design of the complementary Sylvester-Hadamard $\left(2^{m+1}-1,2^{m}-1,2^{m-1}-1\right)$-design. Then the Smith normal form of N_{1}^{c} is of the form $\operatorname{SNF}\left(N_{1}^{c}\right)=\left[D_{1}^{c} \mid 0\right]$, where

$$
D_{1}^{c}=\operatorname{diag}[\underbrace{1, \ldots, 1}_{C(m, 1)+1}, \underbrace{2, \ldots, 2}_{C(m, 2)}, \underbrace{4, \ldots, 4}_{C(m, 3)}, \ldots, \underbrace{2^{m-2}, \ldots, 2^{m-2}}_{C(m, m-1)-1}, 2^{m-2}\left(2^{m-1}-1\right)] .
$$

Theorem 8 Let N_{0}^{c} denote the incidence matrix of the residual design of the complementary SylvesterHadamard $\left(2^{m+1}-1,2^{m}-1,2^{m-1}-1\right)$-design. Then the Smith normal form of N_{0}^{c} is of the form $S N F\left(N_{0}^{c}=\right.$ [$\left.D_{0}^{c} \mid 0\right]$, where

$$
D_{0}^{c}=\operatorname{diag}[\underbrace{1, \ldots, 1}_{C(m, 1)+1}, \underbrace{2, \ldots, 2}_{C(m, 2)}, \underbrace{4, \ldots, 4}_{C(m, 3)}, \ldots, \underbrace{2^{m-2}, \ldots, 2^{m-2}}_{C(m, m-1)}, 2^{m-1}]
$$

Proof The incidence matrix of the complementary Sylvester-Hadamard ($2^{m+1}-1,2^{m}-1,2^{m-1}-1$)-design can be put in the form

$$
\left[\begin{array}{c|c|c}
B & \underline{1} & B \\
\hline \underline{1} & 0 & \underline{0} \\
\hline B & \underline{0} & A
\end{array}\right],
$$

where $B=A^{c}$ is the incidence matrix of the complementary Sylvester-Hadamard $\left(2^{m}-1,2^{m-1}-1,2^{m-2}-1\right)$ design. So the derived design takes the form

$$
[B \mid B]
$$

and the residual design takes the form

$$
\left[\begin{array}{l|l}
\underline{1} & \underline{0} \\
\hline B & A
\end{array}\right]
$$

We compute the SNF of the derived design by doing similar \mathbb{Z}-equivalent block operations described in the proof of theorem 6. Namely,

$$
[B \mid B] \longrightarrow[B \mid 0] \longrightarrow[\operatorname{SNF}(B) \mid 0]
$$

Now the result for the derived design follows from theorem 4. Similarly,

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\underline{1} & \underline{0} \\
\hline B & A
\end{array}\right] \rightarrow\left[\begin{array}{c|c}
\underline{1} & \underline{0} \\
\hline B+A & A
\end{array}\right] \rightarrow\left[\begin{array}{l|l}
\underline{1} & \underline{0} \\
\hline J & A
\end{array}\right] \rightarrow\left[\begin{array}{l|l}
\underline{1} & \underline{0} \\
\hline \mathbf{0} & A
\end{array}\right]} \\
& \longrightarrow\left[\begin{array}{l|l|l|l}
1 & \mathbf{0} & \underline{0} \\
\hline \underline{0} & \mathbf{0} & A
\end{array}\right] \rightarrow\left[\begin{array}{c|c|c}
1 & \underline{0} & \mathbf{0} \\
\hline \underline{0} & A & \mathbf{0}
\end{array}\right] \rightarrow\left[\begin{array}{c|c|c}
1 & \underline{0} & \mathbf{0} \\
\hline \underline{0} & \operatorname{SNF}(A) & \mathbf{0}
\end{array}\right]
\end{aligned}
$$

and the result follows from theorem 2 .

HACIOĞLU/Turk J Math

References

[1] Bella, T., Olshevsky, V. and Sakhnovich, L.: Ranks of Hadamard matrices and equivalence of Sylvester Hadamard and pseudo-noise matrices, Operator Theory: Advances and Applications, 1, 1-13, (2007).
[2] Deretsky, Z.: On the symmetry of the Smith normal form for (v, k, λ) designs, Linear and Multilinear Algebra, 14, 187-193, (1983).
[3] Wallis, W.D.: Combinatorial Designs, Marcel Dekker, New York, (1988).

[^0]: *Correspondence: hacioglu@comu.edu.tr

