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Abstract: Over a general ring, an R -module is w -supplemented if and only if amply w -supplemented. It is proved that

over a local Dedekind domain, all modules are w -supplemented and over a non-local Dedekind domain, an R -module M

is w -supplemented if and only if Soc(M) � M or M = S0 ⊕ (
�

i∈I K) , where S0 is a torsion, semisimple submodule

of M and K is the field of quotients of R .
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1. Introduction

Since Kasch and Mares have defined the notions of perfect and semiperfect for modules, the notion of a
supplemented module has been used extensively by many authors. A module M is called supplemented if,
for every submodule A of M , there is a submodule B of M such that M = A + B and A ∩ B is a small
submodule of B . In early years, supplemented modules and two other generalizations, Amply supplemented
modules and weakly supplemented modules, appeared in Helmut Zöschinger’s works and he characterized their
structure over local and non-local Dedekind domains [17],[18],[19],[20],[21]. After Zöschinger, we see more work
on variations of supplemented modules. A. Harmancı, P. F. Smith, W. Xue and D. Keskin’s works were on
⊕-supplemented modules [9],[12]. ⊕-supplemented modules are also studied by R. Tribak and A. Idelhadj in

[10]. Cofinitely supplemented modules are studied by R. Alizade, P.F. Smith and G. Bilhan in [1]. Cofinitely

weak supplemented modules are studied by R. Alizade and E. Büyükaşık in [2]. ⊕-cofinitely supplemented

modules are studied by H. Çalışıcı and A. Pancar in [7]. Totally and totally cofinitely supplemented modules

are studied by P.F. Smith and G. Bilhan in [3] and [14]. In recent years, rad-supplemented modules are studied

by W. Yongduo and D. Nanging in [16] and by E. Büyükaşık, E. Mermut and S. Özdemir in [6] and cofinitely

rad-supplemented modules are studied by E. Büyükaşık and C. Lomp in [5].

This paper is based on another variation of supplemented modules.
We shall say that a module M is w-supplemented if every semisimple submodule of M has a supplement

in M .

Lemma 1.1 Let M = N + L where L is a submodule of M and N is a semisimple submodule of M . Then
M = N ′ ⊕ L for some submodule N ′ of N .
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Proof Let N be a semisimple submodule of M . Then N ∩ L is direct summand in N . That is, N =
(N ∩L)⊕N ′ for some submodule N ′ of N . Since M = N +L , then we have M = ((N ∩L)⊕N ′)+L = N ′+L .

So M = N ′ ⊕ L because (N ∩ L) ∩ N ′ = N ′ ∩ L = 0. �

Lemma 1.2 ([8], 2.8.(9)) Let M be an R -module and let Rad(M) be the radical of M and let Soc(M) be the

socle of M . Then Soc(Rad(M)) � M .

Lemma 1.3 Let U be a semisimple submodule of M contained in Rad(M) . Then U is small in M .

Proof Let U ⊆ Rad(M), where U is semisimple in M . Then Soc(U) ⊆ Soc(Rad(M)). Since U is semisimple,

Soc(U) = U . Then U ⊆ Soc(Rad(M)). By 1.2 and by ([15], 19.3), U � M . �

Example 1.4 Clearly, any module M with Soc(M) = 0 is w -supplemented. So, Z-module Z is w -supplemented
but not supplemented.

We see weakly supplemented modules in Zöschinger’s works. But defining weakly w -supplemented
modules or some other variations of w -supplemented modules does not make sense, because of the following
result.

Proposition 1.5 Let R be a ring and M be an R -module. Then the following statements are equivalent.

1. M is w -supplemented.

2. Every semisimple submodule of M has a supplement that is a direct summand.

3. Every semisimple submodule of M has a weak supplement.

4. Every semisimple submodule of M has a rad-supplement.

Proof (1 ⇒ 2) Let N be a semisimple submodule of M . By assumption, N has a supplement K in M for

some submodule K of M . That is, M = N + K and N ∩K � K . By 1.1, M = N ′ ⊕ K for some submodule
N ′ of N .
(2 ⇒ 3) Let N be a semisimple submodule of M . By (2), N has a supplement, so N has a weak supplement,
since supplements are also weak supplements.
(3 ⇒ 4) Let N be a semisimple submodule of M . Since N has a weak supplement, then there exists a sub-

module K of M such that N + K = M and N ∩ K � M . By 1.1, M = N ′ ⊕ K for some submodule N ′ of
N . By ([15], 19.3(5)), N ∩K � K . This implies N ∩K ≤ Rad(K). Thus K is rad-supplement of N in M .

(4 ⇒ 1) Let N be a semisimple submodule of M . By assumption, N has a rad-supplement K in M . Then

M = N + K and K ∩ N ≤ Rad(K), also by ([15], 21.6(1)(i)) and considering inclusion map i : K → M , we

say K ∩ N ≤ Rad(M). Then by 1.3, K ∩ N � M . Since N is semisimple, by 1.1, M = N ′ ⊕ K for some

submodule N ′ of N . So we get K ∩ N � K by ([15], 19.3(5)). �

Proposition 1.6 Any direct summand of a w -supplemented module is w -supplemented.
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Proof Let M be w -supplemented module and N be a direct summand of M so that M = N ⊕ K for some
submodule K of M . Let S be a semisimple submodule of N . If S = 0, then N is trivially w-supplemented.
Let S 	= 0, since S ⊆ M , then M = S +T and S ∩T � T for some submodule T of M . Then by the modular
law, N = S + (N ∩ T ) and consequently by 1.1, N = S′ ⊕ (N ∩ T ) for some S′ ⊆ S . That is, N ∩ T is a direct

summand of N . If we are able to show that S ∩ (N ∩ T ) << N ∩ T , then we are done. Since S ∩ T � T by

([15], 19.3(4)) together with the inclusion map, S ∩ T << M , and since S ∩ T ⊆ N , then by ([15], 19.3(5))

S ∩ T << N and consequently S ∩ (N ∩ T ) << N ∩ T , because (S ∩ T ) ∩ N = S ∩ T ⊆ N ∩ T . Therefore
N ∩ T is a supplement of S in N . �

Proposition 1.7 Any finite direct sum of w -supplemented modules is w -supplemented.

Proof It is sufficient to prove for the case M = M1 ⊕ M2 where M1 and M2 are w-supplemented mod-
ules, then result follows inductively. For i = 1, 2, let pi : M → Mi be the projection map. Let L be a
semisimple submodule of M . Then so are the modules p1(L) = (L + M2) ∩ M1 and p2(L) = (L + M1) ∩ M2 .

Then p1(L) and p2(L) have supplements H1 and H2 in M1 and M2 respectively. M1 + M2 + L has a

supplement 0 in M . By ([9], Lemma 1.3), H2 is a supplement of M1 + L in M . Also we may say that

(L + H2) ∩ M1 ⊆ (L + M2) ∩ M1 = p1(L) means (L + H2) ∩ M1 is also semisimple, then has a supplement K

in M1 . Again applying ([9], Lemma 1.3), H2+K is a supplement of L in M . Hence M is w -supplemented. �

Lemma 1.8 Let
0 −→ L −→ M −→ N −→ 0

be a short exact sequence for R -modules. If L and N are w -supplemented and L � M , then M is w -
supplemented.

Proof Let us consider N as
M

L
. Let U be a semisimple submodule of M . Then

U + L

L
is a semisimple

submodule in
M

L
. If

M

L
=

U + L

L
, then M = U + L . By 1.1, M = U ′ ⊕ L where U ′ ⊆ U , then M is w -

supplemented as a finite direct sum of w -supplemented modules. Let
U + L

L
be a proper submodule of

M

L
. By

assumption,
U + L

L
has a supplement

V

L
in

M

L
. That is,

M

L
=

(U + L)
L

+
V

L
and

(U + L)
L

∩ V

L
� V

L
. There-

fore M = U +V and with modular law
(U ∩ V ) + L

L
� V

L
. By 1.1, M = U ′⊕V for some submodule U ′ of U .

Let us show U∩V � V : Let V = (U∩V )+X for some submodule X of V . Then
V

L
=

(U ∩ V ) + L

L
+

X + L

L
.

Since
(U ∩ V ) + L

L
� V

L
, then

V

L
=

X + L

L
. It follows that V = X + L . Since V is a direct summand of M ,

by ([15], 19.3(5)) V = X . �

A module M is amply supplemented, if whenever M = A + B , then B contains a supplement of A . A
module M is called amply w -supplemented, if M = A + B where A is a semisimple submodule of M , then B

contains a supplement of A .
In all variations of supplemented modules, amply supplemented versions are different than supplemented

ones. For instance, (cofinitely) supplemented modules need the projective property to become amply (cofinitely)

supplemented, (see [15], 41.15) and ([1], Proposition 2.14.) But for our modules, they are the same.
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Proposition 1.9 M is w -supplemented if and only if M is amply w -supplemented.

Proof (⇐) Obvious.

(⇒) Let M = A+B where A is semisimple. Since A is semisimple, then so is A∩B and hence by Lemma 1.1,
M = Y1 ⊕ T for some submodule Y1 of A ∩ B and some supplement T of A ∩ B in M . By the modular law,
A∩B = Y1⊕(A∩B∩T ). Let’s call A∩B∩T = S and by applying the modular law once more to M = Y1⊕T ,

we get B = Y1 ⊕ (B ∩ T ). Let’s call B ∩ T = Y2 . We consider the projection mapping π : Y1 ⊕ Y2 → Y2 , then

A ∩ B = Y1 ⊕ S = Y1 ⊕ (A ∩ (B ∩ T )) = Y1 ⊕ (A ∩ Y2) = Y1 ⊕ (A ∩ Y2 ∩B)

since Y2 ⊆ B . Then A∩Y2 = A∩B∩Y2 = π(A∩B) = π(Y1+S) = π(S). Then by ([15], 19.3(4)), A∩Y2 = π(S)

is small in π(T ) and consequently in Y2 . Also M = A+B = A+Y1 +Y2 = A+Y2 . Therefore A has supplement
Y2 contained in B . �

A module M is totally (cofinitely) supplemented, if every submodule is (cofinitely) supplemented

([3],[14]). We shall say that a module M is totally w -supplemented module if every submodule of M is
w -supplemented. Maybe, after Prop.1.5 and Prop.1.9, it is expected that w -supplemented modules are also
totally w -supplemented. But unfortunately, it is not the case.

Here is an example:

Let R be a commutative ring with identity 1 and M be an R -module. Then it is not difficult to check
that

S =
{(

a m
0 a

)
: a ∈ R, m ∈ M

}

is a ring with ordinary addition and multiplication. Furthermore, S is a commutative ring with identity
(

1 0
0 1

)
.

An R -module M is faithful, if for all r ∈ R , Mr = 0 implies that r = 0.

Lemma 1.10 If M is faithful right R -module, then

Soc(SS) =
(

0 Soc(RM)
0 0

)
=

{(
0 m
0 0

)
∈ S : m ∈ Soc(RM)

}

and
(

0 M
0 0

)
�S S .

Proof We note that if N is any R -submodule of M , then
(

0 N
0 0

)
is an ideal of the ring S . Also, an R -

submodule N of M is simple if and only if
(

0 N
0 0

)
is a simple ideal of S and hence

(
0 SocR(M)
0 0

)
⊆ Soc(S).

Conversely, let I be any nonzero simple ideal of S and let
(

a m
0 a

)
∈ I be nonzero. Then I = S.

(
a m
0 a

)
.

Since
(

0 M
0 0

)
is an ideal of S ,

(
0 M
0 0

)
.

(
a m
0 a

)
=

(
0 aM
0 0

)
is an ideal of S contained in I . Then, by

the minimality of I ,
(

0 aM
0 0

)
= I or zero. In the former case we get that

(
a m
0 a

)
∈

(
0 aM
0 0

)
which
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implies that a = 0, m ∈ aM and hence m = 0 which implies that
(

a m
0 a

)
= 0 which is a contradiction. So

(
0 aM
0 0

)
= 0 which implies aM = 0. Since, by hypothesis, M is faithful R -module, it follows that a = 0.

Thus

I = S.

(
0 m
0 0

)
= {

(
a′ m′

0 a′

)
.

(
0 m
0 0

)
: a′ ∈ R, m′ ∈ M}

= {
(

0 am
0 0

)
: a ∈ R} =

(
0 Rm
0 0

)

Since I is a simple ideal of S , it follows by above observation that Rm is a simple R -submodule of M and

hence I ⊆
(

0 SocR(M)
0 0

)
. This proves that Soc(S) ⊆

(
0 SocR(M)
0 0

)
and hence Soc(S) =

(
0 SocR(M)
0 0

)
.

For the other part, J(S) � S is always true, since S has identity. �

Example 1.11 Let R be a ring and M be a faithful right R -module with the properly that Soc(RM) has no

supplement in M . For example, we consider a Z-module M =
∏

p−prime

Zp is faithful but the torsion submodule

Soc(M) =
⊕

p−prime

Zp has no supplement in M , as it is explained in Example 2.7 where Zp ’s are Z/pZ ’s

for various prime p ’s. Then SS =
{(

a m
0 a

)
: a ∈ R, m ∈ M

}
is w -supplemented but the submodule

SN =
(

0 M
0 0

)
is not w -supplemented. Because, by 1.10, Soc(SS) =

(
0 Soc(RM)
0 0

)
and Soc(SS) �S S .

So, Soc(SS) has supplement SS in SS .
(

0 Soc(RM)
0 0

)
is a semisimple submodule of

(
0 M
0 0

)
but it

has no supplement in SN , because if
(

0 L
0 0

)
was a supplement of Soc(SS) , then obviously we will have

Soc(RM) + L = M and Soc(RM) ∩ L � L. That is, L is a supplement of Soc(RM) in M , a contradiction.

Lemma 1.12 If every semisimple submodule of
M

Rad(M)
is a direct summand, then M is w -supplemented.

Proof Let N be a semisimple submodule of M , then
N + Rad(M)

Rad(M)
is semisimple too. Then

M

Rad(M)
=

N + Rad(M)
Rad(M)

⊕ K

Rad(M)
for some submodule K of M containing Rad(M). So, M = N + K and N ∩ K ⊆

Rad(M). By 1.3, N ∩ K � M . Furthermore, by 1.1, K is a direct summand of M containing N ∩ K . Then

by ([15], 19.3(5)), N ∩ K � K . Therefore, M is w -supplemented. �

Lemma 1.13 Let M be an R -module with Soc(M) � M , then M is w -supplemented.
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Proof Obviously, if Soc(M) = 0, then M is w -supplemented. Let N be a nonzero semisimple submodule of

M , then N ⊆ Soc(M), so N is small in M too, then M = M + N and M ∩ N = N � M . �

Lemma 1.14 M is w -supplemented if and only if Soc(M) has a supplement in M .

Proof (⇒) Straightforward.

(⇐) Let V be a supplement of Soc(M) in M , then M = Soc(M) + V and Soc(V ) = Soc(M) ∩ V � V , then
by 1.13, V is w -supplemented. Since M = S ⊕ V where S is a semisimple submodule of M by 1.1, then by
1.7, M is w -supplemented. �

A submodule N of a module M is said to be radical, if Rad(N) = N .

Proposition 1.15 Every radical module M is w -supplemented.

Proof Let M be a radical module, that is, M = Rad(M), then Soc(M) = Soc(Rad(M)) � M by 1.3 and
then by 1.13, M is w -supplemented. �

2. W -supplemented modules over commutative domains

Proposition 2.1 Over a proper (not a field) Dedekind domain R , if an R -module M is torsion free, then

Soc(M) = 0 .

Proof Let S be a nonzero simple submodule of M where M is torsion-free, then for any prime element p of
R , ps 	= 0 for any nonzero s of S . Then, obviously < ps >= S . Let r0 be another nonzero nonunit element
of R that is not an associate of p and then < r0s >= S indeed. Then ps = r′(r0s) for some r′ ∈ R , though

(p − r′r0)s = 0 implies p = r′r0 ; but primes are irreducible, so r′ is a unit, a contradiction. �

Corollary 2.2 Over a Dedekind domain, all torsion-free modules are w -supplemented.

Proof All modules with zero socle are w -supplemented. If R is a field, then all submodules are semisimple,
and so w -supplemented. �

Proposition 2.3 Over a Dedekind domain R all torsion modules are w -supplemented.

Proof Let M be a torsion R -module, then by ([4], Corollary 2.7),
M

Rad(M)
is semisimple, then M is w -

supplemented by 1.12. �

We may give now an example of a w -supplemented module that is not supplemented and with nontrivial
proper socle.

Example 2.4 Let M =
⊕∞

k=1 Zpk where p is fixed prime. Then M is torsion when considered as a Z-module.

Note that Soc(M) ∼=
⊕∞

Zp 	= 0 . In Example 2.14 of [4], it is showed that M is not weakly supplemented. Since
all supplemented modules are weakly supplemented, then M is not supplemented. By 2.3, M is w -supplemented.

Proposition 2.5 If R is a local Dedekind domain, then all R -modules are w -supplemented.
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Proof Let M be an R -module with unique maximal ideal P , then
M

Rad(M)
=

M

PM
is semisimple, then by

1.12 M is w -supplemented. �

Proposition 2.6 Let R be a Dedekind domain, then every divisible R -module is w -supplemented.

Proof Let D be a divisible R -module, then Rad(D) = D , that is, D is a radical module. So by 1.15, D is
w -supplemented. �

The following example shows that not all modules are w -supplemented over a Dedekind domain.

Example 2.7 (Comes from [4], Example 2.11.) Let R be a non-local Dedekind domain which has infinitely

many maximal ideals and {Pi}i∈I be an infinite collection of distinct maximal ideals of R . Let M =∏
i∈I(R/Pi) . Let T =

⊕
i∈I(R/Pi) be the torsion submodule of M . By Lemma 2.9 of [4], M/T is divisible and

isomorphic to K(J) for some index set J where K is the field of quotients. Thus, M/T has a submodule N/T

such that N/T ∼= K . We claim that N is not w -supplemented: T is semisimple but doesn’t have a supplement

in N . Since Rad(N) = 0 , if T had a supplement T ′ in N , then it would be a direct summand in N . But it

is not, because whenever N = T ⊕ T ′ , then N/T ∼= T ′ is divisible; since Rad(N) = 0 , then Rad(T ′) = 0 , a

contradiction with Rad(T ′) = T ′ .

Proposition 2.8 Let M be a w -supplemented module. Either Soc(M) is a small submodule of M , or
M = S0⊕V0 for some nonzero greatest semisimple submodule S0 of M containing no nonzero small submodule
of M and for some submodule V0 of M with Soc(V0) = 0 .

Proof Let us construct Γ = {X ⊆ M | X is semisimple and X ∩ Rad(M) = 0} . Since {0M} ∈ Γ, then

Γ 	= ∅ . Clearly, any chain {Xi}i∈I for some index set I of Γ has an upper bound
⋃

i∈I Xi = X0 , because X0

is semisimple and X0 ∩ Rad(M) = 0. Then by Zorn’s Lemma Γ has a maximal element S0 . If S0 = 0, then

all simple submodules of M are also small, that is Soc(M) ⊆ Rad(M). So by 1.3, Soc(M) � M . Let S0 	= 0.

Since M is w -supplemented, M = S0 +V and S0 ∩V � V . Then, S0 ∩V ⊆ Rad(M) and also is a submodule
of S0 , consequently it is semisimple. But then by construction of S0 , S0 ∩ V = 0. Hence M = S0 ⊕ V . By
1.6, V is also w -supplemented, then V = Soc(V ) + V0 and Soc(V ) ∩ V0 � V0 for some submodule V0 of V .

Then M = S0 ⊕ (Soc(V ) + V0). By maximality of S0 , Soc(V ) ⊆ Rad(M), then by 1.3, Soc(V ) � M . Thus
M = S0 ⊕ V0 . �

Lemma 2.9 Any semisimple module over a non-local Dedekind domain is torsion.

Proof Let R be a non-local Dedekind domain and let M be a semisimple R -module. Let S be a simple
submodule of M , then S ∼= R/I for some ideal I of R . Since simple modules are local, then I 	= 0 because R

is non-local. Then S is torsion, consequently M =
⊕

S is torsion, too. �

A module M is called reduced, if for any nonzero submodule N of M , RadN 	= N .

Theorem 2.10 Let R be a non-local Dedekind domain, then an R -module M is w -supplemented if and only
if either Soc(M) � M or M = S0 ⊕ (

⊕
i∈I K) where S0 is torsion, semisimple and reduced submodule of M

and K is the field of quotients of R .
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Proof (⇒) We may write M as M = D ⊕ A where D is divisible and A is reduced part of M . Also by
2.8 and 2.9, M = S0 ⊕ V0 where S0 is semisimple torsion submodule of M and V0 is a submodule of M with
zero socle. For any prime p , the divisible submodule R(p∞) cannot lie in S0 , because its simple submodule is

also small and since R(p∞) is indecomposable then torsion divisible part of M must completely lie in V0 . But

actually it cannot be in V0 either, because V0 has no simple submodules. Therefore no R(p∞) exists in M .

Thus, D =
⊕

i∈I K . But then, since D becomes torsion-free, D ⊆ V0 by 2.9. Therefore M = S0 ⊕ (
⊕

i∈I K)

where S0 is torsion, semisimple and reduced. If S0 = 0, then obviously Soc(M) � M .

(⇐) By 2.6, (
⊕

i∈I K) is w -supplemented. Then by 1.7 M is w -supplemented. Or 1.13 implies M is w-

supplemented. �
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[6] Büyükaşık, E., Mermut, E. and Özdemir, S.: Rad–supplemented Modules. Rend. Sem. Mat. Univ. PADOVA. 124

(2010).
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