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Abstract: Let S and R be rings and SCR be a semidualizing bimodule. We first give the definitions of C -transpose

and n-C -torsionfree and give a criterion for a module A to be GC -projective by some property of the C -transpose of

A . Then we introduce the notion of C -Gorenstein transpose of a module over two-sided Noetherian rings. We prove

that a module M in mod Rop is a C -Gorenstein transpose of a module A ∈ mod S if and only if M can be embedded

into a C -transpose of A with the cokernel GC -projective. Finally we investigate some homological properties of the

C -Gorenstein transpose of a given module.

Key words: Semidualizing bimodule, GC -projective, C -transpose, n-C -torsionfree, C -Gorenstein transpose

1. Introduction

The notion of the transpose of a finitely generated module, which was introduced by Asulander and Bridger
in [1] to investigate the n-torsionfree modules over two-sided Noetherian rings, plays an important role in the
study of the representation theory of algebra. We know that the transpose of a given module M is obtained from
a projective presentation of M . Replacing the projective presentation by Gorenstein projective presentation,
Huang and Huang [6] introduced the notion of Gorenstein transpose. Although Gorenstein transpose of a
module M may be dependent on the choice of the Gorenstein projective presentation of M , any different two
Gorenstein transposes of the same module share some common homological properties; see [6, Proposition 3.4].
Moreover, the relations between the Gorenstein transpose of a given module M and the transpose of M were
investigated, see [6, Theorem 3.1].

Recently, the research of semidualizing modules has caught many authors’ attention. For example, Holm
and Jørgensen in [4] introduced and investigated the so-called C -Gorenstein projective (injective, flat) dimen-

sion with respect to a semidualizing module C , while Sather-Wagstaff, Sharif and White in [10] investigated
Tate cohomology of modules over a commutative Noetherian ring with respect to semidualizing modules. In
fact, semidualizing modules were first defined over commutative Noetherian rings, while Holm and White [5]
extended the definition of semidualizing modules to a pair of arbitrary associative rings.

In this paper, we extend the notions of transpose, Gorenstein transpose and n-torsionfree modules to the
semidualizing setting, that is, C -transpose, C -Gorenstein transpose and n-C -torsionfree modules with respect
to a semidualizing module C . In fact, Huang in [7] introduced ω -transpose and n-ω -torsionfree, where SωR is
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a faithfully balanced and selforthogonal bimodule over two-sided Noetherian rings. These two notions coincide
with C -transpose and n-C -torsionfree studied in our paper.

This paper is organized as follows.

Section 2 is devoted to some preliminary works.

In section 3, for a semidualizing bimodule SCR over two-sided Noetherian rings, we study C -transpose
and n-C -torsionfree modules, which was studied by Huang in [7] under different names. We give a new

characterization of n-C -torsionfree modules (see Proposition 3.3) and, in particular, we give a criterion for a
module to be GC -projective; see Theorem 3.6.

In section 4, for a semidualizing bimodule SCR and a module A ∈ mod S , we introduce the C -Gorenstein
transpose of A . We first get some interesting exact sequences with respect to C -Gorenstein transpose, and
then we show the tight relation between the C -transpose and the C -Gorenstein transpose of a same module
in Theorem 4.6, which extend the result given in [6, Theorem 3.1]. Finally, we investigate some homological

properties of C -Gorenstein transpose, which also extend the corresponding results given in [6].

2. Preliminaries

In this section, S and R are associative rings with identities and all modules are unitary. We use ModS (resp.

Mod Rop ) to denote the class of left S -modules (resp. right R -modules).

At the beginning of this section we recall some notions.

A degreewise finite projective resolution of a module M is a projective resolution P of M such that each
Pi is a finitely generated projective module.

Definition 2.1 ([5, Definition 2.1]) An (S, R)-bimodule C = SCR is semidualizing if

(a1) SC admits a degreewise finite S -projective resolution.

(a2) CR admits a degreewise finite Rop -projective resolution.

(b1) The homothety map SSS −→ HomRop(C, C) is an isomorphism.

(b2) The homothety map RRR −→ HomS(C, C) is an isomorphism.

(c1) Exti
S(C, C) = 0 for any i ≥ 1 .

(c2) Exti
Rop(C, C) = 0 for any i ≥ 1 .

Assume that SCR is a semidualizing bimodule.

Definition 2.2 ([5, Definition 5.1]) A module in Mod S is called C -projective if it is isomorphic to a module
of the form C ⊗R P for some projective module P ∈ Mod R .

PC(S) = the class of C-projective modules in Mod S.

Let M ∈ Mod S . We denote by AddS M (resp. addS M ) the subclass of Mod S (resp. modS ) consisting

of all modules isomorphic to direct summands of direct sums (resp. finite direct sums) of copies of M .

Remark 2.3 By [3, Theorem 3.1], we know that AddS C is just the class of C -projective modules in Mod S .
Recall that for a module M ∈ Mod S , the AddS C -dimension of M , denoted by AddS C -dimS M , is defined as
inf{n | there exists an exact sequence 0 → Cn → · · · → C1 → C0 → M → 0 in Mod S with all Ci ∈ AddS C} .
We set AddS C -dimS M = ∞ if no such integer exists.

405



LIU and YAN/Turk J Math

Let C be a subclass of Mod S . Recall that a sequence L : · · · → L1 → L0 → L−1 → · · · with Li ∈ Mod S

is called HomS(−, C)-exact if the sequence HomS(L, C
′
) is exact for any C

′ ∈ C . The following notions were

introduced by Holm and Jørgensen in [4] and White in [12] for commutative rings. In the non-commutative
case, the definition can be given in a similar way.

Definition 2.4 A complete PPC -resolution is a HomS(−, AddS C)-exact exact sequence:

X = · · · → P1 → P0 → C0 → C1 → · · · (2.1)

in Mod S with all Pi projective and Ci ∈ AddS C . A module M ∈ Mod S is called GC -projective if there

exists a complete PPC -resolution as in (2.1) with M ∼= Im(P0 → C0) . Set

GPC(S) = the class of GC − projective modules in Mod S.

Definition 2.5 ([12]) For a module M ∈ Mod S , the GC -projective dimension of M , denoted by GC -pdS M ,

is defined as inf{n | there exists an exact sequence 0 → Gn → · · · → G1 → G0 → M → 0 in Mod S with all

Gi GC -projective} . Since projective modules are always GC -projective, we have GC -pdS M ≥ 0 and we set
GC -pdS M = ∞ if no such integer exists.

Remark 2.6 Let 0 → L → M → N → 0 be an exact sequence in Mod S . If L �= 0 and N is GC -projective,
then GC -pdS L = GC -pdS M .

Proof It is easy to get the assertions by [12, Propositions 2.12 and 2.14]. �

The following Proposition generalizes [2, Lemma 2.17].

Proposition 2.7 Let M ∈ Mod S with GC -pdS M = n . Then there exists an exact sequence 0 → M → N →
G → 0 in Mod S with AddS C -dimS N = n and G GC -projective.

Proof Since GC -pdS M = n , we have an exact sequence 0 → L → G
′ → M → 0 with AddS C -dimS L ≤ n−1

and G
′

GC -projective by [12, Theorem 3.6]. Thus we have an exact sequence 0 → G
′ → C

′ → G → 0 with

C
′ ∈ AddS C and G GC -projective by [12, Proposition 2.9]. Consider the following pushout diagram:

So we have the exact sequence 0 → M → N → G → 0 in ModS with AddS C -dimS N ≤ n and G GC -
projective. By Lemma 2.6, GC -pdS N = n , and thus AddS C -dimS N = n . �
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3. C -transpose and n-C -torsionfree module

Assume that S is a left Noetherian ring and R is a right Noetherian ring, modS (resp. modRop ) is the

category of finitely generated left S -modules (resp. right R -modules).

Huang in [7] introduced ω -n-torsionfree modules with respect to a faithfully balanced and selforthogonal
bimodule SωR and characterized these modules by the notion of ω -transpose Trω A of a given module A .
In this section, we first introduce the notions of C -transpose and n-C -torsionfree, which, in fact, is given by
replacing ω with the semidualizing bimodule SCR . Then we give some characterizations of n-C -torsionfree
modules, which generalize [7, Theorem 1]. Finally, for a given module A ∈ modS , we give a criterion for A to
be GC -projective by the vanishing of Ext with respect to C , A and the C -transpose of A .

Definition 3.1 (1) For any A ∈ modS , there is an exact sequence ε : P1
f−→ P0 → A → 0 in mod S with P0

and P1 projective. Then we have an exact sequence 0 → A† → P †
0

f†
−→ P †

1 → X → 0 , where ( )† = HomS( , C)

and X = Coker f† which we call a C -transpose of A and denote it by Trε
C A .

(2) (cf. [7, Definition 2]) Let A and TrεC A be as above. A is called a n-C -torsionfree module if

Exti
Rop(Trε

C A, C) = 0 for any 1 ≤ i ≤ n .

(3) We say that A is a ∞ -C -torsionfree module if it is n-C -torsionfree for any n ≥ 1 .

Remark 3.2 (1) Masiek in [11] proved that the transpose of a given finitely generated module M over a
commutative Noetherian ring is unique up to projective equivalence. Following his arguments in the proof of
[11, Proposition 4], for a given module A ∈ modS and any two C -transposes Trε1

C A and Trε2
C A of A , we have

a C -transpose Trε3
C A and two exact sequences: 0 → Trε1

C A → Trε3
C A → K1 → 0 and 0 → Trε2

C A → Trε3
C A →

K2 → 0 with Ki ∈ addS C . Thus, any two C -transposes of A have the same GC -projective dimension by
Lemma 2.6.

(2) If R is a two-sided Noetherian ring and SCR = RRR , then n-C -torsionfree is the same as n-
torsionfree.

(3) The definition of n-C -torsionfree modules above is well-defined by [7, Proposition 3], that is, it does
not depend on the choice of a projective resolution of the given module.

In the following, some characterizations of n-C -torsionfree modules are given, which generalize [7,

Theorem 1]. For the definition of left approximations we refer the reader to [7, Definition 1]. For any

M ∈ modS and n ≥ 1 , we denote Extn
S(M, addS C) = {Extn

S(M, C
′
) | C

′ ∈ addS C} .

Definition 3.3 Let A ∈ modS and n be a positive integer. The following statements are equivalent.

(1) A is an n-C -torsionfree module.

(2) There is an exact sequence 0 → A
f1−→ Cm1

f2−→ · · · fn−→ Cmn such that each Im fi → Cmi is a left
addS C -approximation of Im fi for 1 ≤ i ≤ n .

(3) There is an exact sequence 0 → A
f1−→ X1

f2−→ · · · fn−→ Xn such that each Im fi → Xi is a left
addS C -approximation of Im fi for 1 ≤ i ≤ n .

(4) There is an exact sequence 0 → A
f1−→ G1

f2−→ · · · fn−→ Gn with Gi GC -projective, which is

HomS(−, addS C)-exact.
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Proof The equivalences among (1), (2) and (3) are from [7, Theorem 1] and (3) implies (4) by [12, Proposition

2.6]. We only have to show that (4) implies (3).

Assume that there is an exact sequence 0 → A
f1−→ G1

f2−→ · · · fn−→ Gn with Gi GC -projective, which

is HomS(−, addS C)-exact. Putting Im fi = Ki , we have Ext1S(Ki, addS C) = 0 for any 2 ≤ i ≤ n and

HomS(−, addS C)-exact exact sequences 0 → Ki → Gi → Ki+1 → 0. Since all the Gi ∈ GPC(S), for any Gi

we have an HomS(−, addS C)-exact exact sequence 0 → Gi
g0

i−→ C0
i

g1
i−→ C1

i

g2
i−→ · · · with all the Cj

i ∈ addS C .

Setting Im gj
i = Bj

i , we have Ext1S(Bj
i , addS C) = 0 for any 1 ≤ i ≤ n and j ≥ 0. In the pushout diagram

we have Ext1S(D1, addS C) = 0, and the middle column is a HomS(−, addS C)-exact exact sequence.

Similar arguments to K2 show that there exists an exact sequence 0 → K2 → C0
2 → D

′
1 → 0 with

Ext1S(D
′
1, addS C) = 0. Since the bottom row of the above diagram is a HomS(−, addS C)-exact exact sequence,

we have the diagram

And also we have Ext1S(D2, addS C) = 0 and the middle column is a HomS(−, addS C)-exact exact sequence.

The similar arguments to D
′
1 show that there exists an exact sequence 0 → D

′
1 → C0

3 ⊕ C1
2 → D

′
2 → 0

with Ext1S(D
′
2 , addS C) = 0. Since the bottom row of the above diagram is HomS(−, addS C)-exact, we have

the following diagram:
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with Ext1S(D3, addS C) = 0, and the middle column is HomS(−, addS C)-exact. Iterating this procedure, we

eventually obtain an HomS(−, addS C)-exact exact sequence:

0 → A
f1−→ X1

f2−→ · · · fn−→ Xn

such that each Im fi → Xi is a left addS C -approximation of Im fi for 1 ≤ i ≤ n . �

For any A ∈ modS , let σA : A → A†† via σA(x)(f) = f(x) for any x ∈ A and f ∈ A† be the canonical
evaluation homomorphism. A is called a C -torsionless module if σA is a monomorphism; and A is called a
C -reflexive module if σA is an isomorphism. By [7, Lemma 4], A is C -torsionless (resp. C -reflexive) if and

only if A is 1-C -torsionfree (resp. 2-C -torsionfree). Note that this can also be obtained from Lemma 4.3 in
the following section.

Recall from [9, Definition 3.1], we know that a module A in mod S is said to have generalized Gorenstein
dimension zero with respect to C if the following conditions hold:

(1) A is C -reflexive.

(2) Exti
S(A, C) = 0 = Exti

Rop(A†, C) for any i ≥ 1.

Remark 3.4 It is easy to verify that a module A in modS has generalized Gorenstein dimension zero with
respect to C if and only if it is GC -projective over two-sided Noetherian rings by [12, Theorem 4.4].

Lemma 3.5 ([8, Lemma 2.9]) Let n ≥ 3 . Then a C -reflexive module A in modS is n-C -torsionfree if and

only if Exti
Rop(A†, C) = 0 for any 1 ≤ i ≤ n − 2 .

Now we can give a criterion for a module A ∈ mod S to be GC -projective.

Theorem 3.6 Let A ∈ mod S . Then A is GC -projective if and only if Exti
S(A, C) = 0 = Exti

Rop(Trε
C A, C)

for any C -transpose of A and any i ≥ 1 .

Proof Let A ∈ modS . If A is GC -projective, then we have that A is C -reflexive and Exti
S(A, C) =

0 = Exti
Rop(A†, C) for any i ≥ 1. Thus A is ∞ -C -torsionfree by Lemma 3.5. Hence Exti

S(A, C) = 0 =

Exti
Rop(Trε

C A, C) for any C -transpose of A and any i ≥ 1.
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If A satisfies Exti
Rop(Trε

C A, C) = 0 for any C -transpose of A and any i ≥ 1, then A is ∞ -C -torsionfree

by definition. Thus A is C -reflexive, and Exti
Rop(A†, C) = 0 for any i ≥ 1 by Lemma 3.5. The proof is finished.

�

Remark 3.7 By Lemma 3.5 and Theorem 3.6, it is not difficult to see that if A ∈ mod S is GC -projective,

then so is A† .

4. C -Gorenstein transpose

Chonghui Huang and Zhaoyong Huang in [6] introduced Gorenstein transpose of a module and investigated the
relations between the Gorenstein transpose and the transpose of the same module. In this section, we extend
the notion of Gorenstein transpose to C -Gorenstein transpose as follows.

Let A ∈ modS . Then there exists a GC -projective presentation of A in mod S

π : X1
g−→ X0 → A → 0.

Then we get an exact sequence:

0 → A† → X†
0

g†
−→ X†

1 → Coker g† → 0,

in modRop .

Definition 4.1 Let A and Coker g† as above. We call Coker g† a C -Gorenstein transpose of A and denote it
by TrπGC

A .

It is trivial that a C -transpose of A is a C -Gorenstein transpose of A , but the converse does not hold
true in general.

In the following, we will establish a relation between a C -Gorenstein transpose and a C -transpose of the
same module. First, we show that any C -Gorenstein transpose of a given module A can be embedded into a
C -transpose of the same module.

Proposition 4.2 Let A ∈ modS . For any C -Gorenstein transpose Trπ
GC

A , there exists an exact sequence

0 → Trπ
GC

A → TrεC A → G → 0 in mod Rop for some C -transpose Trε
C A of A and some GC -projective

module G . In particular, for any A ∈ modS and any TrπGC
A and any Trε

C A , there exists an isomorphism

Exti
Rop(Trπ

GC
A, C) ∼= Exti

Rop(Trε
C A, C) for any i ≥ 1 .

Proof Let A ∈ modS . For a C -Gorenstein transpose TrπGC
A , there exists an exact sequence π : X1

g−→
X0 → A → 0 in modS with X0 and X1 GC -projective such that TrπGC

A = Coker g† . Then there exists an

exact sequence 0 → G
′
1 → P

′
0 → X0 → 0 in mod S with P

′
0 projective and G

′
1 GC -projective. Let K1 = Im g

and g = iα be the natural epic-monic decomposition of g . Then we have the following pull-back diagram:
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Now consider the following pull-back diagram:

where K2 = Ker g . Since both X1 and G
′
1 are GC -projective, G is GC -projective by [12, Theorem 2.8]. So

there exists an exact sequence 0 → G1 → P0 → G → 0 in mod S with P0 projective and G1 GC -projective.
Consider the following pull-back diagram:
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So we get the following commutative diagram with exact rows:

It yields the following commutative diagram with exact columns and rows:

where H1 = Ker(P0 → X1) and G
′
1 = Ker(K

′
1 → K1). By the Snake Lemma, we get an exact sequence

0 → G1 → H1 → G
′
1 → 0 with H1 GC -projective. Combining the above diagram with the first one in this

proof, we get the following commutative diagram with exact columns and rows:

By applying the functor ( )† to the above diagram, we get the following commutative diagram with exact
columns and rows:
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By the Snake Lemma, we get an exact sequence:

0 → Trπ
GC

A(= Coker g†) → Trε
C A → Coker h† → 0

in modRop with Cokerh† = G†
1 GC -projective.

So Exti
Rop(Cokerh†, C) = 0 for any i ≥ 1 and hence Exti

Rop(Trπ
GC

A, C) ∼= Exti
Rop(Trε

C A, C) for any

i ≥ 1. �

Lemma 4.3 ([9, Lemma 2.1]) Let A ∈ mod S and Trε
C A be a C -transpose of A . Then we have the following

exact sequences:

(∗) 0 → Ext1Rop(Trε
C A, C) → A

σA−→ A†† → Ext2Rop(Trε
C A, C) → 0.

0 → Ext1S(A, C) → Trε
C A

σTrε
C

A−→ (Trε
C A)†† → Ext2S(A, C) → 0.

Let A ∈ mod S . By Proposition 4.2, we get C -Gorenstein version of the above lemma:

For any C -Gorenstein transpose Trπ
GC

A of A , we have the following exact sequence:

(∗∗) 0 → Ext1Rop(Trπ
GC

A, C) → A
σA−→ A†† → Ext2Rop(Trπ

GC
A, C) → 0.

We claim that A is a C -Gorenstein transpose of Trπ
GC

A . In fact, let Trπ
GC

A be any C -Gorenstein transpose of

A . Then we have an exact sequence G1
g−→ G0 → A → 0 with G0 , G1 GC -projective and Coker g† = Trπ

GC
A .

Thus we get an exact sequence 0 → A† → G†
0 → G†

1 → Trπ
GC

A → 0 . Since both G0 and G1 are C -reflexive,

we get an exact sequence 0 → (Trπ
GC

A)† → G††
1 → G††

0 → A → 0 . Thus A is a C -Gorenstein transpose of any

C -Gorenstein transpose of A . Therefore we get the following exact sequence:

0 → Ext1S(A, C) → Trπ
GC

A
σTrπ

GC
A

−→ (TrπGC
A)†† → Ext2S(A, C) → 0.

Moreover, we have the following corollary which generalizes [9, Theorem 2.2] and Lemma 4.3.

Corollary 4.4 Let Gn
dn−→ Gn−1

dn−1−→ · · · → G1
d1−→ G0 → A → 0 be an exact sequence in mod S with all Gi

GC -projective. If Exti
S(A, C) = 0 for any 1 ≤ i ≤ n − 1 , then we have the following exact sequence:
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0 → Extn
Rop(X, C) → A

σA−→ A†† → Extn+1
Rop (X, C) → 0

where X = Coker d†
n .

Proof The case for n = 1 follows from (∗∗). Now suppose n ≥ 2. Consider the given exact sequence

Gn
dn−→ Gn−1

dn−1−→ · · · → G1
d1−→ G0 → A → 0

with all Gi GC -projective. Since Exti
S(A, C) = 0 for any 1 ≤ i ≤ n− 1, we have the following exact sequence:

0 → A† → G†
0

d†
1−→ G†

1 → · · · → G†
n−1

d†
n−→ G†

n → X → 0

where X = Coker d†
n .

By (∗∗), there is an exact sequence

0 → Ext1Rop(Y, C) → A
σA−→ A†† → Ext2Rop(Y, C) → 0

where Y = Coker d†
1 . Since G†

i is GC -projective for 1 ≤ i ≤ n , we have Exti
Rop(Y, C) ∼= Exti+n−1

Rop (X, C).

Therefore we get the desired exact sequence. �

Now we show that the converse of Proposition 4.2 is also true.

Proposition 4.5 Let M ∈ modRop and A ∈ mod S . If there exists an exact sequence 0 → M → Trε
C A →

G → 0 in mod Rop with G GC -projective and Trε
C A a C -transpose of A , then M is a C -Gorenstein transpose

of A .

Proof Let P1
f−→ P0 → A → 0 be a projective presentation of A in modS with Trε

C A = Coker f† . Then
we have the following pull-back diagram:
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Since both G and P †
1 are GC -projective, K is GC -projective by [12, Theorem 2.8]. Again since G is GC -

projective, by applying the functor ( )† to the above commutative diagram, we get the following commutative
diagram with exact rows and columns:

By the Snake Lemma, we have Im g† ∼= Im f†† . Thus we get Coker g† = P ††
0 / Im g† ∼= P ††

0 / Im f†† ∼= A , and
therefore we get a GC -projective presentation of A in modS :

K† g†
−→ P ††

0 → A → 0.

Since both K and P †
0 are C -reflexive, we get an exact sequence 0 → A† → P †††

0
g††
−→ K†† → M → 0 in

mod Rop and M is a C -Gorenstein transpose of A . �

Combining Propositions 4.2 and 4.5, we get the following theorem.

Theorem 4.6 Let M ∈ mod Rop and A ∈ modS . Then M is a C -Gorenstein transpose of A if and only if
M can be embedded into a C -transpose Trε

C A of A with the cokernel GC -projective, that is, there exists an

exact sequence 0 → M → Trε
C A → G → 0 in modRop with G GC -projective.

Corollary 4.7 Let A ∈ mod S . Then for any GC -projective module G ∈ mod Rop and any C -transpose Trε
C A

of A , G ⊕ TrεC A is a C -Gorenstein transpose of A .

Proof Assume that G ∈ mod Rop is GC -projective. Then there exists an exact sequence 0 → G →
C1 → G

′ → 0 in modRop with C1 ∈ addRop C and G
′

GC -projective, which induces an exact sequence

0 → G ⊕ Trε
C A → C1 ⊕ Trε

C A → G
′ → 0. Since C1 ⊕ Trε

C A is again a C -transpose of A , G ⊕ Trε
C A is a

C -Gorenstein transpose of A by Theorem 4.6. �

Corollary 4.7 provides a method to construct a C -Gorenstein transpose of a module from a C -transpose
of the same module. It is interesting to know whether any C -Gorenstein transpose is obtained in this way. If
the answer to this question is positive, then we can conclude that the C -Gorenstein transpose of a module is
unique up to GC -projective equivalence.
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Let A ∈ modS . It is clear that the C -Gorenstein transpose of A depends on the choice of the GC -
projective presentation of A . In the following, as applications of Theorem 4.6, we will investigate the relation
between two C -Gorenstein transposes of A .

For a positive integer n , by Proposition 4.2, we have that A ∈ modS is n-C -torsionfree if and only if

Exti
Rop(Trπ

GC
A, C) = 0 for any (or some) C -Gorenstein transpose Trπ

GC
A of A and 1 ≤ i ≤ n .

The following result shows that some homological properties of any two C -Gorenstein transposes of a
given module are identical.

Proposition 4.8 Let A ∈ mod S . Then for any two C -Gorenstein transposes Trπ1
GC

A and Trπ2
GC

A and any

C -transpose Trε
C A of A , we have

(1) Exti
Rop(Trπ1

GC
A, C) ∼= Exti

Rop(Trπ2
GC

A, C) ∼= Exti
Rop(Trε

C A, C) for any i ≥ 1 .

(2) For any n ≥ 1 , Trπ1
GC

A is n-C -torsionfree if and only if so is Trπ2
GC

A , and if and only if so is

Trε
C A .

(3) Some C -Gorenstein transpose of A is zero if and only if A is GC -projective, if and only if any
C -Gorenstein transpose of A is GC -projective.

(4) GC -pdRop(Trπ1
GC

A) = GC -pdRop(Trπ2
GC

A) = GC -pdRop(Trε
C A)

Proof (1) It is an immediate consequence of Remark 3.2(3) and Proposition 4.2.

(2) Let Trπ
GC

A be any C -Gorenstein transpose of A . By Theorem 4.6, without loss of generality we may

assume that there is an exact sequence 0 → Trπ
GC

A → Trε
C A → G → 0 in modRop with G GC -projective.

If Ext1S(Trε
′

C (Trε
C A), C) = 0, then Trε

C A is C -torsionless. So Trπ
GC

A is also C -torsionless and

Ext1S(Trε2
C (Trπ

GC
A), C) = 0. Since G is GC -projective, we get an exact sequence 0 → Trε1

C G → Trε
′

C (Trε
C A) →

Trε2
C (Trπ

GC
A) → 0 in modS with Trε1

C G GC -projective. So we have that Exti
S(Trε2

C (Trπ
GC

A), C) =

Exti
S(Trε

′

C (Trε
C A), C) for any i ≥ 2, and Ext1S(Trε2

C (Trπ
GC

A), C) → Ext1S(Trε
′

C (Trε
C A), C) → 0 is exact.

Thus we have that, for any i ≥ 1, Exti
S(Trε2

C (Trπ
GC

A), C) = 0 if and only if Exti
S(Trε

′

C (Trε
C A) C) = 0. And

we conclude that for any n ≥ 1, Trπ
GC

A is n-C -torsionfree if and only if so is Trε
C A . The assertion follows

from (1) and the fact that A is a C -Gorenstein transpose of any C -Gorenstein transpose of A .

(3) Note that A is a C -Gorenstein transpose of any C -Gorenstein transpose of A , applying Theorem

3.6, the assertion follows from (1) and (2).

(4) Let Trπ
GC

A be any C -Gorenstein transpose of A . If Trπ
GC

A = 0, then the assertion follows from

(3). Now suppose that Trπ
GC

A �= 0. By Theorem 4.6, there exists a C -transpose Trε
C A of A satisfying the

exact sequence 0 → Trπ
GC

A → TrεC A → G → 0 in modRop with G GC -projective. Then we have that

GC -pdRop(Trπ
GC

A) = GC -pdRop(Trε
C A) by Lemma 2.6 and Remark 3.2 (1). �

As the end of this paper we show that any double C -Gorenstein transpose of A shares some homological
properties of A .

Corollary 4.9 Let A ∈ modS . Then for any C -Gorenstein transpose TrπGC
A of A and any C -Gorenstein

transpose Trπ1
GC

(Trπ
GC

A) of Trπ
GC

A , we have

(1) Exti
S(Trπ1

GC
(Trπ

GC
A), C) ∼= Exti

S(A, C) for any i ≥ 1 .

416



LIU and YAN/Turk J Math

(2) For any n ≥ 1 , Trπ1
GC

(Trπ
GC

A) is n-C -torsionfree if and only if so is A .

(3) GC -pdS(Trπ1
GC

(Trπ
GC

A)) = GC -pdSA .

Proof Note that A is a C -Gorenstein transpose of any C -Gorenstein transpose TrπGC
A of A . So all of the

assertions follow from Proposition 4.8. �
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