

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2013) 37: 404 – 417 © TÜBİTAK doi:10.3906/mat-1109-50

Research Article

Gorenstein transpose with respect to a semidualizing bimodule

Zengfeng LIU,¹ Xiaoguang YAN^{2,*}

¹Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China ²School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, P.R. China

Received: 24.09.2011	•	Accepted: 06.04.2012	•	Published Online: 26.04.2013	•	Printed: 27.05.2013
-----------------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: Let S and R be rings and ${}_{S}C_{R}$ be a semidualizing bimodule. We first give the definitions of C-transpose and n-C-torsionfree and give a criterion for a module A to be G_{C} -projective by some property of the C-transpose of A. Then we introduce the notion of C-Gorenstein transpose of a module over two-sided Noetherian rings. We prove that a module M in mod R^{op} is a C-Gorenstein transpose of a module $A \in \text{mod } S$ if and only if M can be embedded into a C-transpose of A with the cokernel G_{C} -projective. Finally we investigate some homological properties of the C-Gorenstein transpose of a given module.

Key words: Semidualizing bimodule, G_C -projective, C-transpose, n-C-torsionfree, C-Gorenstein transpose

1. Introduction

The notion of the transpose of a finitely generated module, which was introduced by Asulander and Bridger in [1] to investigate the *n*-torsionfree modules over two-sided Noetherian rings, plays an important role in the study of the representation theory of algebra. We know that the transpose of a given module M is obtained from a projective presentation of M. Replacing the projective presentation by Gorenstein projective presentation, Huang and Huang [6] introduced the notion of Gorenstein transpose. Although Gorenstein transpose of a module M may be dependent on the choice of the Gorenstein projective presentation of M, any different two Gorenstein transposes of the same module share some common homological properties; see [6, Proposition 3.4]. Moreover, the relations between the Gorenstein transpose of a given module M and the transpose of M were investigated, see [6, Theorem 3.1].

Recently, the research of semidualizing modules has caught many authors' attention. For example, Holm and Jørgensen in [4] introduced and investigated the so-called C-Gorenstein projective (injective, flat) dimension with respect to a semidualizing module C, while Sather-Wagstaff, Sharif and White in [10] investigated Tate cohomology of modules over a commutative Noetherian ring with respect to semidualizing modules. In fact, semidualizing modules were first defined over commutative Noetherian rings, while Holm and White [5] extended the definition of semidualizing modules to a pair of arbitrary associative rings.

In this paper, we extend the notions of transpose, Gorenstein transpose and *n*-torsionfree modules to the semidualizing setting, that is, *C*-transpose, *C*-Gorenstein transpose and *n*-*C*-torsionfree modules with respect to a semidualizing module *C*. In fact, Huang in [7] introduced ω -transpose and *n*- ω -torsionfree, where ${}_{S}\omega_{R}$ is

^{*}Correspondence: yanxg1109@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 16D20, 16E05, 16E10, 18G25.

a faithfully balanced and selforthogonal bimodule over two-sided Noetherian rings. These two notions coincide with C-transpose and n-C-torsionfree studied in our paper.

This paper is organized as follows.

Section 2 is devoted to some preliminary works.

In section 3, for a semidualizing bimodule ${}_{S}C_{R}$ over two-sided Noetherian rings, we study C-transpose and n-C-torsionfree modules, which was studied by Huang in [7] under different names. We give a new characterization of n-C-torsionfree modules (see Proposition 3.3) and, in particular, we give a criterion for a module to be G_{C} -projective; see Theorem 3.6.

In section 4, for a semidualizing bimodule ${}_{S}C_{R}$ and a module $A \in \text{mod } S$, we introduce the *C*-Gorenstein transpose of *A*. We first get some interesting exact sequences with respect to *C*-Gorenstein transpose, and then we show the tight relation between the *C*-transpose and the *C*-Gorenstein transpose of a same module in Theorem 4.6, which extend the result given in [6, Theorem 3.1]. Finally, we investigate some homological properties of *C*-Gorenstein transpose, which also extend the corresponding results given in [6].

2. Preliminaries

In this section, S and R are associative rings with identities and all modules are unitary. We use Mod S (resp. Mod R^{op}) to denote the class of left S-modules (resp. right R-modules).

At the beginning of this section we recall some notions.

A degreewise finite projective resolution of a module M is a projective resolution \mathbf{P} of M such that each P_i is a finitely generated projective module.

Definition 2.1 ([5, Definition 2.1]) An (S, R)-bimodule $C = {}_{S}C_{R}$ is semidualizing if

(a1) $_{S}C$ admits a degreewise finite S-projective resolution.

- (a2) C_R admits a degreewise finite R^{op} -projective resolution.
- (b1) The homothety map ${}_{SS}S \longrightarrow \operatorname{Hom}_{R^{op}}(C, C)$ is an isomorphism.
- (b2) The homothety map $_{R}R_{R} \longrightarrow \operatorname{Hom}_{S}(C, C)$ is an isomorphism.
- (c1) $\operatorname{Ext}_{S}^{i}(C, C) = 0$ for any $i \ge 1$.
- (c2) $\operatorname{Ext}_{R^{op}}^{i}(C,C) = 0$ for any $i \ge 1$.

Assume that ${}_{S}C_{R}$ is a semidualizing bimodule.

Definition 2.2 ([5, Definition 5.1]) A module in Mod S is called C-projective if it is isomorphic to a module of the form $C \otimes_R P$ for some projective module $P \in \text{Mod } R$.

 $\mathcal{P}_C(S) = \text{ the class of } C \text{-projective modules in Mod } S.$

Let $M \in \text{Mod } S$. We denote by $\text{Add}_S M$ (resp. $\text{add}_S M$) the subclass of Mod S (resp. mod S) consisting of all modules isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of M.

Remark 2.3 By [3, Theorem 3.1], we know that $\operatorname{Add}_S C$ is just the class of C-projective modules in $\operatorname{Mod} S$. Recall that for a module $M \in \operatorname{Mod} S$, the $\operatorname{Add}_S C$ -dimension of M, denoted by $\operatorname{Add}_S C$ -dim_S M, is defined as $\inf\{n \mid \text{ there exists an exact sequence } 0 \to C_n \to \cdots \to C_1 \to C_0 \to M \to 0 \text{ in } \operatorname{Mod} S \text{ with all } C_i \in \operatorname{Add}_S C \}$. We set $\operatorname{Add}_S C$ -dim_S $M = \infty$ if no such integer exists. Let \mathcal{C} be a subclass of Mod S. Recall that a sequence $\mathbf{L}: \cdots \to L_1 \to L_0 \to L_{-1} \to \cdots$ with $L_i \in \text{Mod } S$ is called $\text{Hom}_S(-, \mathcal{C})$ -exact if the sequence $\text{Hom}_S(\mathbf{L}, C')$ is exact for any $C' \in \mathcal{C}$. The following notions were introduced by Holm and Jørgensen in [4] and White in [12] for commutative rings. In the non-commutative case, the definition can be given in a similar way.

Definition 2.4 A complete \mathcal{PP}_C -resolution is a $\operatorname{Hom}_S(-, \operatorname{Add}_S C)$ -exact exact sequence:

$$\mathbf{X} = \dots \to P_1 \to P_0 \to C^0 \to C^1 \to \dots$$
(2.1)

in Mod S with all P_i projective and $C^i \in \operatorname{Add}_S C$. A module $M \in \operatorname{Mod} S$ is called G_C -projective if there exists a complete \mathcal{PP}_C -resolution as in (2.1) with $M \cong \operatorname{Im}(P_0 \to C^0)$. Set

$$\mathcal{GP}_C(S) =$$
 the class of G_C – projective modules in Mod S.

Definition 2.5 ([12]) For a module $M \in \text{Mod } S$, the G_C -projective dimension of M, denoted by G_C -pd_SM, is defined as $\inf\{n \mid \text{there exists an exact sequence } 0 \to G_n \to \cdots \to G_1 \to G_0 \to M \to 0 \text{ in Mod } S \text{ with all } G_i \ G_C$ -projective}. Since projective modules are always G_C -projective, we have G_C -pd_S $M \ge 0$ and we set G_C -pd_S $M = \infty$ if no such integer exists.

Remark 2.6 Let $0 \to L \to M \to N \to 0$ be an exact sequence in Mod S. If $L \neq 0$ and N is G_C -projective, then G_C -pd_S $L = G_C$ -pd_S M.

Proof It is easy to get the assertions by [12, Propositions 2.12 and 2.14].

The following Proposition generalizes [2, Lemma 2.17].

Proposition 2.7 Let $M \in \text{Mod } S$ with $G_C \operatorname{-pd}_S M = n$. Then there exists an exact sequence $0 \to M \to N \to G \to 0$ in Mod S with Add_S $C \operatorname{-dim}_S N = n$ and $G \ G_C \operatorname{-projective}$.

Proof Since G_C -pd_S M = n, we have an exact sequence $0 \to L \to G' \to M \to 0$ with Add_S C-dim_S $L \le n-1$ and $G' = G_C$ -projective by [12, Theorem 3.6]. Thus we have an exact sequence $0 \to G' \to C' \to G \to 0$ with $C' \in \text{Add}_S C$ and $G = G_C$ -projective by [12, Proposition 2.9]. Consider the following pushout diagram:

So we have the exact sequence $0 \to M \to N \to G \to 0$ in Mod S with $\operatorname{Add}_S C - \dim_S N \leq n$ and $G \ G_C$ -projective. By Lemma 2.6, $G_C - \operatorname{pd}_S N = n$, and thus $\operatorname{Add}_S C - \dim_S N = n$.

3. *C*-transpose and *n*-*C*-torsionfree module

Assume that S is a left Noetherian ring and R is a right Noetherian ring, $\operatorname{mod} S$ (resp. $\operatorname{mod} R^{op}$) is the category of finitely generated left S-modules (resp. right R-modules).

Huang in [7] introduced ω -n-torsionfree modules with respect to a faithfully balanced and selforthogonal bimodule ${}_{S}\omega_{R}$ and characterized these modules by the notion of ω -transpose $\operatorname{Tr}_{\omega} A$ of a given module A. In this section, we first introduce the notions of C-transpose and n-C-torsionfree, which, in fact, is given by replacing ω with the semidualizing bimodule ${}_{S}C_{R}$. Then we give some characterizations of n-C-torsionfree modules, which generalize [7, Theorem 1]. Finally, for a given module $A \in \mod S$, we give a criterion for A to be G_{C} -projective by the vanishing of Ext with respect to C, A and the C-transpose of A.

Definition 3.1 (1) For any $A \in \text{mod } S$, there is an exact sequence $\varepsilon : P_1 \xrightarrow{f} P_0 \to A \to 0$ in mod S with P_0 and P_1 projective. Then we have an exact sequence $0 \to A^{\dagger} \to P_0^{\dagger} \xrightarrow{f^{\dagger}} P_1^{\dagger} \to X \to 0$, where $()^{\dagger} = \text{Hom}_S(, C)$ and $X = \text{Coker } f^{\dagger}$ which we call a C-transpose of A and denote it by $\text{Tr}_C^{\varepsilon} A$.

(2) (cf. [7, Definition 2]) Let A and $\operatorname{Tr}_{C}^{\varepsilon} A$ be as above. A is called a n-C-torsionfree module if $\operatorname{Ext}_{Rop}^{i}(\operatorname{Tr}_{C}^{\varepsilon} A, C) = 0$ for any $1 \leq i \leq n$.

(3) We say that A is a ∞ -C-torsionfree module if it is n-C-torsionfree for any $n \ge 1$.

Remark 3.2 (1) Masiek in [11] proved that the transpose of a given finitely generated module M over a commutative Noetherian ring is unique up to projective equivalence. Following his arguments in the proof of [11, Proposition 4], for a given module $A \in \text{mod } S$ and any two C-transposes $\text{Tr}_C^{\varepsilon_1} A$ and $\text{Tr}_C^{\varepsilon_2} A$ of A, we have a C-transpose $\text{Tr}_C^{\varepsilon_3} A$ and two exact sequences: $0 \to \text{Tr}_C^{\varepsilon_1} A \to \text{Tr}_C^{\varepsilon_3} A \to K_1 \to 0$ and $0 \to \text{Tr}_C^{\varepsilon_2} A \to \text{Tr}_C^{\varepsilon_3} A \to K_2 \to 0$ with $K_i \in \text{add}_S C$. Thus, any two C-transposes of A have the same G_C -projective dimension by Lemma 2.6.

(2) If R is a two-sided Noetherian ring and ${}_{S}C_{R} = {}_{R}R_{R}$, then n-C-torsionfree is the same as n-torsionfree.

(3) The definition of n-C-torsionfree modules above is well-defined by [7, Proposition 3], that is, it does not depend on the choice of a projective resolution of the given module.

In the following, some characterizations of n-C-torsionfree modules are given, which generalize [7, Theorem 1]. For the definition of left approximations we refer the reader to [7, Definition 1]. For any $M \in \text{mod } S$ and $n \ge 1$, we denote $\text{Ext}_S^n(M, \text{add}_S C) = \{\text{Ext}_S^n(M, C') \mid C' \in \text{add}_S C\}$.

Definition 3.3 Let $A \in \text{mod } S$ and n be a positive integer. The following statements are equivalent.

(1) A is an n-C-torsionfree module.

(2) There is an exact sequence $0 \to A \xrightarrow{f_1} C^{m_1} \xrightarrow{f_2} \cdots \xrightarrow{f_n} C^{m_n}$ such that each $\operatorname{Im} f_i \to C^{m_i}$ is a left add_S C-approximation of $\operatorname{Im} f_i$ for $1 \le i \le n$.

(3) There is an exact sequence $0 \to A \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} X_n$ such that each $\operatorname{Im} f_i \to X_i$ is a left $\operatorname{add}_S C$ -approximation of $\operatorname{Im} f_i$ for $1 \leq i \leq n$.

(4) There is an exact sequence $0 \to A \xrightarrow{f_1} G_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} G_n$ with $G_i \ G_C$ -projective, which is $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact.

Proof The equivalences among (1), (2) and (3) are from [7, Theorem 1] and (3) implies (4) by [12, Proposition 2.6]. We only have to show that (4) implies (3).

Assume that there is an exact sequence $0 \to A \xrightarrow{f_1} G_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} G_n$ with $G_i \ G_C$ -projective, which is $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact. Putting $\operatorname{Im} f_i = K_i$, we have $\operatorname{Ext}^1_S(K_i, \operatorname{add}_S C) = 0$ for any $2 \le i \le n$ and $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact exact sequences $0 \to K_i \to G_i \to K_{i+1} \to 0$. Since all the $G_i \in \mathcal{GP}_C(S)$, for any G_i we have an $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact exact sequence $0 \to G_i \xrightarrow{g_i^0} C_i^0 \xrightarrow{g_i^1} C_i^1 \xrightarrow{g_i^2} \cdots$ with all the $C_i^j \in \operatorname{add}_S C$. Setting $\operatorname{Im} g_i^j = B_i^j$, we have $\operatorname{Ext}^1_S(B_i^j, \operatorname{add}_S C) = 0$ for any $1 \le i \le n$ and $j \ge 0$. In the pushout diagram

we have $\operatorname{Ext}^1_S(D_1, \operatorname{add}_S C) = 0$, and the middle column is a $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact exact sequence.

Similar arguments to K_2 show that there exists an exact sequence $0 \to K_2 \to C_2^0 \to D'_1 \to 0$ with $\operatorname{Ext}^1_S(D'_1, \operatorname{add}_S C) = 0$. Since the bottom row of the above diagram is a $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact exact sequence, we have the diagram

And also we have $\operatorname{Ext}_{S}^{1}(D_{2}, \operatorname{add}_{S} C) = 0$ and the middle column is a $\operatorname{Hom}_{S}(-, \operatorname{add}_{S} C)$ -exact exact sequence.

The similar arguments to D'_1 show that there exists an exact sequence $0 \to D'_1 \to C^0_3 \oplus C^1_2 \to D'_2 \to 0$ with $\operatorname{Ext}^1_S(D'_2, \operatorname{add}_S C) = 0$. Since the bottom row of the above diagram is $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact, we have the following diagram:

with $\operatorname{Ext}^1_S(D_3, \operatorname{add}_S C) = 0$, and the middle column is $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact. Iterating this procedure, we eventually obtain an $\operatorname{Hom}_S(-, \operatorname{add}_S C)$ -exact exact sequence:

$$0 \to A \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} X_n$$

such that each $\operatorname{Im} f_i \to X_i$ is a left $\operatorname{add}_S C$ -approximation of $\operatorname{Im} f_i$ for $1 \leq i \leq n$.

For any $A \in \text{mod} S$, let $\sigma_A : A \to A^{\dagger\dagger}$ via $\sigma_A(x)(f) = f(x)$ for any $x \in A$ and $f \in A^{\dagger}$ be the canonical evaluation homomorphism. A is called a *C*-torsionless module if σ_A is a monomorphism; and A is called a *C*-reflexive module if σ_A is an isomorphism. By [7, Lemma 4], A is *C*-torsionless (resp. *C*-reflexive) if and only if A is 1-*C*-torsionfree (resp. 2-*C*-torsionfree). Note that this can also be obtained from Lemma 4.3 in the following section.

Recall from [9, Definition 3.1], we know that a module A in mod S is said to have generalized Gorenstein dimension zero with respect to C if the following conditions hold:

- (1) A is C-reflexive.
- (2) $\operatorname{Ext}_{S}^{i}(A, C) = 0 = \operatorname{Ext}_{R^{op}}^{i}(A^{\dagger}, C)$ for any $i \ge 1$.

Remark 3.4 It is easy to verify that a module A in mod S has generalized Gorenstein dimension zero with respect to C if and only if it is G_C -projective over two-sided Noetherian rings by [12, Theorem 4.4].

Lemma 3.5 ([8, Lemma 2.9]) Let $n \ge 3$. Then a *C*-reflexive module *A* in mod *S* is n-*C*-torsionfree if and only if $\operatorname{Ext}^{i}_{Bop}(A^{\dagger}, C) = 0$ for any $1 \le i \le n-2$.

Now we can give a criterion for a module $A \in \text{mod } S$ to be G_C -projective.

Theorem 3.6 Let $A \in \text{mod } S$. Then A is G_C -projective if and only if $\text{Ext}^i_S(A, C) = 0 = \text{Ext}^i_{R^{op}}(\text{Tr}^{\varepsilon}_C A, C)$ for any C-transpose of A and any $i \ge 1$.

Proof Let $A \in \text{mod} S$. If A is G_C -projective, then we have that A is C-reflexive and $\text{Ext}_S^i(A, C) = 0 = \text{Ext}_{R^{op}}^i(A^{\dagger}, C)$ for any $i \geq 1$. Thus A is ∞ -C-torsionfree by Lemma 3.5. Hence $\text{Ext}_S^i(A, C) = 0 = \text{Ext}_{R^{op}}^i(\text{Tr}_C^{\varepsilon}A, C)$ for any C-transpose of A and any $i \geq 1$.

If A satisfies $\operatorname{Ext}_{R^{op}}^{i}(\operatorname{Tr}_{C}^{\varepsilon}A, C) = 0$ for any C-transpose of A and any $i \geq 1$, then A is ∞ -C-torsionfree by definition. Thus A is C-reflexive, and $\operatorname{Ext}_{R^{op}}^{i}(A^{\dagger}, C) = 0$ for any $i \geq 1$ by Lemma 3.5. The proof is finished.

Remark 3.7 By Lemma 3.5 and Theorem 3.6, it is not difficult to see that if $A \in \text{mod } S$ is G_C -projective, then so is A^{\dagger} .

4. C-Gorenstein transpose

Chonghui Huang and Zhaoyong Huang in [6] introduced Gorenstein transpose of a module and investigated the relations between the Gorenstein transpose and the transpose of the same module. In this section, we extend the notion of Gorenstein transpose to C-Gorenstein transpose as follows.

Let $A \in \text{mod} S$. Then there exists a G_C -projective presentation of A in mod S

$$\pi: X_1 \xrightarrow{g} X_0 \to A \to 0.$$

Then we get an exact sequence:

$$0 \to A^{\dagger} \to X_0^{\dagger} \xrightarrow{g^{\dagger}} X_1^{\dagger} \to \operatorname{Coker} g^{\dagger} \to 0,$$

in $\operatorname{mod} R^{op}$.

Definition 4.1 Let A and Coker g^{\dagger} as above. We call Coker g^{\dagger} a C-Gorenstein transpose of A and denote it by $\operatorname{Tr}_{G_C}^{\pi} A$.

It is trivial that a C-transpose of A is a C-Gorenstein transpose of A, but the converse does not hold true in general.

In the following, we will establish a relation between a C-Gorenstein transpose and a C-transpose of the same module. First, we show that any C-Gorenstein transpose of a given module A can be embedded into a C-transpose of the same module.

Proposition 4.2 Let $A \in \text{mod } S$. For any C-Gorenstein transpose $\text{Tr}_{G_C}^{\pi} A$, there exists an exact sequence $0 \to \text{Tr}_{G_C}^{\pi} A \to \text{Tr}_C^{\varepsilon} A \to G \to 0$ in $\text{mod } R^{op}$ for some C-transpose $\text{Tr}_C^{\varepsilon} A$ of A and some G_C -projective module G. In particular, for any $A \in \text{mod } S$ and any $\text{Tr}_{G_C}^{\pi} A$ and any $\text{Tr}_C^{\varepsilon} A$, there exists an isomorphism $\text{Ext}_{R^{op}}^i(\text{Tr}_{G_C}^{\pi} A, C) \cong \text{Ext}_{R^{op}}^i(\text{Tr}_C^{\varepsilon} A, C)$ for any $i \geq 1$.

Proof Let $A \in \text{mod } S$. For a *C*-Gorenstein transpose $\text{Tr}_{G_C}^{\pi} A$, there exists an exact sequence $\pi : X_1 \xrightarrow{g} X_0 \to A \to 0$ in mod *S* with X_0 and X_1 G_C -projective such that $\text{Tr}_{G_C}^{\pi} A = \text{Coker } g^{\dagger}$. Then there exists an exact sequence $0 \to G'_1 \to P'_0 \to X_0 \to 0$ in mod *S* with P'_0 projective and G'_1 G_C -projective. Let $K_1 = \text{Im } g$ and $g = i\alpha$ be the natural epic-monic decomposition of g. Then we have the following pull-back diagram:

Now consider the following pull-back diagram:

where $K_2 = \text{Ker } g$. Since both X_1 and G'_1 are G_C -projective, G is G_C -projective by [12, Theorem 2.8]. So there exists an exact sequence $0 \to G_1 \to P_0 \to G \to 0$ in mod S with P_0 projective and G_1 G_C -projective. Consider the following pull-back diagram:

So we get the following commutative diagram with exact rows:

It yields the following commutative diagram with exact columns and rows:

where $H_1 = \text{Ker}(P_0 \to X_1)$ and $G'_1 = \text{Ker}(K'_1 \to K_1)$. By the Snake Lemma, we get an exact sequence $0 \to G_1 \to H_1 \to G'_1 \to 0$ with $H_1 \ G_C$ -projective. Combining the above diagram with the first one in this proof, we get the following commutative diagram with exact columns and rows:

By applying the functor ()^{\dagger} to the above diagram, we get the following commutative diagram with exact columns and rows:

By the Snake Lemma, we get an exact sequence:

$$0 \to \operatorname{Tr}_{G_C}^\pi A (=\operatorname{Coker} g^\dagger) \to \operatorname{Tr}_C^\varepsilon A \to \operatorname{Coker} h^\dagger \to 0$$

in mod R^{op} with Coker $h^{\dagger} = G_1^{\dagger} G_C$ -projective.

So $\operatorname{Ext}_{R^{op}}^{i}(\operatorname{Coker} h^{\dagger}, C) = 0$ for any $i \ge 1$ and hence $\operatorname{Ext}_{R^{op}}^{i}(\operatorname{Tr}_{G_{C}}^{\pi}A, C) \cong \operatorname{Ext}_{R^{op}}^{i}(\operatorname{Tr}_{C}^{\varepsilon}A, C)$ for any $i \ge 1$.

Lemma 4.3 ([9, Lemma 2.1]) Let $A \in \text{mod } S$ and $\text{Tr}_C^{\varepsilon} A$ be a C-transpose of A. Then we have the following exact sequences:

$$\begin{aligned} (*) \quad 0 \to \operatorname{Ext}_{R^{op}}^{1}(\operatorname{Tr}_{C}^{\varepsilon}A, C) \to A \xrightarrow{\sigma_{A}} A^{\dagger \dagger} \to \operatorname{Ext}_{R^{op}}^{2}(\operatorname{Tr}_{C}^{\varepsilon}A, C) \to 0. \\ \\ 0 \to \operatorname{Ext}_{S}^{1}(A, C) \to \operatorname{Tr}_{C}^{\varepsilon}A \xrightarrow{\sigma_{\operatorname{Tr}_{C}^{\varepsilon}A}} (\operatorname{Tr}_{C}^{\varepsilon}A)^{\dagger \dagger} \to \operatorname{Ext}_{S}^{2}(A, C) \to 0. \end{aligned}$$

Let $A \in \text{mod } S$. By Proposition 4.2, we get C-Gorenstein version of the above lemma: For any C-Gorenstein transpose $\text{Tr}_{G_C}^{\pi} A$ of A, we have the following exact sequence:

$$(**) \quad 0 \to \operatorname{Ext}^{1}_{R^{op}}(\operatorname{Tr}^{\pi}_{G_{C}} A, C) \to A \xrightarrow{\sigma_{A}} A^{\dagger \dagger} \to \operatorname{Ext}^{2}_{R^{op}}(\operatorname{Tr}^{\pi}_{G_{C}} A, C) \to 0.$$

We claim that A is a C-Gorenstein transpose of $\operatorname{Tr}_{G_C}^{\pi} A$. In fact, let $\operatorname{Tr}_{G_C}^{\pi} A$ be any C-Gorenstein transpose of A. Then we have an exact sequence $G_1 \xrightarrow{g} G_0 \to A \to 0$ with G_0 , G_1 G_C -projective and Coker $g^{\dagger} = \operatorname{Tr}_{G_C}^{\pi} A$. Thus we get an exact sequence $0 \to A^{\dagger} \to G_0^{\dagger} \to G_1^{\dagger} \to \operatorname{Tr}_{G_C}^{\pi} A \to 0$. Since both G_0 and G_1 are C-reflexive, we get an exact sequence $0 \to (\operatorname{Tr}_{G_C}^{\pi} A)^{\dagger} \to G_1^{\dagger}^{\dagger} \to G_0^{\dagger} \to A \to 0$. Thus A is a C-Gorenstein transpose of any C-Gorenstein transpose of A. Therefore we get the following exact sequence:

$$0 \to \operatorname{Ext}^1_S(A, C) \to \operatorname{Tr}^{\pi}_{G_C} A \xrightarrow{\sigma_{\operatorname{Tr}^{\pi}_{G_C}} A} (\operatorname{Tr}^{\pi}_{G_C} A)^{\dagger \dagger} \to \operatorname{Ext}^2_S(A, C) \to 0.$$

Moreover, we have the following corollary which generalizes [9, Theorem 2.2] and Lemma 4.3.

Corollary 4.4 Let $G_n \xrightarrow{d_n} G_{n-1} \xrightarrow{d_{n-1}} \cdots \to G_1 \xrightarrow{d_1} G_0 \to A \to 0$ be an exact sequence in mod S with all G_i G_C -projective. If $\operatorname{Ext}^i_S(A, C) = 0$ for any $1 \le i \le n-1$, then we have the following exact sequence:

$$0 \to \operatorname{Ext}_{R^{op}}^{n}(X, C) \to A \xrightarrow{\sigma_{A}} A^{\dagger \dagger} \to \operatorname{Ext}_{R^{op}}^{n+1}(X, C) \to 0$$

where $X = \operatorname{Coker} d_n^{\dagger}$.

Proof The case for n = 1 follows from (**). Now suppose $n \ge 2$. Consider the given exact sequence

$$G_n \xrightarrow{d_n} G_{n-1} \xrightarrow{d_{n-1}} \cdots \to G_1 \xrightarrow{d_1} G_0 \to A \to 0$$

with all G_i G_C -projective. Since $\operatorname{Ext}^i_S(A, C) = 0$ for any $1 \le i \le n-1$, we have the following exact sequence:

$$0 \to A^{\dagger} \to G_0^{\dagger} \xrightarrow{d_1^{\dagger}} G_1^{\dagger} \to \dots \to G_{n-1}^{\dagger} \xrightarrow{d_n^{\dagger}} G_n^{\dagger} \to X \to 0$$

where $X = \operatorname{Coker} d_n^{\dagger}$.

By (**), there is an exact sequence

$$0 \to \operatorname{Ext}^{1}_{R^{op}}(Y, C) \to A \xrightarrow{\sigma_{A}} A^{\dagger \dagger} \to \operatorname{Ext}^{2}_{R^{op}}(Y, C) \to 0$$

where $Y = \operatorname{Coker} d_1^{\dagger}$. Since G_i^{\dagger} is G_C -projective for $1 \leq i \leq n$, we have $\operatorname{Ext}_{R^{op}}^i(Y, C) \cong \operatorname{Ext}_{R^{op}}^{i+n-1}(X, C)$. Therefore we get the desired exact sequence.

Now we show that the converse of Proposition 4.2 is also true.

Proposition 4.5 Let $M \in \text{mod} R^{op}$ and $A \in \text{mod} S$. If there exists an exact sequence $0 \to M \to \text{Tr}_C^{\varepsilon} A \to G \to 0$ in mod R^{op} with $G \ G_C$ -projective and $\text{Tr}_C^{\varepsilon} A$ a C-transpose of A, then M is a C-Gorenstein transpose of A.

Proof Let $P_1 \xrightarrow{f} P_0 \to A \to 0$ be a projective presentation of A in mod S with $\operatorname{Tr}_C^{\varepsilon} A = \operatorname{Coker} f^{\dagger}$. Then we have the following pull-back diagram:

LIU and YAN/Turk J Math

Since both G and P_1^{\dagger} are G_C -projective, K is G_C -projective by [12, Theorem 2.8]. Again since G is G_C -projective, by applying the functor ()^{\dagger} to the above commutative diagram, we get the following commutative diagram with exact rows and columns:

By the Snake Lemma, we have $\operatorname{Im} g^{\dagger} \cong \operatorname{Im} f^{\dagger\dagger}$. Thus we get $\operatorname{Coker} g^{\dagger} = P_0^{\dagger\dagger} / \operatorname{Im} g^{\dagger} \cong P_0^{\dagger\dagger} / \operatorname{Im} f^{\dagger\dagger} \cong A$, and therefore we get a G_C -projective presentation of A in mod S:

$$K^{\dagger} \xrightarrow{g^{\dagger}} P_0^{\dagger\dagger} \to A \to 0.$$

Since both K and P_0^{\dagger} are C-reflexive, we get an exact sequence $0 \to A^{\dagger} \to P_0^{\dagger\dagger\dagger} \xrightarrow{g^{\dagger\dagger}} K^{\dagger\dagger} \to M \to 0$ in mod R^{op} and M is a C-Gorenstein transpose of A.

Combining Propositions 4.2 and 4.5, we get the following theorem.

Theorem 4.6 Let $M \in \text{mod } R^{op}$ and $A \in \text{mod } S$. Then M is a C-Gorenstein transpose of A if and only if M can be embedded into a C-transpose $\text{Tr}_C^{\varepsilon} A$ of A with the cokernel G_C -projective, that is, there exists an exact sequence $0 \to M \to \text{Tr}_C^{\varepsilon} A \to G \to 0$ in mod R^{op} with $G \ G_C$ -projective.

Corollary 4.7 Let $A \in \text{mod } S$. Then for any G_C -projective module $G \in \text{mod } R^{op}$ and any C-transpose $\text{Tr}_C^{\varepsilon} A$ of A, $G \oplus \text{Tr}_C^{\varepsilon} A$ is a C-Gorenstein transpose of A.

Proof Assume that $G \in \text{mod } R^{op}$ is G_C -projective. Then there exists an exact sequence $0 \to G \to C_1 \to G' \to 0$ in $\text{mod } R^{op}$ with $C_1 \in \text{add}_{R^{op}} C$ and $G' = G_C$ -projective, which induces an exact sequence $0 \to G \oplus \operatorname{Tr}_C^{\varepsilon} A \to C_1 \oplus \operatorname{Tr}_C^{\varepsilon} A \to G' \to 0$. Since $C_1 \oplus \operatorname{Tr}_C^{\varepsilon} A$ is again a C-transpose of A, $G \oplus \operatorname{Tr}_C^{\varepsilon} A$ is a C-Gorenstein transpose of A by Theorem 4.6.

Corollary 4.7 provides a method to construct a C-Gorenstein transpose of a module from a C-transpose of the same module. It is interesting to know whether any C-Gorenstein transpose is obtained in this way. If the answer to this question is positive, then we can conclude that the C-Gorenstein transpose of a module is unique up to G_C -projective equivalence. Let $A \in \text{mod} S$. It is clear that the C-Gorenstein transpose of A depends on the choice of the G_C -projective presentation of A. In the following, as applications of Theorem 4.6, we will investigate the relation between two C-Gorenstein transposes of A.

For a positive integer n, by Proposition 4.2, we have that $A \in \text{mod} S$ is n-C-torsionfree if and only if $\text{Ext}^{i}_{R^{op}}(\text{Tr}^{\pi}_{G_{C}}A, C) = 0$ for any (or some) C-Gorenstein transpose $\text{Tr}^{\pi}_{G_{C}}A$ of A and $1 \leq i \leq n$.

The following result shows that some homological properties of any two C-Gorenstein transposes of a given module are identical.

Proposition 4.8 Let $A \in \text{mod } S$. Then for any two C-Gorenstein transposes $\text{Tr}_{G_C}^{\pi_1} A$ and $\text{Tr}_{G_C}^{\pi_2} A$ and any C-transpose $\text{Tr}_C^{\varepsilon} A$ of A, we have

(1) $\operatorname{Ext}_{R^{op}}^{i}(\operatorname{Tr}_{G_{C}}^{\pi_{1}}A, C) \cong \operatorname{Ext}_{R^{op}}^{i}(\operatorname{Tr}_{G_{C}}^{\pi_{2}}A, C) \cong \operatorname{Ext}_{R^{op}}^{i}(\operatorname{Tr}_{C}^{\varepsilon}A, C)$ for any $i \ge 1$.

(2) For any $n \ge 1$, $\operatorname{Tr}_{G_C}^{\pi_1} A$ is n-C-torsionfree if and only if so is $\operatorname{Tr}_{G_C}^{\pi_2} A$, and if and only if so is $\operatorname{Tr}_{C}^{\varepsilon} A$.

(3) Some C-Gorenstein transpose of A is zero if and only if A is G_C -projective, if and only if any C-Gorenstein transpose of A is G_C -projective.

(4) $G_C - pd_{R^{op}}(\operatorname{Tr}_{G_C}^{\pi_1} A) = G_C - pd_{R^{op}}(\operatorname{Tr}_{G_C}^{\pi_2} A) = G_C - pd_{R^{op}}(\operatorname{Tr}_C^{\varepsilon} A)$

Proof (1) It is an immediate consequence of Remark 3.2(3) and Proposition 4.2.

(2) Let $\operatorname{Tr}_{G_C}^{\pi} A$ be any *C*-Gorenstein transpose of *A*. By Theorem 4.6, without loss of generality we may assume that there is an exact sequence $0 \to \operatorname{Tr}_{G_C}^{\pi} A \to \operatorname{Tr}_C^{\varepsilon} A \to G \to 0$ in mod R^{op} with G G_C -projective.

If $\operatorname{Ext}^{1}_{S}(\operatorname{Tr}^{\varepsilon'}_{C}(\operatorname{Tr}^{\varepsilon}_{C}A), C) = 0$, then $\operatorname{Tr}^{\varepsilon}_{C}A$ is *C*-torsionless. So $\operatorname{Tr}^{\pi}_{G_{C}}A$ is also *C*-torsionless and $\operatorname{Ext}^{1}_{S}(\operatorname{Tr}^{\varepsilon_{2}}_{C}(\operatorname{Tr}^{\pi}_{G_{C}}A), C) = 0$. Since *G* is *G*_C-projective, we get an exact sequence $0 \to \operatorname{Tr}^{\varepsilon_{1}}_{C}G \to \operatorname{Tr}^{\varepsilon'}_{C}(\operatorname{Tr}^{\varepsilon}_{C}A) \to \operatorname{Tr}^{\varepsilon_{2}}_{C}(\operatorname{Tr}^{\pi}_{G_{C}}A) \to 0$ in mod *S* with $\operatorname{Tr}^{\varepsilon_{1}}_{C}G \ G_{C}$ -projective. So we have that $\operatorname{Ext}^{i}_{S}(\operatorname{Tr}^{\varepsilon_{2}}_{C}(\operatorname{Tr}^{\pi}_{G_{C}}A), C) = \operatorname{Ext}^{i}_{S}(\operatorname{Tr}^{\varepsilon'}_{C}(\operatorname{Tr}^{\varepsilon}_{C}A), C)$ for any $i \geq 2$, and $\operatorname{Ext}^{1}_{S}(\operatorname{Tr}^{\varepsilon_{2}}_{C}(\operatorname{Tr}^{\pi}_{G_{C}}A), C) \to \operatorname{Ext}^{1}_{S}(\operatorname{Tr}^{\varepsilon'}_{C}(\operatorname{Tr}^{\varepsilon}_{C}A), C) \to 0$ is exact. Thus we have that, for any $i \geq 1$, $\operatorname{Ext}^{i}_{S}(\operatorname{Tr}^{\varepsilon_{2}}_{C}(\operatorname{Tr}^{\pi}_{G_{C}}A), C) = 0$ if and only if $\operatorname{Ext}^{i}_{S}(\operatorname{Tr}^{\varepsilon'}_{C}(\operatorname{Tr}^{\varepsilon}_{C}A), C) = 0$. And we conclude that for any $n \geq 1$, $\operatorname{Tr}^{\pi}_{G_{C}}A$ is n-*C*-torsionfree if and only if so is $\operatorname{Tr}^{\varepsilon}_{C}A$. The assertion follows from (1) and the fact that *A* is a *C*-Gorenstein transpose of any *C*-Gorenstein transpose of *A*.

(3) Note that A is a C-Gorenstein transpose of any C-Gorenstein transpose of A, applying Theorem 3.6, the assertion follows from (1) and (2).

(4) Let $\operatorname{Tr}_{G_C}^{\pi} A$ be any *C*-Gorenstein transpose of *A*. If $\operatorname{Tr}_{G_C}^{\pi} A = 0$, then the assertion follows from (3). Now suppose that $\operatorname{Tr}_{G_C}^{\pi} A \neq 0$. By Theorem 4.6, there exists a *C*-transpose $\operatorname{Tr}_C^{\varepsilon} A$ of *A* satisfying the exact sequence $0 \to \operatorname{Tr}_{G_C}^{\pi} A \to \operatorname{Tr}_{C}^{\varepsilon} A \to G \to 0$ in $\operatorname{mod} R^{op}$ with *G* G_C -projective. Then we have that $G_C - pd_{R^{op}}(\operatorname{Tr}_{G_C}^{\pi} A) = G_C - pd_{R^{op}}(\operatorname{Tr}_C^{\varepsilon} A)$ by Lemma 2.6 and Remark 3.2 (1).

As the end of this paper we show that any double C-Gorenstein transpose of A shares some homological properties of A.

Corollary 4.9 Let $A \in \text{mod } S$. Then for any C-Gorenstein transpose $\text{Tr}_{G_C}^{\pi} A$ of A and any C-Gorenstein transpose $\text{Tr}_{G_C}^{\pi_1}(\text{Tr}_{G_C}^{\pi} A)$ of $\text{Tr}_{G_C}^{\pi} A$, we have

(1) $\operatorname{Ext}_{S}^{i}(\operatorname{Tr}_{G_{C}}^{\pi_{1}}(\operatorname{Tr}_{G_{C}}^{\pi}A), C) \cong \operatorname{Ext}_{S}^{i}(A, C)$ for any $i \geq 1$.

(2) For any $n \ge 1$, $\operatorname{Tr}_{G_C}^{\pi_1}(\operatorname{Tr}_{G_C}^{\pi}A)$ is n - C-torsionfree if and only if so is A.

(3) $G_C - pd_S(\operatorname{Tr}_{G_C}^{\pi_1}(\operatorname{Tr}_{G_C}^{\pi}A)) = G_C - pd_S A.$

Proof Note that A is a C-Gorenstein transpose of any C-Gorenstein transpose $\operatorname{Tr}_{G_C}^{\pi} A$ of A. So all of the assertions follow from Proposition 4.8.

Acknowledgement

The authors are grateful to the referee for the careful reading and the valuable and detailed suggestions in shaping this paper into its present version.

References

- Auslander, M., Bridger, M.: Stable module theory. Memoirs Amer Math Soc. 94, Providence: American Mathematical Society, 1969
- [2] Christensen, L. W., Frankild. A., Holm, H.: On Gorenstein projective, injective and flat dimensions-A functorial description with applications. J. Algebra. 302, 231–279 (2006).
- [3] Geng, Y., Ding, N.: *W*-Gorenstein modules. J. Algebra. 325, 132–146 (2011).
- [4] Holm, H., Jørgensen, P.: Semidualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra. 205, 423–445 (2006).
- [5] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47(4),781–808 (2007).
- [6] Huang, C., Huang, Z.: Gorenstein syzygy modules. J. Algebra. 324, 3408–3419 (2010).
- [7] Huang, Z.: ω-k-torsionfree modules and ω-left approximation dimension. Science in China (Ser. A) 44(2),184–192 (2001).
- [8] Huang, Z.: Extension closure of relative syzygy modules. Science in China (Ser. A). 46(5), 611–620 (2003).
- [9] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra. 161, 167–176 (2001).
- [10] Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algebra. 324(9), 2336–2368 (2010).
- [11] Vladimir, M.: Gorenstein dimension and torsion of modules over commutative Noetherian rings. Comm in Algebra. 28(12), 5783–5811 (2000).
- [12] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra. 2(1), 111–137 (2010).