

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2013) 37: 427 – 436 © TÜBİTAK doi:10.3906/mat-1107-30

Structure theorems for rings under certain coactions of a Hopf algebra

Gaetana RESTUCCIA, Rosanna UTANO*

Department of Mathematics, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 98166 Messina, Italy

Received: 28.07.2011	•	Accepted: 17.02.2012	٠	Published Online: 26.04.2013	•	Printed: 27.05.2013

Abstract: Let $\{D_1, \ldots, D_n\}$ be a system of derivations of a k-algebra A, k a field of characteristic p > 0, defined by a coaction δ of the Hopf algebra $H_c = k[X_1, \ldots, X_n]/(X_1^p, \ldots, X_n^p)$, $c \in \{0, 1\}$, the Lie Hopf algebra of the additive group and the multiplicative group on A, respectively. If there exist $x_1, \ldots, x_n \in A$, with the Jacobian matrix $(D_i(x_j))$ invertible, $[D_i, D_j] = 0$, $D_i^p = cD_i$, $c \in \{0, 1\}$, $1 \le i, j \le n$, we obtain elements $y_1, \ldots, y_n \in A$, such that $D_i(y_j) = \delta_{ij}(1 + cy_i)$, using properties of H_c -Galois extensions. A concrete structure theorem for a commutative k-algebra A, as a free module on the subring A^{δ} of A consisting of the coinvariant elements with respect to δ , is proved in the additive case.

Key words: Hopf algebras, derivations, Jacobian criterion

1. Introduction

A series of articles in commutative algebra ([5], [6], [7], [8] have focused on the following problem:

(P): Let $\{D_1, \ldots, D_n\}$ be a system of derivations of a k-algebra A, k field of characteristic p > 0, such that there exist $x_1, \ldots, x_n \in A$, with the Jacobian matrix $(D_i(x_j))$ invertible, $[D_i, D_j] = 0$, $D_i^p = c_i^{p-1}D_i$, $c_i \in k$, $1 \le i, j \le n$. Do elements $y_1, \ldots, y_n \in A$ exist such that $D_i(y_j) = (1 + c_j y_j)\delta_{ij}$?

If a positive answer is given, structure theorems for A follow in terms of the subring of constants of A with respect to the derivations D_1, \ldots, D_n , the main one of which is contained in [5]. We recall that a finite dimensional Hopf algebra over k is a k-algebra, with comultiplication $\Delta : H \longrightarrow H \otimes_k H$, antipode $S : H \longrightarrow H$ and counity $\varepsilon : H \longrightarrow k$ and a coaction of H on a k-algebra A (or an H-comodule algebra structure on A) is a morphism of algebras $\delta : A \longrightarrow A \otimes H$ such that $(1 \otimes \varepsilon)\delta \cong 1$ and $(1 \otimes \Delta)\delta = (\delta \otimes 1)\delta$. Given such a coaction, the subalgebra $\{a \in A : \delta(a) = a \otimes 1\}$ of A is called the algebra of coinvariant elements of δ and it is denoted by $A^{\delta} = A^{\text{coH}}$.

In [6], surprisingly, for a local commutative algebra A, the authors prove that the jacobian condition (which states that there are elements $y_1, \ldots, y_n \in A$ such that for all $1 \leq m \leq n$ the $m \times m$ matrix $(D_i(y_j))_{1 \leq i,j \leq m}$ over A is invertible) is equivalent to the property for A to be an H-Galois extension over the subring A^{δ} of the coinvariant elements of A with respect to a coaction $\delta : A \longrightarrow A \otimes H$, where H is a (co)commutative Hopf algebra with underlying algebra

$$H = k[X_1, \dots, X_n] / (X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \ n \ge 1, \ s_1 \ge \dots \ge s_n \ge 1.$$

*Correspondence: rosanna.utano@unime.it

²⁰¹⁰ AMS Mathematics Subject Classification: 16W25, 16T05.

For the Lie Hopf algebra H of the additive group, from the strong jacobian condition (which states that there are elements $y_1, \ldots, y_n \in A$ such that $D_i(y_j)_{1 \leq i,j \leq n} = \delta_{ij}$) an important structure theorem follows for A(not necessarily commutative), precisely A has an A^{δ} -basis as a left A^{δ} -module, consisting of the monomials $y_1^{\alpha_1} \ldots y_n^{\alpha_n}$, $\alpha_i \in \mathbb{N}$, $0 \leq \alpha_i < p^{s_i}$, $1 \leq i \leq n$, ([6], Theorem 3.1).

In this paper we consider Hopf algebras that "live" on the truncated algebra $H_{\underline{s}} = k[X_1, \ldots, X_n]/(X_1^{p^{s_1}}, \ldots, X_n^{p^{s_n}}) \underline{s} = (s_1, \ldots, s_n)$. According to ([11], 14.4), the assumption is not too restrictive because any finite-dimensional, commutative and local algebra over a perfect field has this structure. Using the notion just mentioned, we formulate a more general theorem where we postulate the existence of the elements $y_1, \ldots, y_n \in A$ with the strong jacobian condition in the Lie algebra case of the additive group for $H = H_0 = k[X_1, \ldots, X_n]/(X_1^p, \ldots, X_n^p)$, with $c_i = 0$ in (**P**), $i = 1, \ldots, n$. The same result is given in the Lie algebra case of the multiplicative group for $H = H_1$ with $c_i = 1$ in (**P**), $i = 1, \ldots, n$, under the hypotheses A local and $A = A^{\delta} + m$, where m is the maximal ideal of A. More precisely, the main result of section 1 concerns a positive answer to the previous question that can be deduced from the following theorem.

Theorem Let H_c be the Hopf algebra defined as before, $c \in \{0, 1\}$, A a right H_c -comodule algebra with structure map $\delta : A \longrightarrow A \otimes H_c$. If there are $y_1, \ldots, y_n \in A$ with $\delta(y_i) = y_i \otimes 1 + (1 + cy_i) \otimes x_i$, for all $1 \leq i \leq n$, then the map

$$\gamma: A^{\delta} \otimes H_c \longrightarrow A, \ r \otimes x^{\alpha} \mapsto ry^{\alpha}, \ r \in A^{\delta}, \ \alpha \in \mathbb{A}, x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, y^{\alpha} = y_1^{\alpha_1} \cdots y_n^{\alpha_n},$$

where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{A}$, \mathbb{A} the set of all multiindices $\alpha = (\alpha_1, \ldots, \alpha_n)$, with $0 \le \alpha_i < p$, $1 \le i \le n$, is a left A^{δ} -linear and right H_c -colinear isomorphism. In particular, the elements y^{α} , $\alpha \in \mathbb{A}$, form an A^{δ} -basis of A as a left A^{δ} -module.

By using the previous theorem we are able to prove Theorem 2.5, where the property of H_c -Galois extension permits, starting from the strong jacobian condition on n-1 elements y_1, \ldots, y_{n-1} of A, to have the strong jacobian condition on n elements of A, assuming there exists $y \in A$ such that $D_n(y) = 1 + cy$, $c \in \{0, 1\}$. In section 2 we use Theorem 2.5 in the additive case and for a commutative k-algebra A, to give "explicitly" $y_1, \ldots, y_n \in A$, the special elements that verify the strong condition $D_i(y_j) = \delta_{ij}$ of derivability, $1 \leq i, j \leq n$. Some consequences are discussed in section 3, where we consider the structure of A as an $A^{\delta} = A^{\{D_1,\ldots,D_n\}}$ -algebra, $A^{\{D_1,\ldots,D_n\}}$ the constant subring of A with respect to the derivations D_1,\ldots,D_n .

2. Coactions of a Hopf algebra H and H-Galois type extensions

Throughout the paper, k is an arbitrary field of characteristic p > 0. All vector spaces, algebras, coalgebras are over k and maps between them are at least k-linear. We refer to the books by Montgomery [4] and Sweedler [10] for general Hopf algebra theory and to the book by Schauenburg and Schneider [9] for Galois type extensions of Hopf algebras. In this section we recall some definitions and theorems and we establish a structure theorem for the Hopf algebra of the multiplicative group. For $H = H_0$ the result is known [6]. Let H be a Hopf algebra over the field k, with comultiplication $\Delta : H \longrightarrow H \otimes H$, counit $\varepsilon : H \longrightarrow k$, antipode $S : H \longrightarrow H$. The augmentation ideal of H will be denoted by $H^+ = \ker \varepsilon$. If A is a right H-comodule algebra, with structure map $\delta : A \longrightarrow A \otimes H$, then

$$A^{\text{coH}} = A^{\delta} := \{a \in A | \delta(a) = a \otimes 1\}$$

is the algebra of *H*-coinvariant elements of *A*. We are interested in algebra extensions $B \subseteq A$ in a Hopf algebraic context. Precisely, $A^{\text{coH}} \subseteq A$. In fact, by definition, the sequence

$$A^{\operatorname{coH}} \xrightarrow{\subseteq} A \xrightarrow{\delta} A \otimes H$$

is exact, that is $A^{\operatorname{co} H} \subseteq A$ is the difference kernel of the maps δ and $i_1 : A \longrightarrow A \otimes H$, $a \mapsto a \otimes 1$.

Definition 2.1 [2] Let A be a right H-comodule algebra with structure map $\delta : A \longrightarrow A \otimes H$. Then the extension $A^{\operatorname{co}H} \subseteq A$ is a right H-Galois extension if the canonical map $\operatorname{can} : A \otimes_{A^{\operatorname{co}H}} A \longrightarrow A \otimes_k H$ given by $a \otimes b \mapsto (a \otimes 1)\delta(b) = ab_{(0)} \otimes b_{(1)}$ is bijective.

In the following we will consider commutative Hopf algebras with underlying algebra:

$$H = k[X_1, \dots, X_n] / \left(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}} \right), \ n \ge 1, \ s_1 \ge \dots \ge s_n \ge 1.$$

We denote by \mathbb{A} the set of all multiindices $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $0 \leq \alpha_i < p^{s_i}, 1 \leq i \leq n$. For $\beta = (\beta_1, \ldots, \beta_n), \gamma = (\gamma_1, \ldots, \gamma_n) \in \mathbb{N}^n$ we define

$$\beta + \gamma = (\beta_1 + \gamma_1, \dots, \beta_n + \gamma_n), \text{ and } |\beta| = \beta_1 + \dots + \beta_n.$$

If we denote by x_i the residue class of X_i in H, for all i, then the elements $x^{\alpha} := x_i^{\alpha_1} \dots x_n^{\alpha_n}$, $\alpha \in \mathbb{A}$ form a k-basis of H. Let A be an algebra, $\delta : A \to A \otimes H$ be an algebra map and a right H-comodule algebra structure on A. We will write

$$\delta(a) = \sum_{\alpha \in \mathbb{A}} D_{\alpha}(a) \otimes x^{\alpha}, \text{ for all } a \in A.$$

Thus for all $\alpha \in \mathbb{A}$ and $a, b \in A$,

$$D_{\alpha}(ab) = \sum_{\substack{\beta+\gamma=\alpha\\\beta,\gamma\in\mathbb{A}}} D_{\beta}(a) D_{\gamma}(b), \text{ and } D_{(0,\dots,0)} = \mathrm{id}.$$

For all i, let $\delta_i = (\delta_{ij})_{1 \le j \le n} \in \mathbb{A}$, where $\delta_{ij} = 1$, if j = i, and $\delta_{ij} = 0$, otherwise. We put $D_i = D_{\delta_i}, 1 \le i \le n$. Thus the linear maps $D_i : A \to A$ are derivations of the algebra A, and for all $a \in A$ we have

$$\delta(a) = a \otimes 1 + \sum_{1 \le i \le n} D_i(a) \otimes x_i + \sum_{\substack{\alpha \in \mathbb{A} \\ |\alpha| \ge 2}} D_\alpha(a) \otimes x^{\alpha}.$$
 (1)

From now we will consider the Hopf algebra H_a of the additive group, that is

$$H_a = k[X_1, \dots, X_n] / \left(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}} \right) \ n \ge 1, \ s_1 \ge \dots \ge s_n \ge 1,$$
(2)

with comultiplication

$$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i, \ 1 \le i \le n \tag{3}$$

and the Hopf algebra of the multiplicative group, that is

$$H_m = k[X_1, \dots, X_n] / \left(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}} \right) \ n \ge 1, \ s_1 \ge \dots \ge s_n \ge 1,$$
(4)

with comultiplication

$$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i + x_i \otimes x_i, \ 1 \le i \le n$$
(5)

We call these algebras H_c , $c \in \{0, 1\}$, respectively. In the Lie algebra case of the additive group, that is

$$H_0 = k[X_1, \dots, X_n] / (X_1^p, \dots, X_n^p),$$
(6)

coactions have a special form. Precisely they are derivations $D_1, \ldots, D_n \in Der(A)$ with $D_i D_j = D_j D_i, D_i^p = 0$ and

$$D_{\alpha} = \frac{D_1^{\alpha_1}}{\alpha_1!} \dots \frac{D_n^{\alpha_n}}{\alpha_n!}, \qquad \alpha = (\alpha_1, \dots, \alpha_n), \qquad 0 \le \alpha_i < p, \ 1 \le i \le n.$$

In the Lie algebra case of the multiplicative group, that is

$$H_1 = k[X_1, \dots, X_n] / (X_1^p, \dots, X_n^p),$$
(7)

coactions are derivations $D_1, \ldots, D_n \in Der(A)$ with $D_i D_j = D_j D_i, D_i^p = D_i$ and

$$D_{\alpha} = \frac{\prod_{j_{1}=0}^{\alpha_{1}-1} (D_{1}-j_{1})}{\alpha_{1}!} \frac{\prod_{j_{2}=0}^{\alpha_{2}-1} (D_{2}-j_{2})}{\alpha_{2}!} \dots \frac{\prod_{j_{n}=0}^{\alpha_{n}-1} (D_{n}-j_{n})}{\alpha_{n}!} = \frac{\prod_{t=1}^{n} \prod_{j_{t}=0}^{\alpha_{t}-1} (D_{t}-j_{t})}{\alpha!}$$

with $\alpha = (\alpha_1, \ldots, \alpha_n), 0 \le \alpha_i < p, 1 \le i \le n \text{ and } \alpha! = \alpha_1! \alpha_2! \ldots \alpha_n!$ (see [1], Theorem 3.3).

Theorem 2.2 Let H_c , $c \in \{0, 1\}$, be the Hopf algebra in the Lie cases, defined as before and A a right H_c comodule algebra with structure map $\delta : A \longrightarrow A \otimes H_c$. Let $R = A^{coH_c}$. Assume, for c = 1, A is a commutative
local algebra with maximal ideal m and R + m = A.

- (a) The following are equivalent:
 - (i) $R \subset A$ is a faithfully flat H_c -Galois extension.
 - (ii) There are $y_1, \ldots, y_n \in A$ with $\delta(y_i) = y_i \otimes 1 + (1+y_i) \otimes x_i$, for all $1 \le i \le n$
- (b) Suppose (ii) holds. Then

$$R \otimes H_1 \longrightarrow A, r \otimes x^{\alpha} \mapsto ry^{\alpha}, r \in R, \alpha \in \mathbb{A}, y^{\alpha} = y_1^{\alpha_1} \cdots y_n^{\alpha_n}, \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{A}$$

is a left R-linear and right H_c -colinear isomorphism.

In particular, the elements y^{α} , $\alpha \in \mathbb{A}$, form an *R*-basis of *A* as a left *R*-module.

Proof For c = 0, see [6], Theorem 3.1.

For c = 1, (a) is proved in [1], Proposition 4.2. To prove (b) we observe that the coradical C of H_1 is the k-subalgebra of H_1 :

$$C = k \oplus kx_1 \oplus \dots \oplus kx_n, \qquad x_i = X_i + (X_1^p, \dots, X_n^p).$$

For this, it is sufficient to prove for i = 1 that $C = k \oplus kx$, $H_1 = k[X]/(X^p) = k[x]$.

$$\Delta(1+x) = \Delta(1) + \Delta(x) = 1 \otimes 1 + 1 \otimes x + x \otimes 1 = (1+x) \otimes (1+x) \in C \otimes C.$$

Moreover, the vector subspaces of H_1 , k and kx, are the only simple coalgebras of H_1 . Hence the assertion.

Suppose (ii) of (a) holds. Then we define a k-linear map $\gamma : H_1 \to A$ by $\gamma : x^{\alpha} \mapsto ry^{\alpha}$ for all $\alpha \in \mathbb{A}$. Since Δ and δ are algebra maps and, for all i,

$$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i + x_i \otimes x_i, \qquad \delta(y_i) = y_i \otimes 1 + (1 + y_i) \otimes x_i,$$

 γ is right H_1 -colinear. If we prove that the map γ is convolution invertible, the H_1 -extension $R \subset A$ is H_1 -cleft, hence H_1 -Galois and

$$R \otimes H_1 \to A, \quad r \otimes x^{\alpha} \mapsto ry^{\alpha}, \quad r \in R, \alpha \in \mathbb{A}$$

is bijective ([9], 8.2.4, 7.2.3). To prove that $\gamma \in \text{Hom}(A, A)$ is invertible with respect to the convolution *, it is sufficient to prove that $\gamma_{/_C}$ is invertible as an element of Hom(C, A). For $f \in \text{Hom}(C, A)$, i = 1, ..., n, it results in

$$\begin{aligned} f * \gamma(1+x_i) &= m(f \otimes \gamma)(\Delta(1+x_i)) = m(f \otimes \delta(1 \otimes x_i + x_i \otimes 1 + x_i \otimes x_i)) \\ &= m(f(1) \otimes \gamma(x_i) + f(x_i) \otimes \delta(1) + f(x_i) \otimes \delta(x_i)) = 1_A y_i + f(x_i) + f(x_i) y_i \\ &= y_i + f(x_i)(1+y_i) \end{aligned}$$

and

$$u\varepsilon(1+x_i) = u(\varepsilon(1) + \varepsilon(x_i)) = u(1) = 1_A,$$

with $m: H_1 \otimes H_1 \longrightarrow H_1$ and $u: k \to H_1$ being the multiplication and the unit maps of H_1 , respectively. If we put $f(x_i) = \frac{1-y_i}{1+y_i}$, we have $y_i + f(x_i)(1+y_i) = 1$, γ is left invertible and its inverse map is f. Hence the conclusion follows.

Remark 2.3 The result contained in Theorem 2.2, (b) can be deduced from (ii), under the hypotheses that the elements $1 + y_i$, 1 < i < n, are invertible, A not necessarily local.

In the following, for c = 1, we will suppose that A is commutative, local and A = R + m, where R is the coinvariant subring of A with respect to the coaction δ and m is the maximal ideal of A.

Corollary 2.4 Let H_c be the Hopf Lie algebra of the group H_c , A an algebra and $\delta : A \longrightarrow A \otimes H_c$ a coaction. Put D_1, \ldots, D_n the derivations defined by (1) and $R := A^{coH_c}$. The following are equivalent:

- (1) $R \subset A$ is a faithfully flat H_c -Galois extension.
- (2) There are $y_1, \ldots, y_n \in A$ with $D_i(y_j) = \delta_{ij}(1 + cy_i)$, for all $1 \le i, j \le n$.

(3) If A is local there are $y_1, \ldots, y_n \in A$ such that for all $1 \le m \le n$, the $m \times m$ matrix $(D_i(y_j))_{1 \le i,j \le m}$ over A is invertible.

Proof For c = 0 the result is in [6], Corollary 3.3 and Theorem 4.1.

For c = 1, (1) \iff (2) by Theorem 1.8(a), (1) \iff (3) by Theorem 4.1 in [6].

Recall that an *H*-Galois extension $R \subset A$ is faithfully flat if *A* is faithfully flat over *R* as a left (or equivalently right) module over *R*. Recently Schauenburg and Schneider ([9], Theorem 4.5.1) have proved a theorem which allows one to reduce questions about faithfully flat Hopf Galois extensions for *H* to the case of Hopf subalgebras and quotient algebras of *H*. We use it to prove the following:

Theorem 2.5 Let A be a k-algebra, k a field of characteristic p > 0 and let $\{D_1, \ldots, D_n\} \subset Der_k(A)$ such that $D_i D_j = D_j D_i$, $D_i^p = cD_i$, $c \in \{0, 1\}$, for all $i, j, 1 \leq i, j \leq n$. Suppose that

- 1) There exist $z_1, ..., z_{n-1} \in A$ such that $D_i(z_j) = \delta_{ij}(1 + cz_i), \ 1 \le i, j \le n-1$.
- 2) There exists $y \in A$ such that $D_n(y) = 1 + cy$.

Then $R := A^{coH_c} \subset A$ is a faithfully flat H_c -Galois extension and, consequently, there are $y_1, \ldots, y_n \in A$ with $D_i(y_j) = \delta_{ij}(1 + cy_i)$ for all $1 \le i, j \le n$.

Proof The set of derivations comes from a comodule structure of A on H_c , $H = k[x_1, \ldots, x_n]$, $x_i^p = 0$, given by $\delta : A \longrightarrow A \otimes H_c$,

$$\delta(a) = a \otimes 1 + \sum_{1 \le i \le n} D_i(a) \otimes x_i + \sum_{\substack{\alpha \in \mathbb{A} \\ |\alpha| \ge 2}} D_\alpha(a) \otimes x^{\alpha}.$$
(8)

 $\alpha \in \mathbb{N}^n, \ x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}. \text{ Let } R = A^{\operatorname{co} H_c} \text{ be the coinvariant subring of } A \text{ with respect to } \delta \text{ and let } \overline{H_c} = k[x_n], \\ x_n^p = 0, \ B = A^{\operatorname{co} \overline{H_c}} \text{ the coinvariant subring of } A \text{ with respect to } \overline{\delta} : A \longrightarrow A \otimes \overline{H_c}, \ \overline{H_c} = H_c/K^+H_c, \\ K = k[x_1, \dots, x_{n-1}], \ x_i^p = 0, \ i = 1, \dots, n-1, \ K^+ = (x_1, \dots, x_{n-1}). \text{ Consider the extension } R \subset B \subset A.$

 $B \subset A$ is \overline{H} -Galois extension (Corollary 2.4). By hypothesis 2) and by Corollary 2.4, $R \subset B$ is a K-Galois extension. By Theorem 4.5.1 [9], $R \subset A$ is a faithfully flat H_c -Galois extension and, by Corollary 2.4, there exist $y_1, \ldots, y_n \in A$ with $D_i(y_j) = \delta_{ij}(1+cy_i)$ for all $1 \leq i, j \leq n$. By 2) the assertion follows. \Box

3. A constructive theorem

We will describe, in the additive case, the special elements y_1, \ldots, y_n that appear in Theorem 2.5 and satisfy a strong condition on the derivability. Following the same direction of research contained in the papers by Matsumura, Restuccia and Utano [5], [8], where the elements are computed, we obtain the result contained in [8] without the hypotheses that A is local, regular and k a separably closed field, but requiring that the last derivation evaluates to one on an element $t \in U(A)$.

Theorem 3.1 Let A be a commutative k-algebra, k a field of characteristic p > 0 and let $\{D_1, \ldots, D_n\} \subset Der_k(A)$ such that $D_iD_j = D_jD_i$, $D_i^p = 0$ for all $i, j, 1 \leq i, j \leq n$. Suppose that

- 1) There exist $z_1, \ldots, z_{n-1} \in A$ such that $D_i(z_j) = \delta_{ij}, \ 1 \le i, j \le n-1$.
- 2) There exists $y \in A$ such that $D_n(y) = 1$.

Then there exists $t \in A$ such that $D_n(t) = 1$ and $D_i(t) = 0$, for all i = 1, ..., n - 1.

Proof The set of derivations comes from a comodule structure of A on H, $H = k[x_1, \ldots, x_n]$, $x_i^p = 0$, x_i primitive, given by $\delta : A \longrightarrow A \otimes H$,

$$\delta(a) = a \otimes 1 + \sum_{\substack{1 \le i \le n}} D_i(a) \otimes x_i + \sum_{\substack{\alpha \in \mathbb{A} \\ |\alpha| \ge 2}} D_\alpha(a) \otimes x^{\alpha}.$$
(9)

 $\alpha \in \mathbb{N}^n, \ x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$

Let $R = A^{\operatorname{co} H}$ be the coinvariant subring of A with respect to δ and let $\overline{H} = k[x_n]$, $x_n^p = 0$, $B = A^{\operatorname{co} \overline{H}}$ the coinvariant subring of A with respect to $\overline{\delta} : A \longrightarrow A \otimes \overline{H}$, $\overline{H} = H/K^+H$, $K = k[x_1, \ldots, x_{n-1}]$, $x_i^p = 0$, $i = 1, \ldots, n-1$. Consider the extensions $R \subset B \subset A$. By 2), $B \subset A$ is \overline{H} -Galois and $1, y, y^2, \ldots, y^{p-1}$ is a basis of A on $B = A^{D_n}$. By 1), $R \subset B$ is K-Galois and the monomials $z_1^{j_1} \cdots z_{n-1}^{j_{n-1}}$, $1 \leq j_i \leq p-1$, $i = 1, \ldots, n-1$, are a basis of B on R. We want to find $t \in A$ such that $D_n(t) = 1$ and $D_i(t) = 0$ for all $i = 1, \ldots, n-1$. Put $t = \sum_{i=0}^{p-1} b_i y^i$. Then $D_n(t) = 1 = \sum_{i=0}^{p-1} b_i i y^{i-1}$ implies $b_1 = 1$ and $b_i = 0$, for all i > 1. We can rewrite $t = b_0 + y$ as t = y - b, $b \in B$. Then we need an element $b \in B$ such that $D_i(y) = D_i(b)$, $i = 1, \ldots, n-1$. Moreover for $i = 1, \ldots, n-1$, $D_i(y) \in B$, since $D_n(D_i(y)) = D_i(D_n(y)) = D_i(1) = 0$, for all $i = 1, \ldots, n-1$. Then we can write:

$$D_j(y) = \sum_{0 \le i_j \le p-1} s_{j,i_1,\dots,i_{n-1}} z_1^{i_1} \dots z_{n-1}^{i_{n-1}}, \quad j = 1,\dots,n-1, s_{j,i_1,\dots,i_{n-1}} \in R.$$

Since $D_j^p = 0$, for all $j = 1, \ldots, n-1$, we have:

$$\begin{cases} D_1^{p-1}(D_1(y)) &= 0 &= \sum_{0 \le i_j \le p-1} s_{1,i_1,\dots,i_{n-1}} D_1^{p-1}\left(z_1^{i_1}\right) \dots z_{n-1}^{i_{n-1}}, \\ \dots & \dots & \dots \\ D_{n-1}^{p-1}(D_{n-1}(y)) &= 0 &= \sum_{0 \le i_j \le p-1} s_{n-1,i_1,\dots,i_{n-1}} z_1^{i_1} \dots D_{n-1}^{p-1}\left(z_{n-1}^{i_{n-1}}\right). \end{cases}$$

Hence we get the relations

$$\begin{cases} 0 = \sum_{\substack{0 \le i_j \le p-1 \\ j \ne 1}} s_{1,p-1,i_2,\dots,i_{n-1}}(p-1)! z_2^{i_2} \dots z_{n-1}^{i_{n-1}}, \\ \dots & \dots \\ 0 = \sum_{\substack{0 \le i_j \le p-1 \\ j \ne n-1}} s_{n-1,i_1,\dots,p-1}(p-1)! z_1^{i_1} \dots z_{n-2}^{i_{n-2}}, \end{cases}$$

and

$$\begin{cases} s_{1,p-1,i_2,\dots,i_{n-1}} = 0 & 0 \le i_2,\dots,i_{n-1} \le p-1 \\ \dots & \dots & \dots \\ s_{n-1,i_1,\dots,i_{n-2},p-1} = 0 & 0 \le i_1,\dots,i_{n-2} \le p-1. \end{cases}$$

Writing

$$b = \sum_{0 \le j_i \le p-1} t_{j_1, \dots, j_{n-1}} z_1^{j_1} \dots z_{n-1}^{j_{n-1}},$$

b is uniquely determined by coefficients $t_{j_1,\dots,j_{n-1}}$, $0 \le j_i \le p-1$. By derivation, we obtain

From $D_i(y) = D_i(b)$, for $i = 1, \ldots, n-1$, it follows

Hence we get the relations

$$\begin{cases} t_{j_1+1,j_2,\dots,j_{n-1}}(j_1+1) &= s_{1,j_1,\dots,j_{n-1}} \ 0 \le j_1 \le p-2, \ 0 \le j_i \le p-1, \ i \ne 1, \\ \dots & \dots & \dots \\ t_{j_1,j_2,\dots,j_{n-1}+1}(j_{n-1}+1) &= s_{n-1,j_1,\dots,j_{n-1}} \ 0 \le j_{n-1} \le p-2, \ 0 \le j_i \le p-1, \ i \ne n-1 \end{cases}$$
(10)

From the conditions $D_k D_\ell = D_\ell D_k$ for $1 \le \ell < k \le n-1$ we obtain the compatibility relations

$$j_k s_{\ell, j_1, j_2, \dots, j_\ell, \dots, j_k, \dots, j_{n-1}} = (j_\ell + 1) s_{k, j_1, j_2, \dots, j_\ell + 1, \dots, j_k - 1, \dots, j_{n-1}}$$
(11)

with $0 \le j_{\ell}, \le p-2$, $1 \le j_k \le p-1, 0 \le j_i \le p-1, i \ne \ell, k$, $1 \le \ell < k \le n-1$. The first two relations of (10) give, for $\ell = 1, k = 2$

$$t_{j_1+1,j_2,\dots,j_{n-1}}(j_1+1) = s_{1,j_1,\dots,j_{n-1}} \qquad 0 \le j_i \le p-1, i \ne 1, 0 \le j_1 \le p-2, \tag{12}$$

$$t_{j_1,j_2+1,\dots,j_{n-1}}(j_2+1) = s_{2,j_1,\dots,j_{n-1}} \qquad 0 \le j_i \le p-1, i \ne 2, 0 \le j_2 \le p-2.$$
(13)

We rewrite the relations (12) and (13)

$$\begin{split} t_{j_1,j_2,\dots,j_{n-1}} j_1 &= s_{1,j_1-1,j_2,\dots,j_{n-1}} & 0 \leq j_i \leq p-1, i \neq 1, 1 \leq j_1 \leq p-2, \\ t_{j_1,j_2,\dots,j_{n-1}} j_2 &= s_{2,j_1,j_2-1,\dots,j_{n-1}}, 0 \leq j_i \leq p-1, i \neq 2, 1 \leq j_2 \leq p-2, \end{split}$$

obtaining

$$j_1 j_2 t_{j_1, j_2, \dots, j_{n-1}} = j_2 s_{1, j_1 - 1, j_2, \dots, j_{n-1}} = j_1 s_{2, j_1, j_2 - 1, \dots, j_{n-1}}$$

Likewise, we can deduce

$$j_1 \dots j_{n-1} t_{j_1, j_2, \dots, j_{n-1}} = j_2 \dots j_{n-1} s_{1, j_1 - 1, j_2, \dots, j_{n-1}} = j_1 j_3 \dots j_{n-1} s_{2, j_1, j_2 - 1, \dots, j_{n-1}} = j_1 j_2 \dots j_{n-1} s_{n-1} s_{n-$$

 $\dots = j_1 j_2 \dots j_{n-2} s_{n-1, j_1, j_2, \dots, j_{n-1}+1}, \text{ for } 0 \le j_i \le p-1.$

Hence, the elements $t_{j_1,j_2,\ldots,j_{n-1}}$ are determined and, as a consequence, the element b is obtained.

Corollary 3.2 Let A be a k-algebra, k a field of characteristic p > 0 and let $\{D_1, \ldots, D_n\} \subset Der_k(A)$ such that $D_i D_j = D_j D_i$, $D_i^p = 0$ for all $i, j, 1 \le i, j \le n$.

Suppose that

- 1) There exist $z_1, \ldots, z_{n-1} \in A$ such that $D_i(z_j) = \delta_{ij}, 1 \leq i, j \leq n-1$.
- 2) There exists $y \in A$ such that $D_n(y) = 1$.

Then there exist $z_1, \ldots, z_{n-1}, z_n$ such that $D_i(z_j) = \delta_{ij}$.

Proof Follows from Theorem 3.1, with $z_n = t$.

Corollary 3.3 Let A be a k-algebra, k a field of characteristic p > 0 and let $\{D_1, \ldots, D_n\} \subset Der_k(A)$ such that $D_i D_j = D_j D_i$, $D_i^p = 0$ for all $i, j, 1 \le i, j \le n$.

 $Suppose \ that:$

- 1) There exist $z_1, ..., z_{n-1} \in A$ such that $D_i(z_j) = \delta_{ij}, \ 1 \le i, j \le n-1$.
- 2) There exists $y \in A$ such that $D_n(y) = 1$.

Then the set $\{z_1, \ldots, z_{n-1}\}$ of *p*-independent elements of *A* on the subring of constants $A^{\{D_1, \ldots, D_n\}}$ can be completed to a *p*-basis *B* of *n* elements of *A* on $A^{\{D_1, \ldots, D_n\}}$ and $A = A^{\{D_1, \ldots, D_n\}}[B]$.

Proof It is easy to prove that $z_1, \ldots, z_{n-1}, z_n$, with z_n as in Corollary 3.2, verify $D_i(z_j) = \delta_{ij}, 1 \le i \le j \le n, D_i^p = 0, [D_i, D_j] = 0$ and form a *p*-basis of *A* on $A^{\{D_1, \ldots, D_n\}}$. The structure of *A* follows by definition of *p*-basis [3]).

Acknowledgements

The authors express their thanks to the referee for his/her careful reading and helpful suggestions.

References

- Crupi, M., Restuccia, G.: Coactions of Hopf algebras on algebras in positive characteristic, Boll. Unione Mat. Ital. 9 (III), 349–361 (2010).
- [2] Kreimer, H.F., Takeuchi, M.: Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J., 30, 675–692 (1981).
- [3] Matsumura, H.: Commutative algebra, Ben. Inc. New York, (1980).
- [4] Montgomery, S.: Hopf algebras and their actions on rings, CBMS Lecture Notes, Amer. Math. Soc., 82 (1993).
- [5] Restuccia, G., Matsumura, H.: Integrable derivations II, Atti Accademia Peloritana dei Pericolanti, Classe Sc. Fis., Mat. e Nat., LXX(2), 153-172 (1992).

RESTUCCIA and UTANO/Turk J Math

- [6] Restuccia, G., Schneider, H.J.: On actions of infinitesimal group schemes, J. Algebra, 261, 229-244 (2003).
- [7] Restuccia, G., Tyc, A.: Regularity of the ring of invariants under certain actions of finite abelian Hopf algebras in characteristic p.J. Algebra, 159 (2), 347–357 (1993).
- [8] Restuccia, G., Utano, R.: *n*-dimensional actions of finite abelian Hopf algebras in characteristic p > 0, Revue Roumaine, Tome XLIII, 9-10, 881–895 (1998).
- [9] Schauenburg, P., Schneider, H.J.: Galois Type Extensions and Hopf Algebras, Munchen, (2004).
- [10] Sweedler, M.E.: Hopf Algebras, Benjamin Inc, New York, (1969).
- [11] Waterhouse, W.C.: Introduction to Affine Group Schemes, Springer-Verlag New York Inc., (1979).