Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $427-436$
(c) TÜBİTAK
doi:10.3906/mat-1107-30

Structure theorems for rings under certain coactions of a Hopf algebra

Gaetana RESTUCCIA, Rosanna UTANO*
Department of Mathematics, University of Messina, Viale Ferdinando Stagno d'Alcontres, 3198166 Messina, Italy

Received: 28.07.2011 • Accepted: 17.02.2012 • \quad Published Online: $26.04 .2013 \quad \bullet \quad$ Printed: 27.05 .2013

Abstract

Let $\left\{D_{1}, \ldots, D_{n}\right\}$ be a system of derivations of a k-algebra A, k a field of characteristic $p>0$, defined by a coaction δ of the Hopf algebra $H_{c}=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p}, \ldots, X_{n}^{p}\right), c \in\{0,1\}$, the Lie Hopf algebra of the additive group and the multiplicative group on A, respectively. If there exist $x_{1}, \ldots, x_{n} \in A$, with the Jacobian matrix $\left(D_{i}\left(x_{j}\right)\right)$ invertible, $\left[D_{i}, D_{j}\right]=0, D_{i}^{p}=c D_{i}, c \in\{0,1\}, 1 \leq i, j \leq n$, we obtain elements $y_{1}, \ldots, y_{n} \in A$, such that $D_{i}\left(y_{j}\right)=\delta_{i j}\left(1+c y_{i}\right)$, using properties of H_{c}-Galois extensions. A concrete structure theorem for a commutative k-algebra A, as a free module on the subring A^{δ} of A consisting of the coinvariant elements with respect to δ, is proved in the additive case.

Key words: Hopf algebras, derivations, Jacobian criterion

1. Introduction

A series of articles in commutative algebra ([5], [6], [7], [8] have focused on the following problem:
$(\mathbf{P}):$ Let $\left\{D_{1}, \ldots, D_{n}\right\}$ be a system of derivations of a k-algebra A, k field of characteristic $p>0$, such that there exist $x_{1}, \ldots, x_{n} \in A$, with the Jacobian matrix $\left(D_{i}\left(x_{j}\right)\right)$ invertible, $\left[D_{i}, D_{j}\right]=0, D_{i}^{p}=c_{i}^{p-1} D_{i}$, $c_{i} \in k, 1 \leq i, j \leq n$. Do elements $y_{1}, \ldots, y_{n} \in A$ exist such that $D_{i}\left(y_{j}\right)=\left(1+c_{j} y_{j}\right) \delta_{i j}$?

If a positive answer is given, structure theorems for A follow in terms of the subring of constants of A with respect to the derivations D_{1}, \ldots, D_{n}, the main one of which is contained in [5]. We recall that a finite dimensional Hopf algebra over k is a k-algebra, with comultiplication $\Delta: H \longrightarrow H \otimes_{k} H$, antipode $S: H \longrightarrow H$ and counity $\varepsilon: H \longrightarrow k$ and a coaction of H on a k-algebra A (or an H-comodule algebra structure on A) is a morphism of algebras $\delta: A \longrightarrow A \otimes H$ such that $(1 \otimes \varepsilon) \delta \cong 1$ and $(1 \otimes \Delta) \delta=(\delta \otimes 1) \delta$. Given such a coaction, the subalgebra $\{a \in A: \delta(a)=a \otimes 1\}$ of A is called the algebra of coinvariant elements of δ and it is denoted by $A^{\delta}=A^{\mathrm{coH}}$.

In [6], surprisingly, for a local commutative algebra A, the authors prove that the jacobian condition (which states that there are elements $y_{1}, \ldots, y_{n} \in A$ such that for all $1 \leq m \leq n$ the $m \times m$ matrix $\left(D_{i}\left(y_{j}\right)\right)_{1 \leq i, j \leq m}$ over A is invertible) is equivalent to the property for A to be an H-Galois extension over the subring A^{δ} of the coinvariant elements of A with respect to a coaction $\delta: A \longrightarrow A \otimes H$, where H is a (co)commutative Hopf algebra with underlying algebra

$$
H=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p^{s_{1}}}, \ldots, X_{n}^{p^{s_{n}}}\right), n \geq 1, s_{1} \geq \cdots \geq s_{n} \geq 1
$$

[^0]For the Lie Hopf algebra H of the additive group, from the strong jacobian condition (which states that there are elements $y_{1}, \ldots, y_{n} \in A$ such that $\left.D_{i}\left(y_{j}\right)_{1 \leq i, j \leq n}=\delta_{i j}\right)$ an important structure theorem follows for A (not necessarily commutative), precisely A has an A^{δ}-basis as a left A^{δ}-module, consisting of the monomials $y_{1}^{\alpha_{1}} \ldots y_{n}^{\alpha_{n}}, \alpha_{i} \in \mathbb{N}, 0 \leq \alpha_{i}<p^{s_{i}}, 1 \leq i \leq n$, ([6], Theorem 3.1).

In this paper we consider Hopf algebras that "live" on the truncated algebra
$H_{\underline{s}}=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p^{s_{1}}}, \ldots, X_{n}^{p^{s_{n}}}\right) \underline{s}=\left(s_{1}, \ldots, s_{n}\right)$. According to ([11], 14.4), the assumption is not too restrictive because any finite-dimensional, commutative and local algebra over a perfect field has this structure. Using the notion just mentioned, we formulate a more general theorem where we postulate the existence of the elements $y_{1}, \ldots, y_{n} \in A$ with the strong jacobian condition in the Lie algebra case of the additive group for $H=H_{0}=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p}, \ldots, X_{n}^{p}\right)$, with $c_{i}=0$ in (P), $i=1, \ldots, n$. The same result is given in the Lie algebra case of the multiplicative group for $H=H_{1}$ with $c_{i}=1$ in (\mathbf{P}), $i=1, \ldots, n$, under the hypotheses A local and $A=A^{\delta}+m$, where m is the maximal ideal of A. More precisely, the main result of section 1 concerns a positive answer to the previous question that can be deduced from the following theorem.

Theorem Let H_{c} be the Hopf algebra defined as before, $c \in\{0,1\}$, A a right H_{c}-comodule algebra with structure map $\delta: A \longrightarrow A \otimes H_{c}$. If there are $y_{1}, \ldots, y_{n} \in A$ with $\delta\left(y_{i}\right)=y_{i} \otimes 1+\left(1+c y_{i}\right) \otimes x_{i}$, for all $1 \leq i \leq n$, then the map

$$
\gamma: A^{\delta} \otimes H_{c} \longrightarrow A, r \otimes x^{\alpha} \mapsto r y^{\alpha}, r \in A^{\delta}, \alpha \in \mathbb{A}, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, y^{\alpha}=y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{A}, \mathbb{A}$ the set of all multiindices $\alpha=\left(\alpha_{1} \ldots, \alpha_{n}\right)$, with $0 \leq \alpha_{i}<p, 1 \leq i \leq n$, is a left A^{δ}-linear and right H_{c}-colinear isomorphism. In particular, the elements $y^{\alpha}, \alpha \in \mathbb{A}$, form an A^{δ}-basis of A as a left A^{δ}-module.

By using the previous theorem we are able to prove Theorem 2.5, where the property of H_{c}-Galois extension permits, starting from the strong jacobian condition on $n-1$ elements y_{1}, \ldots, y_{n-1} of A, to have the strong jacobian condition on n elements of A, assuming there exists $y \in A$ such that $D_{n}(y)=1+c y$, $c \in\{0,1\}$. In section 2 we use Theorem 2.5 in the additive case and for a commutative k-algebra A, to give "explicitly" $y_{1}, \ldots, y_{n} \in A$, the special elements that verify the strong condition $D_{i}\left(y_{j}\right)=\delta_{i j}$ of derivability, $1 \leq i, j \leq n$. Some consequences are discussed in section 3 , where we consider the structure of A as an $A^{\delta}=A^{\left\{D_{1}, \ldots, D_{n}\right\}}$-algebra, $A^{\left\{D_{1}, \ldots, D_{n}\right\}}$ the constant subring of A with respect to the derivations D_{1}, \ldots, D_{n}.

2. Coactions of a Hopf algebra H and H-Galois type extensions

Throughout the paper, k is an arbitrary field of characteristic $p>0$. All vector spaces, algebras, coalgebras are over k and maps between them are at least k-linear. We refer to the books by Montgomery [4] and Sweedler [10] for general Hopf algebra theory and to the book by Schauenburg and Schneider [9] for Galois type extensions of Hopf algebras. In this section we recall some definitions and theorems and we establish a structure theorem for the Hopf algebra of the multiplicative group. For $H=H_{0}$ the result is known [6]. Let H be a Hopf algebra over the field k, with comultiplication $\Delta: H \longrightarrow H \otimes H$, counit $\varepsilon: H \longrightarrow k$, antipode $S: H \longrightarrow H$. The augmentation ideal of H will be denoted by $H^{+}=\operatorname{ker} \varepsilon$. If A is a right H-comodule algebra, with structure $\operatorname{map} \delta: A \longrightarrow A \otimes H$, then

$$
A^{\mathrm{coH}}=A^{\delta}:=\{a \in A \mid \delta(a)=a \otimes 1\}
$$

is the algebra of H-coinvariant elements of A. We are interested in algebra extensions $B \subseteq A$ in a Hopf algebraic context. Precisely, $A^{\mathrm{coH}} \subseteq A$. In fact, by definition, the sequence

$$
A^{\mathrm{coH}} \xrightarrow{\subseteq} A \underset{i_{1}}{\stackrel{\delta}{\longrightarrow}} A \otimes H
$$

is exact, that is $A^{\mathrm{coH}} \subseteq A$ is the difference kernel of the maps δ and $i_{1}: A \longrightarrow A \otimes H, a \mapsto a \otimes 1$.
Definition 2.1 [2] Let A be a right H-comodule algebra with structure map $\delta: A \longrightarrow A \otimes H$. Then the extension $A^{\mathrm{co} H} \subseteq A$ is a right H-Galois extension if the canonical map can : $A \otimes_{A^{\mathrm{co} H}} A \longrightarrow A \otimes_{k} H$ given by $a \otimes b \mapsto(a \otimes 1) \delta(b)=a b_{(0)} \otimes b_{(1)}$ is bijective.

In the following we will consider commutative Hopf algebras with underlying algebra:

$$
H=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p^{s_{1}}}, \ldots, X_{n}^{p^{s_{n}}}\right), n \geq 1, \quad s_{1} \geq \cdots \geq s_{n} \geq 1
$$

We denote by \mathbb{A} the set of all multiindices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $0 \leq \alpha_{i}<p^{s_{i}}, 1 \leq i \leq n$. For $\beta=$ $\left(\beta_{1}, \ldots, \beta_{n}\right), \gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{N}^{n}$ we define

$$
\beta+\gamma=\left(\beta_{1}+\gamma_{1}, \ldots, \beta_{n}+\gamma_{n}\right), \text { and }|\beta|=\beta_{1}+\cdots+\beta_{n}
$$

If we denote by x_{i} the residue class of X_{i} in H, for all i, then the elements $x^{\alpha}:=x_{i}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, \alpha \in \mathbb{A}$ form a k-basis of H. Let A be an algebra, $\delta: A \rightarrow A \otimes H$ be an algebra map and a right H-comodule algebra structure on A. We will write

$$
\delta(a)=\sum_{\alpha \in \mathbb{A}} D_{\alpha}(a) \otimes x^{\alpha}, \text { for all } a \in A
$$

Thus for all $\alpha \in \mathbb{A}$ and $a, b \in A$,

$$
D_{\alpha}(a b)=\sum_{\substack{\beta+\gamma=\alpha \\ \beta, \gamma \in \mathbb{A}}} D_{\beta}(a) D_{\gamma}(b), \text { and } D_{(0, \ldots, 0)}=\mathrm{id}
$$

For all i, let $\delta_{i}=\left(\delta_{i j}\right)_{1 \leq j \leq n} \in \mathbb{A}$, where $\delta_{i j}=1$, if $j=i$, and $\delta_{i j}=0$, otherwise. We put $D_{i}=D_{\delta_{i}}, 1 \leq i \leq n$. Thus the linear maps $D_{i}: A \rightarrow A$ are derivations of the algebra A, and for all $a \in A$ we have

$$
\begin{equation*}
\delta(a)=a \otimes 1+\sum_{1 \leq i \leq n} D_{i}(a) \otimes x_{i}+\sum_{\substack{\alpha \in \mathbb{A} \\|\alpha| \geq 2}} D_{\alpha}(a) \otimes x^{\alpha} \tag{1}
\end{equation*}
$$

From now we will consider the Hopf algebra H_{a} of the additive group, that is

$$
\begin{equation*}
H_{a}=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p^{s_{1}}}, \ldots, X_{n}^{p^{s_{n}}}\right) n \geq 1, \quad s_{1} \geq \cdots \geq s_{n} \geq 1 \tag{2}
\end{equation*}
$$

with comultiplication

$$
\begin{equation*}
\Delta\left(x_{i}\right)=x_{i} \otimes 1+1 \otimes x_{i}, \quad 1 \leq i \leq n \tag{3}
\end{equation*}
$$

RESTUCCIA and UTANO/Turk J Math

and the Hopf algebra of the multiplicative group, that is

$$
\begin{equation*}
H_{m}=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p^{s_{1}}}, \ldots, X_{n}^{p^{s_{n}}}\right) n \geq 1, \quad s_{1} \geq \cdots \geq s_{n} \geq 1 \tag{4}
\end{equation*}
$$

with comultiplication

$$
\begin{equation*}
\Delta\left(x_{i}\right)=x_{i} \otimes 1+1 \otimes x_{i}+x_{i} \otimes x_{i}, \quad 1 \leq i \leq n \tag{5}
\end{equation*}
$$

We call these algebras $H_{c}, c \in\{0,1\}$, respectively. In the Lie algebra case of the additive group, that is

$$
\begin{equation*}
H_{0}=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p}, \ldots, X_{n}^{p}\right), \tag{6}
\end{equation*}
$$

coactions have a special form. Precisely they are derivations $D_{1}, \ldots, D_{n} \in \operatorname{Der}(A)$ with $D_{i} D_{j}=D_{j} D_{i}, D_{i}^{p}=0$ and

$$
D_{\alpha}=\frac{D_{1}^{\alpha_{1}}}{\alpha_{1}!} \ldots \frac{D_{n}^{\alpha_{n}}}{\alpha_{n}!}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad 0 \leq \alpha_{i}<p, 1 \leq i \leq n
$$

In the Lie algebra case of the multiplicative group, that is

$$
\begin{equation*}
H_{1}=k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{p}, \ldots, X_{n}^{p}\right), \tag{7}
\end{equation*}
$$

coactions are derivations $D_{1}, \ldots, D_{n} \in \operatorname{Der}(A)$ with $D_{i} D_{j}=D_{j} D_{i}, D_{i}^{p}=D_{i}$ and

$$
\begin{gathered}
D_{\alpha}=\frac{\prod_{j_{1}=0}^{\alpha_{1}-1}\left(D_{1}-j_{1}\right)}{\alpha_{1}!} \frac{\prod_{j_{2}=0}^{\alpha_{2}-1}\left(D_{2}-j_{2}\right)}{\alpha_{2}!} \ldots \frac{\prod_{j_{n}=0}^{\alpha_{n}-1}\left(D_{n}-j_{n}\right)}{\alpha_{n}!}= \\
=\frac{\prod_{t=1}^{n} \prod_{j_{t}=0}^{\alpha_{t}-1}\left(D_{t}-j_{t}\right)}{\alpha!}
\end{gathered}
$$

with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), 0 \leq \alpha_{i}<p, 1 \leq i \leq n$ and $\alpha!=\alpha_{1}!\alpha_{2}!\ldots \alpha_{n}!$ (see [1], Theorem 3.3).

Theorem 2.2 Let $H_{c}, c \in\{0,1\}$, be the Hopf algebra in the Lie cases, defined as before and A a right H_{c} comodule algebra with structure map $\delta: A \longrightarrow A \otimes H_{c}$. Let $R=A^{c o H_{c}}$. Assume, for $c=1$, A is a commutative local algebra with maximal ideal m and $R+m=A$.
(a) The following are equivalent:
(i) $R \subset A$ is a faithfully flat H_{c}-Galois extension.
(ii) There are $y_{1}, \ldots, y_{n} \in A$ with $\delta\left(y_{i}\right)=y_{i} \otimes 1+\left(1+y_{i}\right) \otimes x_{i}$, for all $1 \leq i \leq n$
(b) Suppose (ii) holds. Then

$$
R \otimes H_{1} \longrightarrow A, r \otimes x^{\alpha} \mapsto r y^{\alpha}, r \in R, \alpha \in \mathbb{A}, y^{\alpha}=y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{A}
$$

is a left R-linear and right H_{c}-colinear isomorphism.
In particular, the elements $y^{\alpha}, \alpha \in \mathbb{A}$, form an R-basis of A as a left R-module.

Proof For $c=0$, see [6], Theorem 3.1.
For $c=1$, (a) is proved in [1], Proposition 4.2. To prove (b) we observe that the coradical C of H_{1} is the k-subalgebra of H_{1} :

$$
C=k \oplus k x_{1} \oplus \cdots \oplus k x_{n}, \quad x_{i}=X_{i}+\left(X_{1}^{p}, \ldots, X_{n}^{p}\right) .
$$

For this, it is sufficient to prove for $i=1$ that $C=k \oplus k x, H_{1}=k[X] /\left(X^{p}\right)=k[x]$.

$$
\Delta(1+x)=\Delta(1)+\Delta(x)=1 \otimes 1+1 \otimes x+x \otimes 1=(1+x) \otimes(1+x) \in C \otimes C
$$

Moreover, the vector subspaces of H_{1}, k and $k x$, are the only simple coalgebras of H_{1}. Hence the assertion.
Suppose (ii) of (a) holds. Then we define a k-linear map $\gamma: H_{1} \rightarrow A$ by $\gamma: x^{\alpha} \mapsto r y^{\alpha}$ for all $\alpha \in \mathbb{A}$. Since Δ and δ are algebra maps and, for all i,

$$
\Delta\left(x_{i}\right)=x_{i} \otimes 1+1 \otimes x_{i}+x_{i} \otimes x_{i}, \quad \delta\left(y_{i}\right)=y_{i} \otimes 1+\left(1+y_{i}\right) \otimes x_{i}
$$

γ is right H_{1}-colinear. If we prove that the map γ is convolution invertible, the H_{1}-extension $R \subset A$ is H_{1}-cleft, hence H_{1}-Galois and

$$
R \otimes H_{1} \rightarrow A, \quad r \otimes x^{\alpha} \mapsto r y^{\alpha}, \quad r \in R, \alpha \in \mathbb{A}
$$

is bijective ([9], 8.2.4, 7.2.3). To prove that $\gamma \in \operatorname{Hom}(A, A)$ is invertible with respect to the convolution $*$, it is sufficient to prove that $\gamma_{/ c}$ is invertible as an element of $\operatorname{Hom}(C, A)$. For $f \in \operatorname{Hom}(C, A), i=1, \ldots, n$, it results in

$$
\begin{aligned}
f * \gamma\left(1+x_{i}\right) & =m(f \otimes \gamma)\left(\Delta\left(1+x_{i}\right)\right)=m\left(f \otimes \delta\left(1 \otimes x_{i}+x_{i} \otimes 1+x_{i} \otimes x_{i}\right)\right) \\
& =m\left(f(1) \otimes \gamma\left(x_{i}\right)+f\left(x_{i}\right) \otimes \delta(1)+f\left(x_{i}\right) \otimes \delta\left(x_{i}\right)\right)=1_{A} y_{i}+f\left(x_{i}\right)+f\left(x_{i}\right) y_{i} \\
& =y_{i}+f\left(x_{i}\right)\left(1+y_{i}\right)
\end{aligned}
$$

and

$$
u \varepsilon\left(1+x_{i}\right)=u\left(\varepsilon(1)+\varepsilon\left(x_{i}\right)\right)=u(1)=1_{A},
$$

with $m: H_{1} \otimes H_{1} \longrightarrow H_{1}$ and $u: k \rightarrow H_{1}$ being the multiplication and the unit maps of H_{1}, respectively. If we put $f\left(x_{i}\right)=\frac{1-y_{i}}{1+y_{i}}$, we have $y_{i}+f\left(x_{i}\right)\left(1+y_{i}\right)=1, \gamma$ is left invertible and its inverse map is f. Hence the conclusion follows.

Remark 2.3 The result contained in Theorem 2.2, (b) can be deduced from (ii), under the hypotheses that the elements $1+y_{i}, 1<i<n$, are invertible, A not necessarily local.

In the following, for $c=1$, we will suppose that A is commutative, local and $A=R+m$, where R is the coinvariant subring of A with respect to the coaction δ and m is the maximal ideal of A.

Corollary 2.4 Let H_{c} be the Hopf Lie algebra of the group H_{c}, A an algebra and $\delta: A \longrightarrow A \otimes H_{c}$ a coaction. Put D_{1}, \ldots, D_{n} the derivations defined by (1) and $R:=A^{c o H_{c}}$. The following are equivalent:
(1) $R \subset A$ is a faithfully flat H_{c}-Galois extension.
(2) There are $y_{1}, \ldots, y_{n} \in A$ with $D_{i}\left(y_{j}\right)=\delta_{i j}\left(1+c y_{i}\right)$, for all $1 \leq i, j \leq n$.
(3) If A is local there are $y_{1}, \ldots, y_{n} \in A$ such that for all $1 \leq m \leq n$, the $m \times m$ matrix $\left(D_{i}\left(y_{j}\right)\right)_{1 \leq i, j \leq m}$ over A is invertible.
Proof For $c=0$ the result is in [6], Corollary 3.3 and Theorem 4.1.
For $c=1,(1) \Longleftrightarrow(2)$ by Theorem $1.8(\mathrm{a}),(1) \Longleftrightarrow(3)$ by Theorem 4.1 in [6].
Recall that an H-Galois extension $R \subset A$ is faithfully flat if A is faithfully flat over R as a left (or equivalently right) module over R. Recently Schauenburg and Schneider ([9], Theorem 4.5.1) have proved a theorem which allows one to reduce questions about faithfully flat Hopf Galois extensions for H to the case of Hopf subalgebras and quotient algebras of H. We use it to prove the following:

Theorem 2.5 Let A be a k-algebra, k a field of characteristic $p>0$ and let $\left\{D_{1}, \ldots, D_{n}\right\} \subset \operatorname{Der}_{k}(A)$ such that $D_{i} D_{j}=D_{j} D_{i}, D_{i}^{p}=c D_{i}, c \in\{0,1\}$, for all $i, j, 1 \leq i, j \leq n$. Suppose that

1) There exist $z_{1}, \ldots, z_{n-1} \in A$ such that $D_{i}\left(z_{j}\right)=\delta_{i j}\left(1+c z_{i}\right), 1 \leq i, j \leq n-1$.
2) There exists $y \in A$ such that $D_{n}(y)=1+c y$.

Then $R:=A^{c o H_{c}} \subset A$ is a faithfully flat H_{c}-Galois extension and, consequently, there are $y_{1}, \ldots, y_{n} \in A$ with $D_{i}\left(y_{j}\right)=\delta_{i j}\left(1+c y_{i}\right)$ for all $1 \leq i, j \leq n$.
Proof The set of derivations comes from a comodule structure of A on $H_{c}, H=k\left[x_{1}, \ldots, x_{n}\right], x_{i}^{p}=0$, given by $\delta: A \longrightarrow A \otimes H_{c}$,

$$
\begin{equation*}
\delta(a)=a \otimes 1+\sum_{1 \leq i \leq n} D_{i}(a) \otimes x_{i}+\sum_{\substack{\alpha \in \mathbb{A} \\|\alpha| \geq 2}} D_{\alpha}(a) \otimes x^{\alpha} \tag{8}
\end{equation*}
$$

$\alpha \in \mathbb{N}^{n}, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. Let $R=A^{\text {co } H_{c}}$ be the coinvariant subring of A with respect to δ and let $\overline{H_{c}}=k\left[x_{n}\right]$, $x_{n}^{p}=0, B=A^{\operatorname{co} \bar{H}_{c}}$ the coinvariant subring of A with respect to $\bar{\delta}: A \longrightarrow A \otimes \bar{H}_{c}, \bar{H}_{c}=H_{c} / K^{+} H_{c}$, $K=k\left[x_{1}, \ldots, x_{n-1}\right], x_{i}^{p}=0, i=1, \ldots, n-1, K^{+}=\left(x_{1}, \ldots, x_{n-1}\right)$. Consider the extension $R \subset B \subset A$.
$B \subset A$ is \bar{H}-Galois extension (Corollary 2.4). By hypothesis 2) and by Corollary $2.4, R \subset B$ is a K-Galois extension. By Theorem 4.5.1 [9], $R \subset A$ is a faithfully flat H_{c}-Galois extension and, by Corollary 2.4, there exist $y_{1}, \ldots, y_{n} \in A$ with $D_{i}\left(y_{j}\right)=\delta_{i j}\left(1+c y_{i}\right)$ for all $1 \leq i, j \leq n$. By 2$)$ the assertion follows.

3. A constructive theorem

We will describe, in the additive case, the special elements y_{1}, \ldots, y_{n} that appear in Theorem 2.5 and satisfy a strong condition on the derivability. Following the same direction of research contained in the papers by Matsumura, Restuccia and Utano [5], [8], where the elements are computed, we obtain the result contained in [8] without the hypotheses that A is local, regular and k a separably closed field, but requiring that the last derivation evaluates to one on an element $t \in U(A)$.

Theorem 3.1 Let A be a commutative k-algebra, k a field of characteristic $p>0$ and let $\left\{D_{1}, \ldots, D_{n}\right\} \subset$ $\operatorname{Der}_{k}(A)$ such that $D_{i} D_{j}=D_{j} D_{i}, D_{i}^{p}=0$ for all $i, j, 1 \leq i, j \leq n$. Suppose that

1) There exist $z_{1}, \ldots, z_{n-1} \in A$ such that $D_{i}\left(z_{j}\right)=\delta_{i j}, 1 \leq i, j \leq n-1$.
2) There exists $y \in A$ such that $D_{n}(y)=1$.

Then there exists $t \in A$ such that $D_{n}(t)=1$ and $D_{i}(t)=0$, for all $i=1, \ldots, n-1$.
Proof The set of derivations comes from a comodule structure of A on $H, H=k\left[x_{1}, \ldots, x_{n}\right], x_{i}^{p}=0, x_{i}$ primitive, given by $\delta: A \longrightarrow A \otimes H$,

$$
\begin{equation*}
\delta(a)=a \otimes 1+\sum_{1 \leq i \leq n} D_{i}(a) \otimes x_{i}+\sum_{\substack{\alpha \in \mathbb{A} \\|\alpha| \geq 2}} D_{\alpha}(a) \otimes x^{\alpha} \tag{9}
\end{equation*}
$$

$\alpha \in \mathbb{N}^{n}, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$.
Let $R=A^{\mathrm{coH}}$ be the coinvariant subring of A with respect to δ and let $\bar{H}=k\left[x_{n}\right], x_{n}^{p}=0, B=A^{\text {co } \bar{H}}$ the coinvariant subring of A with respect to $\bar{\delta}: A \longrightarrow A \otimes \bar{H}, \bar{H}=H / K^{+} H, K=k\left[x_{1}, \ldots, x_{n-1}\right], x_{i}^{p}=0$, $i=1, \ldots, n-1$. Consider the extensions $R \subset B \subset A$. By 2), $B \subset A$ is \bar{H}-Galois and $1, y, y^{2}, \ldots, y^{p-1}$ is a basis of A on $B=A^{D_{n}}$. By 1), $R \subset B$ is K-Galois and the monomials $z_{1}^{j_{1}} \cdots z_{n-1}^{j_{n-1}}, 1 \leq j_{i} \leq p-1$, $i=1, \ldots, n-1$, are a basis of B on R. We want to find $t \in A$ such that $D_{n}(t)=1$ and $D_{i}(t)=0$ for all $i=1, \ldots, n-1$. Put $t=\sum_{i=0}^{p-1} b_{i} y^{i}$. Then $D_{n}(t)=1=\sum_{i=0}^{p-1} b_{i} i y^{i-1}$ implies $b_{1}=1$ and $b_{i}=0$, for all $i>1$. We can rewrite $t=b_{0}+y$ as $t=y-b, b \in B$. Then we need an element $b \in B$ such that $D_{i}(y)=D_{i}(b)$, $i=1, \ldots, n-1$. Moreover for $i=1, \ldots, n-1, D_{i}(y) \in B$, since $D_{n}\left(D_{i}(y)\right)=D_{i}\left(D_{n}(y)\right)=D_{i}(1)=0$, for all $i=1, \ldots, n-1$. Then we can write:

$$
D_{j}(y)=\sum_{0 \leq i_{j} \leq p-1} s_{j, i_{1}, \ldots, i_{n-1}} z_{1}^{i_{1}} \ldots z_{n-1}^{i_{n-1}}, \quad j=1, \ldots, n-1, s_{j, i_{1}, \ldots, i_{n-1}} \in R .
$$

Since $D_{j}^{p}=0$, for all $j=1, \ldots, n-1$, we have:

$$
\left\{\begin{array}{c}
D_{1}^{p-1}\left(D_{1}(y)\right)=0=\sum_{0 \leq i_{j} \leq p-1} s_{1, i_{1}, \ldots, i_{n-1}} D_{1}^{p-1}\left(z_{1}^{i_{1}}\right) \ldots z_{n-1}^{i_{n-1}} \\
\ldots \\
\ldots \\
D_{n-1}^{p-1}\left(D_{n-1}(y)\right)=0
\end{array}\right] \sum_{0 \leq i_{j} \leq p-1} s_{n-1, i_{1}, \ldots, i_{n-1}} z_{1}^{i_{1}} \ldots D_{n-1}^{p-1}\left(z_{n-1}^{i_{n-1}}\right) . .
$$

Hence we get the relations

$$
\left\{\begin{array}{cccc}
0 & = & \sum_{\substack{0 \leq i_{j} \leq p-1 \\
j \neq 1}} s_{1, p-1, i_{2}, \ldots, i_{n-1}}(p-1)!z_{2}^{i_{2}} \ldots z_{n-1}^{i_{n-1}}, \\
\ldots & \ldots & \ldots \\
0 & = & \sum_{\substack{0 \leq i_{j} \leq p-1 \\
j \neq n-1}} s_{n-1, i_{1}, \ldots, p-1}(p-1)!z_{1}^{i_{1}} \ldots z_{n-2}^{i_{n-2}},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{cccc}
s_{1, p-1, i_{2}, \ldots, i_{n-1}} & = & 0 & 0 \leq i_{2}, \ldots, i_{n-1} \leq p-1 \\
\ldots & \ldots & \ldots \\
s_{n-1, i_{1}, \ldots, i_{n-2}, p-1} & = & 0 & 0 \leq i_{1}, \ldots, i_{n-2} \leq p-1
\end{array}\right.
$$

Writing

$$
b=\sum_{0 \leq j_{i} \leq p-1} t_{j_{1}, \ldots, j_{n-1}} z_{1}^{j_{1}} \ldots z_{n-1}^{j_{n-1}},
$$

b is uniquely determined by coefficients $t_{j_{1}, \ldots, j_{n-1}}, 0 \leq j_{i} \leq p-1$. By derivation, we obtain

$$
\left\{\begin{aligned}
D_{1}(b) & =\sum_{\substack{0 \leq j_{i} \leq p-1}} t_{j_{1}, \ldots, j_{n-1}} j_{1} z_{1}^{j_{1}-1} \ldots z_{n-1}^{j_{n-1}}, \\
& =\sum_{\substack{0 \leq j_{1} \leq p-2 \\
0 \leq j_{i} \leq p-1, i \neq 1}} t_{j_{1}+1, j_{2}, \ldots, j_{n-1}}\left(j_{1}+1\right) z_{1}^{j_{1}} \ldots z_{n-1}^{j_{n-1}} \\
\ldots & \cdots \\
D_{n-1}(b) & =\sum_{0 \leq j_{i} \leq p-1} t_{j_{1}, j_{2}, \ldots, j_{n-1}} j_{n-1} z_{1}^{j_{1}} \ldots z_{n-1}^{j_{n-1}-1} \\
& =\sum_{\substack{0 \leq j_{n-1} \leq p-2 \\
0 \leq j_{i} \leq p-1, i \neq n-1}} t_{j_{1}, \ldots, j_{n-1}+1}\left(j_{n-1}+1\right) z_{1}^{j_{1}} \ldots z_{n-1}^{j_{n-1}}
\end{aligned}\right.
$$

From $D_{i}(y)=D_{i}(b)$, for $i=1, \ldots, n-1$, it follows

$$
\left\{\begin{array}{ccc}
\sum_{\substack{0 \leq j_{1} \leq p-2 \\
0 \leq j_{i} \leq p-1, i \neq 1}} t_{j_{1}+1, j_{2}, \ldots, j_{n-1}}\left(j_{1}+1\right) z_{1}^{j_{1}} \ldots z_{n-1}^{j_{n-1}} & = & \sum_{\substack{0 \leq j_{1} \leq p-2 \\
0 \leq j_{i} \leq p-1, i \neq 1}}
\end{array} s_{1, j_{1}, \ldots, j_{n-1}} z_{1}^{j_{1}} \ldots z_{n-1}^{j_{n-1}},\right.
$$

Hence we get the relations

$$
\left\{\begin{array}{lll}
t_{j_{1}+1, j_{2}, \ldots, j_{n-1}}\left(j_{1}+1\right) & = & s_{1, j_{1}, \ldots, j_{n-1}} 0 \leq j_{1} \leq p-2,0 \leq j_{i} \leq p-1, i \neq 1 \tag{10}\\
\ldots & \cdots & \cdots \\
t_{j_{1}, j_{2}, \ldots, j_{n-1}+1}\left(j_{n-1}+1\right) & = & s_{n-1, j_{1}, \ldots, j_{n-1}} 0 \leq j_{n-1} \leq p-2,0 \leq j_{i} \leq p-1, i \neq n-1
\end{array}\right.
$$

From the conditions $D_{k} D_{\ell}=D_{\ell} D_{k}$ for $1 \leq \ell<k \leq n-1$ we obtain the compatibility relations

$$
\begin{equation*}
j_{k} s_{\ell, j_{1}, j_{2}, \ldots, j_{\ell}, \ldots, j_{k}, \ldots, j_{n-1}}=\left(j_{\ell}+1\right) s_{k, j_{1}, j_{2}, \ldots, j_{\ell}+1, \ldots, j_{k}-1, \ldots, j_{n-1}} \tag{11}
\end{equation*}
$$

with $0 \leq j_{\ell}, \leq p-2, \quad 1 \leq j_{k} \leq p-1,0 \leq j_{i} \leq p-1, i \neq \ell, k, \quad 1 \leq \ell<k \leq n-1$. The first two relations of (10) give, for $\ell=1, k=2$

$$
\begin{array}{ll}
t_{j_{1}+1, j_{2}, \ldots, j_{n-1}}\left(j_{1}+1\right)=s_{1, j_{1}, \ldots, j_{n-1}} & 0 \leq j_{i} \leq p-1, i \neq 1,0 \leq j_{1} \leq p-2 \\
t_{j_{1}, j_{2}+1, \ldots, j_{n-1}}\left(j_{2}+1\right)=s_{2, j_{1}, \ldots, j_{n-1}} & 0 \leq j_{i} \leq p-1, i \neq 2,0 \leq j_{2} \leq p-2 \tag{13}
\end{array}
$$

We rewrite the relations (12) and (13)

$$
\begin{gathered}
t_{j_{1}, j_{2}, \ldots, j_{n-1}} j_{1}=s_{1, j_{1}-1, j_{2}, \ldots, j_{n-1}} \quad 0 \leq j_{i} \leq p-1, i \neq 1,1 \leq j_{1} \leq p-2 \\
t_{j_{1}, j_{2}, \ldots, j_{n-1}} j_{2}=s_{2, j_{1}, j_{2}-1, \ldots, j_{n-1}}, 0 \leq j_{i} \leq p-1, i \neq 2,1 \leq j_{2} \leq p-2
\end{gathered}
$$

obtaining

$$
j_{1} j_{2} t_{j_{1}, j_{2}, \ldots, j_{n-1}}=j_{2} s_{1, j_{1}-1, j_{2}, \ldots j_{n-1}}=j_{1} s_{2, j_{1}, j_{2}-1, \ldots, j_{n-1}}
$$

Likewise, we can deduce

$$
j_{1} \ldots j_{n-1} t_{j_{1}, j_{2}, \ldots, j_{n-1}}=j_{2} \ldots j_{n-1} s_{1, j_{1}-1, j_{2}, \ldots, j_{n-1}}=j_{1} j_{3} \ldots j_{n-1} s_{2, j_{1}, j_{2}-1, \ldots, j_{n-1}}=
$$

$$
\cdots=j_{1} j_{2} \ldots j_{n-2} s_{n-1, j_{1}, j_{2}, \ldots, j_{n-1}+1}, \quad \text { for } \quad 0 \leq j_{i} \leq p-1
$$

Hence, the elements $t_{j_{1}, j_{2}, \ldots, j_{n-1}}$ are determined and, as a consequence, the element b is obtained.

Corollary 3.2 Let A be a k-algebra, k a field of characteristic $p>0$ and let $\left\{D_{1}, \ldots, D_{n}\right\} \subset \operatorname{Der}_{k}(A)$ such that $D_{i} D_{j}=D_{j} D_{i}, D_{i}^{p}=0$ for all $i, j, 1 \leq i, j \leq n$.

Suppose that

1) There exist $z_{1}, \ldots, z_{n-1} \in A$ such that $D_{i}\left(z_{j}\right)=\delta_{i j}, 1 \leq i, j \leq n-1$.
2) There exists $y \in A$ such that $D_{n}(y)=1$.

Then there exist $z_{1}, \ldots, z_{n-1}, z_{n}$ such that $D_{i}\left(z_{j}\right)=\delta_{i j}$.
Proof Follows from Theorem 3.1, with $z_{n}=t$.

Corollary 3.3 Let A be a k-algebra, k a field of characteristic $p>0$ and let $\left\{D_{1}, \ldots, D_{n}\right\} \subset \operatorname{Der}_{k}(A)$ such that $D_{i} D_{j}=D_{j} D_{i}, D_{i}^{p}=0$ for all $i, j, 1 \leq i, j \leq n$.

Suppose that:

1) There exist $z_{1}, \ldots, z_{n-1} \in A$ such that $D_{i}\left(z_{j}\right)=\delta_{i j}, 1 \leq i, j \leq n-1$.
2) There exists $y \in A$ such that $D_{n}(y)=1$.

Then the set $\left\{z_{1}, \ldots, z_{n-1}\right\}$ of p-independent elements of A on the subring of constants $A^{\left\{D_{1}, \ldots, D_{n}\right\}}$ can be completed to a p-basis B of n elements of A on $A^{\left\{D_{1}, \ldots, D_{n}\right\}}$ and $A=A^{\left\{D_{1}, \ldots, D_{n}\right\}}[B]$.
Proof It is easy to prove that $z_{1}, \ldots, z_{n-1}, z_{n}$, with z_{n} as in Corollary 3.2, verify $D_{i}\left(z_{j}\right)=\delta_{i j}, 1 \leq i \leq j \leq$ $n, D_{i}^{p}=0,\left[D_{i}, D_{j}\right]=0$ and form a p-basis of A on $A^{\left\{D_{1}, \ldots, D_{n}\right\}}$. The structure of A follows by definition of p-basis [3]).

Acknowledgements

The authors express their thanks to the referee for his/her careful reading and helpful suggestions.

References

[1] Crupi, M., Restuccia, G.: Coactions of Hopf algebras on algebras in positive characteristic, Boll. Unione Mat. Ital. 9 (III), 349-361 (2010).
[2] Kreimer, H.F., Takeuchi, M.: Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J., 30, 675-692 (1981).
[3] Matsumura, H.: Commutative algebra, Ben. Inc. New York, (1980).
[4] Montgomery, S.: Hopf algebras and their actions on rings, CBMS Lecture Notes, Amer. Math. Soc., 82 (1993).
[5] Restuccia, G., Matsumura, H.: Integrable derivations II, Atti Accademia Peloritana dei Pericolanti, Classe Sc. Fis., Mat. e Nat., $\operatorname{LXX}(2)$, 153-172 (1992).
[6] Restuccia, G., Schneider, H.J.: On actions of infinitesimal group schemes, J. Algebra, 261, 229-244 (2003).
[7] Restuccia, G., Tyc, A.: Regularity of the ring of invariants under certain actions of finite abelian Hopf algebras in characteristic p,J. Algebra, 159 (2), 347-357 (1993).
[8] Restuccia, G., Utano, R.: n-dimensional actions of finite abelian Hopf algebras in characteristic $p>0$, Revue Roumaine, Tome XLIII, 9-10, 881-895 (1998).
[9] Schauenburg, P., Schneider, H.J.: Galois Type Extensions and Hopf Algebras, Munchen, (2004).
[10] Sweedler, M.E.: Hopf Algebras, Benjamin Inc, New York, (1969).
[11] Waterhouse, W.C.: Introduction to Affine Group Schemes, Springer-Verlag New York Inc., (1979)

[^0]: *Correspondence: rosanna.utano@unime.it
 2010 AMS Mathematics Subject Classification: 16W25, 16 T 05.

