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Abstract: Let S and R be rings and sCr be a semidualizing bimodule. We first give the definitions of C-transpose
and n-C-torsionfree and give a criterion for a module A to be G¢-projective by some property of the C'-transpose of
A. Then we introduce the notion of C'-Gorenstein transpose of a module over two-sided Noetherian rings. We prove
that a module M in mod R°? is a C'-Gorenstein transpose of a module A € mod S if and only if M can be embedded
into a C'-transpose of A with the cokernel G¢-projective. Finally we investigate some homological properties of the

C'-Gorenstein transpose of a given module.
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1. Introduction

The notion of the transpose of a finitely generated module, which was introduced by Asulander and Bridger
in [1] to investigate the n-torsionfree modules over two-sided Noetherian rings, plays an important role in the
study of the representation theory of algebra. We know that the transpose of a given module M is obtained from
a projective presentation of M. Replacing the projective presentation by Gorenstein projective presentation,
Huang and Huang [6] introduced the notion of Gorenstein transpose. Although Gorenstein transpose of a
module M may be dependent on the choice of the Gorenstein projective presentation of M, any different two
Gorenstein transposes of the same module share some common homological properties; see [6, Proposition 3.4].
Moreover, the relations between the Gorenstein transpose of a given module M and the transpose of M were
investigated, see [6, Theorem 3.1].

Recently, the research of semidualizing modules has caught many authors’ attention. For example, Holm
and Jgrgensen in [4] introduced and investigated the so-called C'-Gorenstein projective (injective, flat) dimen-
sion with respect to a semidualizing module C', while Sather-Wagstaff, Sharif and White in [10] investigated
Tate cohomology of modules over a commutative Noetherian ring with respect to semidualizing modules. In
fact, semidualizing modules were first defined over commutative Noetherian rings, while Holm and White [5]
extended the definition of semidualizing modules to a pair of arbitrary associative rings.

In this paper, we extend the notions of transpose, Gorenstein transpose and n-torsionfree modules to the
semidualizing setting, that is, C'-transpose, C-Gorenstein transpose and n-C'-torsionfree modules with respect

to a semidualizing module C'. In fact, Huang in [7] introduced w-transpose and n-w-torsionfree, where swg is
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a faithfully balanced and selforthogonal bimodule over two-sided Noetherian rings. These two notions coincide
with C-transpose and n-C'-torsionfree studied in our paper.

This paper is organized as follows.

Section 2 is devoted to some preliminary works.

In section 3, for a semidualizing bimodule gCr over two-sided Noetherian rings, we study C-transpose
and n-C-torsionfree modules, which was studied by Huang in [7] under different names. We give a new
characterization of n-C-torsionfree modules (see Proposition 3.3) and, in particular, we give a criterion for a
module to be G¢-projective; see Theorem 3.6.

In section 4, for a semidualizing bimodule sCr and a module A € mod S, we introduce the C-Gorenstein
transpose of A. We first get some interesting exact sequences with respect to C-Gorenstein transpose, and
then we show the tight relation between the C-transpose and the C-Gorenstein transpose of a same module
in Theorem 4.6, which extend the result given in [6, Theorem 3.1]. Finally, we investigate some homological

properties of C-Gorenstein transpose, which also extend the corresponding results given in [6].

2. Preliminaries
In this section, S and R are associative rings with identities and all modules are unitary. We use Mod S (resp.
Mod R°P) to denote the class of left S-modules (resp. right R-modules).

At the beginning of this section we recall some notions.

A degreewise finite projective resolution of a module M is a projective resolution P of M such that each

P; is a finitely generated projective module.

Definition 2.1 (/5, Definition 2.1]) An (S, R)-bimodule C' = sCr is semidualizing if
(al) sC admits a degreewise finite S -projective resolution.
(a2)
(01)
(62)
(c1)
(

Cr admits a degreewise finite R°P -projective resolution.

The homothety map sSs — Hompger (C, C) is an isomorphism.
The homothety map rRr — Homg(C,C) is an isomorphism.
cl) Ext4(C,C)=0 for any i > 1.

2) Extho,(C,C) =0 for any i > 1.

Assume that sCr is a semidualizing bimodule.

Definition 2.2 (/5, Definition 5.1]) A module in Mod S is called C -projective if it is isomorphic to a module
of the form C @r P for some projective module P € Mod R.

Pc(S) = the class of C-projective modules in Mod S.

Let M € Mod S. We denote by Adds M (resp. addgs M ) the subclass of Mod S (resp. mod S ) consisting

of all modules isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of M .

Remark 2.3 By [3, Theorem 8.1], we know that Addg C is just the class of C -projective modules in Mod S.
Recall that for a module M € Mod S, the Addg C -dimension of M , denoted by Addg C -dimg M , is defined as
inf{n | there exists an exact sequence 0 — Cp, — --+ — C1 — Cy —» M — 0 in Mod S with all C; € Addg C}.
We set Addg C'-dimg M = oo if no such integer exists.
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Let C be a subclass of Mod S. Recall that a sequence L : --+-— Ly — Ly — L_1 — --- with L; € Mod S

is called Homg(—,C)-ezxact if the sequence Homs(L,C,) is exact for any C' eC. The following notions were
introduced by Holm and Jorgensen in [4] and White in [12] for commutative rings. In the non-commutative

case, the definition can be given in a similar way.

Definition 2.4 A complete PP¢ -resolution is a Homg(—, Addg C) -ezact exact sequence:
X=--.-P -P—-0C'=Cl—... (2.1)

in Mod S with all P; projective and C* € AddsC'. A module M € Mod S is called G¢ -projective if there
exists a complete PPc -resolution as in (2.1) with M = Im(Py — C°). Set

GPc(S) = the class of Go — projective modules in Mod S.

Definition 2.5 ([12]) For a module M € Mod S, the G¢ -projective dimension of M , denoted by Go-pdg M,
is defined as inf{n | there exists an exract sequence 0 — G, — -+ — G1 — Gog — M — 0 in Mod S with all
G; G -projective}. Since projective modules are always G¢ -projective, we have Go-pdg M > 0 and we set
Go-pdg M = oo if no such integer exists.

Remark 2.6 Let 0 = L — M — N — 0 be an exact sequence in ModS. If L # 0 and N is G¢ -projective,
then Go-pdg L = Go-pdg M.
Proof Tt is easy to get the assertions by [12, Propositions 2.12 and 2.14]. O

The following Proposition generalizes [2, Lemma 2.17].
Proposition 2.7 Let M € Mod S with G¢-pdg M =n. Then there exists an exact sequence 0 - M — N —
G — 0 in Mod S with Addg C-dimg N =n and G G¢ -projective.
Proof Since Go-pdg M = n, we have an exact sequence 0 — L — G — M — 0 with Addg C-dimg L <n-—1
and G G¢-projective by [12, Theorem 3.6]. Thus we have an exact sequence 0 — G - C = G =0 with
C' € Addg C and G G¢-projective by [12, Proposition 2.9]. Consider the following pushout diagram:

So we have the exact sequence 0 — M — N — G — 0 in Mod S with Addg C-dimg N < n and G G¢-
projective. By Lemma 2.6, G¢-pdg N = n, and thus Addgs C-dimg N =n. O
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3. C-transpose and n-C-torsionfree module

Assume that S is a left Noetherian ring and R is a right Noetherian ring, mod S (resp. mod R°?) is the
category of finitely generated left S-modules (resp. right R-modules).

Huang in [7] introduced w-n-torsionfree modules with respect to a faithfully balanced and selforthogonal
bimodule swgr and characterized these modules by the notion of w-transpose Tr, A of a given module A.
In this section, we first introduce the notions of C-transpose and n-C'-torsionfree, which, in fact, is given by
replacing w with the semidualizing bimodule ¢Cr. Then we give some characterizations of n-C'-torsionfree
modules, which generalize [7, Theorem 1]. Finally, for a given module A € mod S, we give a criterion for A to

be G¢-projective by the vanishing of Ext with respect to C'; A and the C-transpose of A.

Definition 3.1 (1) For any A € mod S, there is an exact sequence ¢ : Py 1, Py — A — 0 in mod S with P

and Py projective. Then we have an ezact sequence 0 — AT — Pg L PIT — X — 0, where ()! = Homg( ,C)
and X = Coker f1 which we call a C-transpose of A and denote it by Trg A.

(2) (c¢f. [7, Definition 2]) Let A and Trg A be as above. A is called a n-C -torsionfree module if
Extho, (Tr& A,C) =0 for any 1 <i<mn.

(3) We say that A is a co-C -torsionfree module if it is n-C -torsionfree for any n > 1.

Remark 3.2 (1) Masiek in [11] proved that the transpose of a given finitely generated module M over a
commutative Noetherian ring is unique up to projective equivalence. Following his arguments in the proof of
[11, Proposition 4], for a given module A € mod S and any two C -transposes Trg A and Tr A of A, we have
a C-transpose Trgd A and two exact sequences: 0 — Trgg A - Trd A — K1 — 0 and 0 —» ThZ A - Trd A —
Ky — 0 with K; € addgC. Thus, any two C-transposes of A have the same G¢ -projective dimension by

Lemma 2.6.
(2) If R is a two-sided Noetherian ring and sCr = rRpr, then n-C-torsionfree is the same as n-

torsionfree.

(3) The definition of n-C -torsionfree modules above is well-defined by [7, Proposition 3], that is, it does
not depend on the choice of a projective resolution of the given module.

In the following, some characterizations of n-C-torsionfree modules are given, which generalize [7,

Theorem 1]. For the definition of left approximations we refer the reader to [7, Definition 1]. For any
M emodS and n>1, we denote Ext%(M,addg C) = {Ext%(M,C") | C" € addg C}.

Definition 3.3 Let A € mod S and n be a positive integer. The following statements are equivalent.

(1) A is an n-C -torsionfree module.

(2) There is an exact sequence 0 — A S om L2 I ome sueh that each Tm fi — C™ s a left
addg C -approzimation of Im f; for 1 <i <mn.

ELN X,, such that each Im f; — X; is a left

(8) There is an exact sequence 0 — A LN X5 ELIN
addg C -approzimation of Im f; for 1 <i <mn.

fo
-

(4) There is an exact sequence 0 — A A, G NOELR G, with G; Gg-projective, which is

Homg(—,addg C) -ezact.
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Proof The equivalences among (1), (2) and (3) are from [7, Theorem 1] and (3) implies (4) by [12, Proposition
2.6]. We only have to show that (4) implies (3).

Assume that there is an exact sequence 0 — A LN G1 S, Iy G, with G; G¢-projective, which
is Homg(—, addg C)-exact. Putting Im f; = K;, we have Ext}g(Ki,adds C) =0 forany 2 < i < n and
Homg(—, addg C)-exact exact sequences 0 — K; — G; — K; 11 — 0. Since all the G; € GP¢(S), for any G;

0 1 2 .
we have an Homg(—, addg C)-exact exact sequence 0 — G; —— C? 25 ¢} 25 ... with all the €Y € addg C.

Setting Im g{ = Bf, we have Ext}g(Bf, adds C) =0 for any 1 <i<n and j > 0. In the pushout diagram

we have Ext}g(Dl, addg C') = 0, and the middle column is a Homg(—, addg C')-exact exact sequence.

Similar arguments to K, show that there exists an exact sequence 0 — Ky — CY — D; — 0 with

Ext} (D), addg C) = 0. Since the bottom row of the above diagram is a Homg(—, addg C)-exact exact sequence,

we have the diagram

And also we have Exty(Ds,adds C) = 0 and the middle column is a Homg(—, adds C')-exact exact sequence.

The similar arguments to D; show that there exists an exact sequence 0 — D; - Yo 0y — D,2 — 0

with Ext(D,,addg C) = 0. Since the bottom row of the above diagram is Homg(—, addg C)-exact, we have

the following diagram:
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with Extj(Ds,addgC) = 0, and the middle column is Homg(—,addg C)-exact. Iterating this procedure, we

eventually obtain an Homg(—, addg C)-exact exact sequence:

0—AL x, L2 I

such that each Im f; — X; is a left addg C-approximation of Im f; for 1 <i <mn. O
For any A € mod S, let o4 : A — At via o4(z)(f) = f(x) for any x € A and f € A" be the canonical

evaluation homomorphism. A is called a C-torsionless module if 04 is a monomorphism; and A is called a
C-reflexive module if o4 is an isomorphism. By [7, Lemma 4], A is C-torsionless (resp. C-reflexive) if and
only if A is 1-C-torsionfree (resp. 2-C-torsionfree). Note that this can also be obtained from Lemma 4.3 in
the following section.

Recall from [9, Definition 3.1], we know that a module A in mod S is said to have generalized Gorenstein
dimension zero with respect to C' if the following conditions hold:

(1) A is C-reflexive.

(2) ExtL(A,C) = 0 = Extb., (AT, C) for any i > 1.

Remark 3.4 [t is easy to verify that a module A in modS has generalized Gorenstein dimension zero with

respect to C' if and only if it is Go -projective over two-sided Noetherian rings by [12, Theorem 4.4).

Lemma 3.5 ([8, Lemma 2.9]) Let n > 3. Then a C -reflexive module A in modS is n-C -torsionfree if and
only if Exth,,(AT,C) =0 for any 1 <i<n—2.

Now we can give a criterion for a module A € mod S to be G¢ -projective.

Theorem 3.6 Let A € modS. Then A is Ge -projective if and only if Extly(A,C) = 0 = Extho, (Trg A, C)
for any C -transpose of A and any i > 1.

Proof Let A € modS. If A is Geo-projective, then we have that A is C-reflexive and Ext(A,C) =
0 = Exth,, (AT,C) for any i > 1. Thus A is co-C-torsionfree by Lemma 3.5. Hence Ext(A4,0) = 0 =
Extho, (TrE A, C) for any C-transpose of A and any i > 1.
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If A satisfies Ext’o, (TrS A, C) = 0 for any C-transpose of A and any i > 1, then A is co-C-torsionfree

by definition. Thus A is C-reflexive, and Extzkoz, (At,C) = 0 for any i > 1 by Lemma 3.5. The proof is finished.
O

Remark 3.7 By Lemma 3.5 and Theorem 3.6, it is not difficult to see that if A € mod S is G -projective,
then so is AT,

4. C'-Gorenstein transpose

Chonghui Huang and Zhaoyong Huang in [6] introduced Gorenstein transpose of a module and investigated the
relations between the Gorenstein transpose and the transpose of the same module. In this section, we extend

the notion of Gorenstein transpose to C-Gorenstein transpose as follows.

Let A € mod.S. Then there exists a G¢-projective presentation of A in mod S

7TZX1L>X0—>A—>O.

Then we get an exact sequence:

0—>AT—>X8LXI—>COkergT—>O,

in mod R°P.

Definition 4.1 Let A and Coker g' as above. We call Coker g' a C-Gorenstein transpose of A and denote it
by Trg, A.

It is trivial that a C-transpose of A is a C-Gorenstein transpose of A, but the converse does mot hold
true in general.

In the following, we will establish a relation between a C-Gorenstein transpose and a C'-transpose of the
same module. First, we show that any C -Gorenstein transpose of a given module A can be embedded into a

C -transpose of the same module.

Proposition 4.2 Let A € modS. For any C-Gorenstein transpose Trg_ A, there exists an evact sequence
0 — Trg, A — Trg A — G — 0 in mod R? for some C-transpose Tr; A of A and some G -projective
module G. In particular, for any A € modS and any Trg A and any Trg A, there exists an isomorphism

Extop (Tr,, A, C) = Exthon (Trg A, C) for any i > 1.

Proof Let A € modS. For a C-Gorenstein transpose Trg A, there exists an exact sequence 7 : X SN
Xo — A — 0 in modS with Xo and X; Gc-projective such that Trg A = Coker g'. Then there exists an

exact sequence 0 — G; — P(; — Xop — 0 in mod S with P(; projective and G; G¢-projective. Let K1 =Img

and g = i be the natural epic-monic decomposition of g. Then we have the following pull-back diagram:
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Now consider the following pull-back diagram:

where Ky = Kerg. Since both X; and G; are G¢-projective, G is G¢-projective by [12, Theorem 2.8]. So
there exists an exact sequence 0 — G; — Py — G — 0 in mod S with Py projective and G; G¢-projective.

Consider the following pull-back diagram:
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So we get the following commutative diagram with exact rows:

It yields the following commutative diagram with exact columns and rows:

where H; = Ker(Py — X;) and G; = Ker(Ki — K;). By the Snake Lemma, we get an exact sequence
0— Gy — H — G; — 0 with H; G¢-projective. Combining the above diagram with the first one in this

proof, we get the following commutative diagram with exact columns and rows:

By applying the functor ( )T to the above diagram, we get the following commutative diagram with exact

columns and rows:
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By the Snake Lemma, we get an exact sequence:

0 — Trg,, A(= Cokerg') — Trg, A — Coker At — 0

in mod R°? with Coker hf = GI G¢-projective.
So Extlop, (Coker Af,C) = 0 for any i > 1 and hence Extlo, (Trg,, A, C) 2 Extho, (Trg A, C) for any

1> 1. O

Lemma 4.3 (/9, Lemma 2.1]) Let A € mod S and Trz A be a C-transpose of A. Then we have the following
ezact sequences:
(¥) 0 — Extho, (Trg A,0) — A 2% AT — Ext ., (Trs, A,C) — 0.
0 — Extg(A4,0) — Trg A Ay (Trg, A)TT — Ext%(A4,0) — 0.

Let A € mod.S. By Proposition 4.2, we get C-Gorenstein version of the above lemma:

For any C-Gorenstein transpose Trg A of A, we have the following evact sequence:
(#%) 0 — Extpo, (Trg, A,C) — A 725 AT — Exth, (Trg, A,C) — 0.

We claim that A is a C-Gorenstein transpose of Trg,, A. In fact, let Trg,, A be any C -Gorenstein transpose of
A. Then we have an ezact sequence Gq —» Gy — A — 0 with Gy, G1 G -projective and Coker gt = Trg, A.
Thus we get an exact sequence 0 — AT — Gg — GI — Trg, A — 0. Since both Go and Gy are C -reflexive,
we get an eract sequence 0 — (Trg,, A — GIT — GET — A — 0. Thus A is a C-Gorenstein transpose of any

C -Gorenstein transpose of A. Therefore we get the following exact sequence:

OyT
TrGC A

0 — Extg(A4,0) — Tré,, —=  (Trg, AT — Ext3(A,C) — 0.
Moreover, we have the following corollary which generalizes [9, Theorem 2.2] and Lemma 4.3.

dn_ . )
Corollary 4.4 Let G, n, hel = > Gh G, Gy — A — 0 be an exact sequence in mod S with all G;

G¢ -projective. If EXtis(A, C)=0 for any 1 <i<n—1, then we have the following exact sequence:
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0 — BExtho, (X,0) — A 25 AT — Ext2 1N (X, C) — 0

where X = Coker d;fl.

Proof The case for n =1 follows from (). Now suppose n > 2. Consider the given exact sequence

dn—
G, G, S e Gy — A0

with all G; G¢-projective. Since Extfg(A, C) =0 for any 1 <7 <n—1, we have the following exact sequence:

0—>AT—>ng—{>GI—>---—>GIl_1d—L>GIl—>X—>0

where X = Cokerd], .

By (xx), there is an exact sequence
0 — Extho, (V,C) — A 2% AT — Ext%,,(Y,C) — 0

where Y = Cokerd!. Since GI is Gco-projective for 1 < i < n, we have Exth,,(V,C) = Ext’r (X, C).
Therefore we get the desired exact sequence. O

Now we show that the converse of Proposition 4.2 is also true.

Proposition 4.5 Let M € mod R’ and A € modS. If there exists an exact sequence 0 — M — Tre A —

G — 0 in mod R°? with G G¢ -projective and Tr; A a C -transpose of A, then M is a C-Gorenstein transpose
of A.

Proof Let P 4, Py — A — 0 be a projective presentation of A in modS with Tr{, A = Coker fT. Then

we have the following pull-back diagram:
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Since both G and PIT are G -projective, K is Go-projective by [12, Theorem 2.8]. Again since G is G¢-

projective, by applying the functor ()T to the above commutative diagram, we get the following commutative

diagram with exact rows and columns:

By the Snake Lemma, we have Im ¢g' =2 Im f1T. Thus we get Coker g’ = PJT/ImgT > PJT/Im fit =2 A, and

therefore we get a G¢-projective presentation of A in mod S':
Kt (]—T> PJT — A — 0.

Since both K and Pg are C-reflexive, we get an exact sequence 0 — Af — Pgﬁ S Kt M = 0 in
mod R°? and M is a C'-Gorenstein transpose of A. O

Combining Propositions 4.2 and 4.5, we get the following theorem.

Theorem 4.6 Let M € mod R°? and A € modS. Then M is a C-Gorenstein transpose of A if and only if
M can be embedded into a C-transpose Trg A of A with the cokernel Ge -projective, that is, there exists an
exact sequence 0 — M — Trg A — G — 0 in mod R°? with G G¢ -projective.

Corollary 4.7 Let A € modS. Then for any Gc¢ -projective module G € mod R°P and any C -transpose Trgy A
of A, G@® Trg A is a C-Gorenstein transpose of A.

Proof Assume that G € mod R°? is G¢-projective. Then there exists an exact sequence 0 — G —
C; — G — 0 in mod R with C; € addper C and G Ge¢-projective, which induces an exact sequence
0-GaTEA - CLoTig A — G — 0. Since C) @ Trd, A is again a C-transpose of A, G @ Tr5, A is a
C-Gorenstein transpose of A by Theorem 4.6. O

Corollary 4.7 provides a method to construct a C'-Gorenstein transpose of a module from a C-transpose
of the same module. It is interesting to know whether any C-Gorenstein transpose is obtained in this way. If
the answer to this question is positive, then we can conclude that the C-Gorenstein transpose of a module is

unique up to G¢-projective equivalence.
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Let A € modS. It is clear that the C'-Gorenstein transpose of A depends on the choice of the G¢-
projective presentation of A. In the following, as applications of Theorem 4.6, we will investigate the relation
between two C'-Gorenstein transposes of A.

For a positive integer n, by Proposition 4.2, we have that A € mod .S is n-C'-torsionfree if and only if
Extlo, (Trg,. A,C) =0 for any (or some) C-Gorenstein transpose Trg,, A of A and 1 <i <n.

The following result shows that some homological properties of any two C-Gorenstein transposes of a
given module are identical.

Proposition 4.8 Let A € modS. Then for any two C-Gorenstein transposes TlrglC A and TrgzC A and any
C' -transpose Tre A of A, we have

(1) Exth., (Trg, A, O) = Extlop (Trg, A, O) = Extlo, (Trg A, C) for any i > 1.

(2) For any n > 1, Trgl A is n-C-torsionfree if and only if so is Trg, A, and if and only if so is
Trg A.

(8) Some C-Gorenstein transpose of A is zero if and only if A is G¢-projective, if and only if any
C -Gorenstein transpose of A is G¢ -projective.

(4) G -pdRer (TrglC A) = Go -pdpgor (TrgzC A) = Ge-pdger (Trg A)
Proof (1) It is an immediate consequence of Remark 3.2(3) and Proposition 4.2.

(2) Let Trg, A be any C'-Gorenstein transpose of A. By Theorem 4.6, without loss of generality we may

assume that there is an exact sequence 0 — Trg A — Trg A — G — 0 in mod R with G G¢-projective.
If Extg(Trg (Trg A), C) = 0, then Tri, A is C-torsionless. So Trf_, A is also C-torsionless and

Extg(TrZ (Trg,, A), C) = 0. Since G is G¢-projective, we get an exact sequence 0 — Trg G — Trg (Trg A) —

Tr3(Trg, A) — 0 in modS with Tt G Gc-projective. So we have that Exty(TrZ(Trg, A), C) =
Exts(Trg (Trp A), C) for any i > 2, and Extg(TrZ(Trg, A), C) — Exty(Try (Trg A), C) — 0 is exact.

Thus we have that, for any i > 1, Ext4(TrZ(Trg, A), C) =0 if and only if Extfg(Tr’é (Trz A) C)=0. And
we conclude that for any n > 1, Trg_ A is n-C-torsionfree if and only if so is Trg A. The assertion follows
from (1) and the fact that A is a C'-Gorenstein transpose of any C'-Gorenstein transpose of A.

(3) Note that A is a C-Gorenstein transpose of any C-Gorenstein transpose of A, applying Theorem
3.6, the assertion follows from (1) and (2).

(4) Let Trg, A be any C-Gorenstein transpose of A. If Trg, A = 0, then the assertion follows from
(3). Now suppose that Trg A # 0. By Theorem 4.6, there exists a C-transpose Trg A of A satisfying the
exact sequence 0 — Trg A — Trig A — G — 0 in mod R? with G G¢-projective. Then we have that
Go-pdror (Trg,, A) = Geo-pdrer(Trg A) by Lemma 2.6 and Remark 3.2 (1). O

As the end of this paper we show that any double C'-Gorenstein transpose of A shares some homological
properties of A.

Corollary 4.9 Let A € modS. Then for any C-Gorenstein transpose Trg A of A and any C-Gorenstein

transpose Trg (Tr;, A) of Trg,, A, we have

(1) Extfg(Trglc (Trg,, A), C) 2 Exts(A,C) for any i > 1.
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2) For any n>1, Tr}} (Try, , A) is n-C -torsionfree if and only if so is A.
Gc GC
(3) GC -pds(Trglc (Trgc A)) = GC -pdsA.

Proof Note that A is a C'-Gorenstein transpose of any C-Gorenstein transpose Trg , A of A. So all of the

assertions follow from Proposition 4.8. O
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