

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2013) 37: 437 – 444 © TÜBİTAK doi:10.3906/mat-1012-543

Growth and distortion theorems for multivalent Janowski close-to-convex harmonic functions with shear construction method

Yaşar POLATOĞLU, Hatice Esra ÖZKAN,* Emel YAVUZ DUMAN

Department of Mathematics and Computer Science, İstanbul Kültür University, İstanbul, Turkey

Received: 07.12.2010 • Accepted: 20.04.2012 • Published Online: 26.04.2013 • Printed: 27.05.2013

Abstract: In this paper we introduce the class of m-valent Janowski close to convex harmonic functions. Growth and distortion theorems are obtained for this class.

Our study is based on the harmonic shear methods for harmonic functions.

Key words: Multivalent harmonic functions, distortion theorem, growth theorem

1. Introduction

Let U be a simply connected domain in the complex plane. A harmonic function f has the representation $f=h(z)+\overline{g(z)}$, where h(z) and g(z) are analytic in U and are called the analytic and co-analytic part of f, respectively. Let $h(z)=z^m+a_{m+1}z^{m+1}+a_{m+2}z^{m+2}+\cdots$, and $g(z)=b_mz^m+b_{m+1}z^{m+1}+b_{m+2}z^{m+2}+\cdots$ be analytic functions in the open unit disc \mathbb{D} . The jacobian J_f of $f=h(z)+\overline{g(z)}$ is defined by $J_f=|f_z|^2-|f_{\overline{z}}|^2=|h'(z)|^2-|g'(z)|^2$. If $J_f(z)=|h'(z)|^2-|g'(z)|^2>0$, then $f=h(z)+\overline{g(z)}$ is called a sense-preserving multivalent harmonic function in \mathbb{D} . The class of all sense-preserving multivalent harmonic functions with $|b_m|<1$ is denoted by $\mathcal{S}_H(m)$ and the class of all sense-preserving multivalent harmonic functions with $b_m=0$ is denoted by $\mathcal{S}_H(m)$. For convenience, we will investigate sense-preserving harmonic functions, that is functions for which $J_f(z)>0$. If $J_f(z)<0$, then \overline{f} is sense-preserving. The second analytic dilatation of a harmonic function is given by w(z)=g'(z)/h'(z). We also note that if f is locally univalent and sense-preserving, then |w(z)|<1 for every $z\in\mathbb{D}$, and f is the solution of the differential equation $f_zw(z)=\overline{f_z}$ (see [3], [1] and [4]).

Let Ω be the family of functions $\varphi(z)$ which are regular and analytic in the open unit disc \mathbb{D} and satisfying the conditions $\varphi(0)=0$, $|\varphi(z)|<1$ for every $z\in\mathbb{D}$. For arbitrary fixed numbers $A,B,-1< A\leq 1,-1\leq B<1$, denote by $\mathcal{P}(A,B,m)$ the class of functions $p(z)=m+\sum_{n=1}^{\infty}b_nz^n$ analytic in \mathbb{D} such that $p(z)\in\mathcal{P}(A,B,m)$ if and only if

$$p(z) = m \frac{1 + A\varphi(z)}{1 + B\varphi(z)}, \varphi \in \Omega, z \in \mathbb{D}.$$
(1.1)

Moreover, let $\mathcal{S}(A,B,m)$ denote the class of functions $f(z)=z^m+\sum_{n=m+1}^\infty a_nz^n$ analytic in \mathbb{D} and satisfying the condition that $f(z)\in\mathcal{S}(A,B,m)$ if and only if $z\frac{f'(z)}{f(z)}=p(z)$ for some $p(z)\in\mathcal{P}(A,B,m)$ and all $z\in\mathbb{D}$.

2000 AMS Mathematics Subject Classification: 30C45, 30C55.

 $^{^*}$ Correspondence: e.ozkan@iku.edu.tr

Next, denote by $\mathcal{P}(m)$ (with m being a positive integer) the family of functions $p(z) = m + p_1 z + p_2 z^2 + \cdots$ which are regular in \mathbb{D} and satisfying the conditions p(0) = m, $\operatorname{Rep}(z) > 0$ for all $z \in \mathbb{D}$, and such that $p(z) \in \mathcal{P}(m)$ if and only if for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}([2], [6])$.

Let $\mathcal{C}(A,B,m)$ denote the class of functions $f(z)=z^m+\sum_{n=m+1}^\infty c_nz^n$ regular in \mathbb{D} and satisfies the condition

$$1 + z \frac{f''(z)}{f'(z)} = p(z), \tag{1.2}$$

for some $p(z) \in \mathcal{P}(A, B, m)$ and every $z \in \mathbb{D}$. Finally, a function $f(z) = z^m + \sum_{n=m+1}^{\infty} d_n z^n$ is in the class of $\mathcal{K}(A, B, m)$ if there is a function $\phi(z)$ in $\mathcal{C}(A, B, m)$ such that

$$z\frac{f'(z)}{f(z)} = p(z), \tag{1.3}$$

where $p(z) \in \mathcal{P}(A, B, m)$ and every $z \in \mathbb{D}$.

Let $F(z) = z + a_2 z^2 + \cdots$ and $G(z) = z + b_2 z^2 + \cdots$ be analytic functions in \mathbb{D} . If there exists a function $\phi(z) \in \Omega$ such that $F(z) = G(\varphi(z))$ for all $z \in \mathbb{D}$, then we say that F(z) subordinate to G(z) and we write $F(z) \prec G(z)$. We also note that if $F(z) \prec G(z)$ then $F(\mathbb{D}) \subset G(\mathbb{D})([5])$.

Denote by $\mathcal{S}_H \mathcal{K}(A, B, m)$ the class of all m-valent close to convex harmonic functions in the open unit disc \mathbb{D} .

2. Main results

Lemma 2.1 Let $\phi(z) = z^m + c_{m+1}z^{m+1} + c_{m+2}z^{m+2} + \cdots$ be analytic m-valent Janowski convex function in \mathbb{D} . Then the inequalities

$$\frac{r^{m-1}}{(1+Br)^{\frac{m(B-A)}{B}}} \le |\phi'(z)| \le \frac{r^{m-1}}{(1-Br)^{\frac{m(B-A)}{B}}}, \quad B \ne 0$$

$$r^{m-1}e^{-mAr} < |\phi'(z)| < r^{m-1}e^{mAr}, \qquad B = 0$$
(2.4)

are realized.

Proof Since $\phi(z) \in \mathcal{C}(A, B, m)$ and by using the subordination principle, we have

$$\left| \left(1 + z \frac{\phi''(z)}{\phi'(z)} \right) - m \frac{1 - ABr^2}{1 - B^2 r^2} \right| \le \frac{m(A - B)r}{1 - B^2 r^2}, \quad B \ne 0$$

$$\left| \left(1 + z \frac{\phi''(z)}{\phi'(z)} \right) - m \right| \le mAr, \quad B = 0$$

$$(2.5)$$

for every |z| = r < 1. Therefore we have

$$\begin{cases}
\frac{(m-1) - m(A-B)r - (mAB - B^{2})r^{2}}{1 - B^{2}r^{2}} \leq Re\left(z\frac{\phi''(z)}{\phi'(z)}\right) \\
\leq \frac{(m-1) + p(A-B)r - (mAB - B^{2})r^{2}}{1 - B^{2}r^{2}}, B \neq 0 \\
m - 1 - mAr \leq Re\left(z\frac{\phi''(z)}{\phi'(z)}\right) \leq m - 1 + mAr, \quad B = 0
\end{cases} (2.6)$$

for all |z| = r < 1. On the other hand, we know that

$$Re\left(z\frac{\phi''(z)}{\phi'(z)}\right) = r\frac{\partial}{\partial r}\log|\phi'(z)|.$$
 (2.7)

Thus, by using equality (2.7) in the inequalities (2.6) we obtain that

$$\begin{cases}
\frac{(m-1) - m(A-B)r - (mAB - B^{2})r^{2}}{r(1 - B^{2}r^{2})} \leq \frac{\partial}{\partial r} \log |\phi'(z)| \\
\leq \frac{(m-1) + m(A-B)r - (mAB - B^{2})r^{2}}{r(1 - B^{2}r^{2})}, B \neq 0 \\
\frac{m-1-mAr}{r} \leq \frac{\partial}{\partial r} \log |\phi'(z)| \leq \frac{m-1+mAr}{r}, B = 0
\end{cases} (2.8)$$

where |z| = r < 1. Integrating from 0 to r of the above inequalities we can get (2.4).

Lemma 2.2 Let w(z) be the second analytic dilatation of the class $S_H \mathcal{K}(A, B, m)$, i.e., $w(z) = \frac{g'(z)}{h'(z)}$. Then

$$\frac{|b_m| - r}{1 - |b_m|r} \le |w(z)| \le \frac{|b_m| + r}{1 + |b_m|r},\tag{2.9}$$

$$\frac{(1+|b_m|)(1-r)}{1-|b_m|r} \le 1+|w(z)| \le \frac{(1+|b_m|)(1+r)}{1+|b_m|r},\tag{2.10}$$

and

$$\frac{(1-|b_m|)(1-r)}{1+|b_m|r} \le 1-|w(z)| \le \frac{(1-|b_m|)(1+r)}{1-|b_m|r}.$$
(2.11)

Proof Since $w(z) = \frac{g'(z)}{h'(z)} = \frac{mb_m z^{m-1} + (m+1)b_{m+1} z^m + \cdots}{mz^{m-1} + (m+1)a_{m+1} z^m + \cdots}$ we have $w(0) = b_m$. Define the function

$$\phi(z) = \frac{w(z) - w(0)}{1 - \overline{w(0)}w(z)} = \frac{w(z) - b_m}{1 - \overline{b_m}w(z)}.$$

This function satisfies the conditions of Schwarz lemma. Therefore we have

$$w(z) = \frac{b_m + \phi(z)}{1 + \overline{b_m}\phi(z)},$$

which shows that the second dilatation w(z) is subordinate to $\left(\frac{z+b_m}{1+\overline{b_m}z}\right)$. On the other hand, the transformation $\left(\frac{z+b_m}{1+\overline{b_m}z}\right)$ maps |z|=r onto the disc with the center $C(r)=\left(\frac{\alpha_1(1-r^2)}{1-|b_m|^2r^2},\frac{\alpha_2(1-r^2)}{1-|b_m|^2r^2}\right)$, and radius $\rho(r)=\frac{(1-|b_m|^2)r}{1-|b_m|^2r^2}$. Using the subordination principle, we can write

$$\left| w(z) - \frac{b_m(1-r^2)}{1 - |b_m|^2 r^2} \right| \le \frac{(1-|b_m|^2)r}{1 - |b_m|^2 r^2}.$$
 (2.12)

After straightforward calculations from the last inequality, we get (2.9), (2.10) and (2.11).

Theorem 2.3 Let f(z) be a m-valent Janowski close to convex function and $\phi(z)$ be a m-valent convex function in \mathbb{D} . Thus we obtain those inequalities

$$\frac{m(1-Ar)}{1-Br} \le \left| \frac{f'(z)}{\phi'(z)} \right| \le \frac{m(1+Ar)}{1+Br}, \quad B \ne 0$$

$$m(1-Ar) \le \left| \frac{f'(z)}{\phi'(z)} \right| \le m(1+Ar), \quad B = 0,$$
(2.13)

where |z| = r < 1.

Proof Since $f(z) \in \mathcal{K}(A, B, m)$ and $\phi(z) \in \mathcal{C}(A, B, m)$ then we know that

$$\frac{f'(z)}{\phi'(z)} \prec m \frac{1 + Az}{1 + Bz},$$

from the last subordination we can write the inequalities

$$\left| \frac{f'(z)}{\phi'(z)} - \frac{m(1 - ABr^2)}{1 - B^2r^2} \right| \le \frac{m(A - B)r}{1 - B^2r^2}, \quad B \ne 0$$

$$\left| \frac{f'(z)}{\phi'(z)} - m \right| \le mAr, \quad B = 0.$$
(2.14)

By using the triangle inequality in the inequalities (2.14) we get (2.13).

Theorem 2.4 If f(z) is a m-valent Janowski close to convex function and $\phi(z)$ is a m-valent Janowski convex function in \mathbb{D} , then the following inequalities

$$\frac{m(1-Ar)r^{m-1}}{(1-Br)(1+Br)^{\frac{m(B-A)}{B}}} \le |f'(z)| \le \frac{m(1+Ar)r^{m-1}}{(1+Br)(1-Br)^{\frac{m(B-A)}{B}}}, \quad B \ne 0$$
(2.15)

$$mr^{m-1}e^{-mAr}(1-Ar) < |f'(z)| < mr^{m-1}e^{mAr}(1+Ar),$$
 $B=0$

are realized.

Proof Using lemma 2.1 in theorem 2.4, we obtain the result.

Theorem 2.5 Let $f = h(z) + \overline{g(z)}$ be an element of $S_HK(A, B, m)$. Then

$$\begin{cases}
\frac{m(1-Ar)r^{m-1}}{(1-Br)(1+Br)^{\frac{m(B-A)}{B}}} \cdot \frac{(1+|b_m|r)}{(1+|b_m|)(1+r)} \leq |f_z| \\
\leq \frac{m(1+Ar)r^{m-1}}{(1+Br)(1-Br)^{\frac{m(B-A)}{B}}} \cdot \frac{(1+|b_m|r)}{(1-|b_m|)(1-r)}, B \neq 0, \\
mr^{m-1}e^{-mAr}(1-Ar) \cdot \frac{(1+|b_m|r)}{(1+|b_m|)(1+r)} \leq |f_z| \leq mr^{m-1}e^{mAr}(1+Ar) \cdot \frac{(1+|b_m|r)}{(1-|b_m|)(1-r)}, B = 0,
\end{cases} (2.16)$$

and

$$\begin{cases}
\frac{m(1-Ar)r^{m-1}}{(1-Br)(1+Br)^{\frac{m(B-A)}{B}}} \cdot \frac{(|b_{m}|-r)(1+|b_{m}|r)}{(1-|b_{m}|r)(1+|b_{m}|)(1+r)} \leq |f_{\overline{z}}| \\
\leq \frac{m(1+Ar)r^{m-1}}{(1+Br)(1-Br)^{\frac{m(B-A)}{B}}} \cdot \frac{(|b_{m}|+r)}{(1-|b_{m}|)(1-r)}, \quad B \neq 0, \\
mr^{m-1}e^{-mAr}(1-Ar) \cdot \frac{(|b_{m}|-r)(1+|b_{m}|r)}{(1-|b_{m}|r)(1+|b_{m}|)(1+r)} \leq |f_{\overline{z}}| \leq mr^{m-1}e^{mAr}(1+Ar) \cdot \frac{(|b_{m}|+r)}{(1-|b_{m}|)(1-r)}, B = 0.
\end{cases}$$

$$C. 15 \quad \text{for the solution of the soluti$$

Proof If we take $\psi(z) = h(z) - g(z)$, then we have

$$h'(z) = \frac{\psi'(z)}{1 - w(z)}, \quad g'(z) = \frac{w(z)\psi'(z)}{1 - w(z)}, \quad |w(z)| < 1.$$

Therefore we have

$$\frac{|\psi'(z)|}{1+|w(z)|} \le |f_z| \le \frac{|\psi'(z)|}{1-|w(z)|},\tag{2.18}$$

$$\frac{|w(z)||\psi'(z)|}{1+|w(z)|} \le |\overline{f_{\overline{z}}}| \le \frac{|w(z)||\psi'(z)|}{1-|w(z)|}.$$
(2.19)

Using lemma 2.1 and lemma 2.2 in the inequalities (2.18) and (2.19) we get (2.16) and (2.17), respectively. Since

$$\phi(z) = \frac{w(z) - b_m}{1 - \overline{b_m}w(z)},$$

we have

$$h'(z) = f_z = \frac{\psi'(z)}{1 - w(z)},$$

and so

$$h(z) = \int_0^z \frac{\psi'(\xi)}{1 - w(\xi)} d\xi.$$

Also, since

$$g'(z) = \overline{f_{\overline{z}}} = \int_0^z \frac{\psi'(\xi)w(\xi)}{1 - w(\xi)} d\xi,$$

it follows that

$$g(z) = \int_0^z \frac{\psi'(\xi)w(\xi)}{1 - w(\xi)} d\xi.$$

(The solution h(z) and g(z) must be found under the conditions h(0) = g(0) = 0.) Thus

$$f(z) = h(z) + \overline{g(z)} = \int_0^z \frac{\psi'(\xi)}{1 - w(\xi)} d\xi + \overline{\int_0^z \frac{\psi'(\xi)w(\xi)}{1 - w(\xi)} d\xi} =$$

$$= \int_0^z \frac{\psi'(\xi)}{1 - w(\xi)} d\xi + \overline{\int_0^z \frac{\psi'(\xi)}{1 - w(\xi)} d\xi} - \int_0^z \psi'(\xi) d\xi = Re\left(\int_0^z \frac{2\psi'(\xi)}{1 - w(\xi)}\right) - \overline{\psi(z)}.$$

Corollary 2.6 If we choose the following values for theorem 2.5, we get the accompanying inequalities:

• A = 1, B = -1:

$$\frac{m(1-r)r^{m-1}}{(1+r)^2(1-r)^{2m}} \cdot \frac{(1+|b_m|r)}{(1+|b_m|)} \le |f_z| \le \frac{m(1+r)r^{m-1}}{(1-r)^2(1+r)^{2m}} \cdot \frac{(1+|b_m|r)}{(1-|b_m|)}$$

$$\frac{m(1-r)r^{m-1}}{(1+r)^2(1-r)^{2m}} \cdot \frac{(1+|b_m|r)(|b_m|-r)}{(1+|b_m|)(1-|b_m|r)} \le |f_{\overline{z}}| \le \frac{m(1+r)r^{m-1}}{(1-r)^2(1+r)^{2m}} \cdot \frac{(|b_m|+r)}{(1-|b_m|)} \cdot \frac{(|b_m|+r)}{(1-|b_m|)} \cdot \frac{(|b_m|+r)}{(1-|b_m|)} \cdot \frac{(|b_m|+r)}{(1-|b_m|)} \cdot \frac{(|b_m|+r)}{(1-|b_m|)} \cdot \frac{(|b_m|+r)}{(1-|b_m|)} \cdot \frac{(|b_m|+r)}{(1-|b_m|)} \cdot \frac{(|b_m|+r)}{(1-|b_m|+r)} \cdot \frac{(|b_m|+r)}{(1-|b_$$

• $A = 1 - 2\alpha, B = -1, 0 \le \alpha \le 1$:

$$\frac{m(1-r+2\alpha r)r^{m-1}}{(1+r)^2(1-r)^{2m(1-\alpha)}} \cdot \frac{(1+|b_m|r)}{(1+|b_m|)} \le |f_z| \le \frac{m(1+r-2\alpha r)r^{m-1}}{(1-r)^2(1+r)^{2m(1-\alpha)}} \cdot \frac{(1+|b_m|r)}{(1-|b_m|)}$$

$$\frac{m(1-r+2\alpha r)r^{m-1}}{(1+r)^2(1-r)^{2m(1-\alpha)}} \cdot \frac{(1+|b_m|r)(|b_m|-r)}{(1+|b_m|)(1-|b_m|r)} \le |f_{\overline{z}}| \le \frac{m(1+r-2\alpha r)r^{m-1}}{(1-r)^2(1+r)^{2m(1-\alpha)}} \cdot \frac{(|b_m|+r)}{(1-|b_m|)}$$

• $A = 1, B = \frac{1}{M} - 1, M > \frac{1}{2}$:

$$\begin{cases} \frac{m(1-r)r^{m-1}}{(1+r-\frac{r}{M})(1-r+\frac{r}{M})^{m\frac{1-2M}{1-M}}} \cdot \frac{(1+|b_m|r)}{(1+|b_m|)(1+r)} \leq |f_z| \\ \leq \frac{m(1+r)r^{m-1}}{(1-r+\frac{r}{M})(1+r-\frac{r}{M})^{m\frac{1-2M}{1-M}}} \cdot \frac{(1+|b_m|r)}{(1-|b_m|)(1-r)} \\ \frac{m(1-r)r^{m-1}}{(1+r-\frac{r}{M})(1-r+\frac{r}{M})^{m\frac{1-2M}{1-M}}} \cdot \frac{(1+|b_m|r)(|b_m|-r)}{(1+|b_m|)(1-|b_m|r)(1+r)} \leq |f_{\overline{z}}| \leq \frac{m(1+r)r^{m-1}}{(1-r+\frac{r}{M})(1+r-\frac{r}{M})^{m\frac{1-2M}{1-M}}} \cdot \frac{(|b_m|+r)}{(1-|b_m|)(1-r)} \end{cases}$$

• $A = \beta, B = -\beta, 0 < \beta \le 1$:

$$\begin{cases} \frac{mr^{m-1}(1+|b_m|r)}{(1+\beta r)(1-\beta r)^{2m-1}(1+|b_m|)(1+r)} \leq |f_z| \leq \frac{mr^{m-1}(1+|b_m|r)}{(1-\beta r)(1+\beta r)^{2m-1}(1-|b_m|)(1-r)} \\ \frac{mr^{m-1}(|b_m|-r)(1+|b_m|r)}{(1+\beta r)(1-\beta r)^{2m-1}(1-|b_m|r)(1+|b_m|)(1+r)} \leq |f_{\overline{z}}| \\ \leq \frac{mr^{m-1}(|b_m|+r)}{(1-\beta r)(1+\beta r)^{2m-1}(1-|b_m|)(1-r)} \end{cases}$$

Corollary 2.7 Let $f = h(z) + \overline{g(z)}$ be an element of $S_H \mathcal{K}(A, B, m)$. Then

$$\begin{cases}
\frac{m^{2}(1-Ar)^{2}r^{2(m-1)}}{(1-Br)^{2}(1+Br)^{\frac{2m(B-A)}{B}}} \frac{(1-|b_{m}|^{2})(1-r)^{2}(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1+|b_{m}|)^{2}(1+r)^{2}} \leq J_{f}(z), \\
\leq \frac{m^{2}(1+Ar)^{2}r^{2(m-1)}}{(1+Br)^{2}(1-Br)^{\frac{2m(B-A)}{B}}} \cdot \frac{(1-|b_{m}|^{2})(1+r)^{2}(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1-|b_{m}|)^{2}(1-r)^{2}}, B \neq 0, \\
m^{2}r^{2(m-1)}e^{-2mAr}(1-Ar)^{2} \frac{(1-|b_{m}|^{2})(1-r)^{2}(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1+|b_{m}|r)^{2}} \leq J_{f}(z), \\
\leq m^{2}r^{2(m-1)}e^{2mAr}(1+Ar)^{2} \frac{(1-|b_{m}|^{2})(1+r)^{2}(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1-|b_{m}|)^{2}(1-r)^{2}}, B = 0.
\end{cases} (2.20)$$

Proof Since $J_f(z) = |h'(z)|^2 - |g'(z)|^2 = |h'(z)|^2 (1 - |w(z)|^2)$, then using theorem 2.5 and lemma 2.2, we get (2.20).

Corollary 2.8 For the last results, if we take the following values, we get the accompanying inequalities:

• A = 1, B = -1:

$$\frac{m^{2}(1-r)^{4}r^{2(m-1)}}{(1+r)^{4}(1-r)^{4m}} \cdot \frac{(1-|b_{m}|^{2})(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1+|b_{m}|)^{2}} \leq J_{f}(z)$$

$$\leq \frac{m^{2}(1+r)^{2}r^{2(m-1)}}{(1-r)^{4}(1+r)^{4m}} \cdot \frac{(1-|b_{m}|^{2})(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1-|b_{m}|)^{2}}$$

• $A = 1 - 2\alpha, B = -1, 0 < \alpha < 1$:

$$\frac{m^{2}(1-r+2\alpha r)^{2}r^{2(m-1)}}{(1+r)^{4}(1-r)^{4m(1-\alpha)}} \cdot \frac{(1-|b_{m}|^{2})(1-r)^{2}(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1+|b_{m}|)^{2}} \leq J_{f}(z)$$

$$\leq \frac{m^{2}(1+r-2\alpha r)^{2}r^{2(m-1)}}{(1-r)^{4}(1+r)^{4m(1-\alpha)}} \cdot \frac{(1-|b_{m}|^{2})(1+r)^{2}(1+|b_{m}|r)^{2}}{(1-|b_{m}|^{2}r^{2})(1-|b_{m}|)^{2}}.$$

• $A = 1, B = \frac{1}{M} - 1, M > \frac{1}{2}$:

$$\frac{m^2(1-r)^4r^{2(m-1)}}{(1+r-\frac{r}{M})^2(1-r+\frac{r}{M})^{2m\frac{1-2M}{1-M}}} \cdot \frac{(1-|b_m|^2)(1+|b_m|r)^2}{(1-|b_m|^2r^2)(1+|b_m|)^2(1+r)^2} \le J_f(z)$$

$$\le \frac{m^2(1+r)^4r^{2(m-1)}}{(1-r+\frac{r}{M})^2(1+r-\frac{r}{M})^{2m\frac{1-2M}{1-M}}} \cdot \frac{(1-|b_m|^2)(1+|b_m|r)^2}{(1-|b_m|^2r^2)(1-|b_m|)^2(1-r)^2}.$$

 $\bullet \ \ A = \beta, B = -\beta :$

$$\frac{m^2 r^{2(m-1)} (1 - |b_m|^2) (1 - r)^2 (1 + |b_m|r)^2}{(1 + \beta r)^2 (1 - \beta r)^{4m-2} (1 - |b_m|^2 r^2) (1 + |b_m|)^2 (1 + r)^2} \le J_f(z)$$

$$\le \frac{m^2 r^{2(m-1)} (1 - |b_m|^2) (1 + r)^2 (1 + |b_m|r)^2}{(1 - \beta r)^2 (1 + \beta r)^{4m-2} (1 - |b_m|^2 r^2) (1 - |b_m|)^2 (1 - r)^2}$$

Corollary 2.9 If $f = h(z) + \overline{g(z)} \in S_H(A, B, m)$, then

$$\begin{cases}
m \int_{0}^{r} \rho^{m-1} \left[\frac{(1 - A\rho)(1 + |b_{m}|\rho)}{(1 - B\rho)(1 + B\rho)^{\frac{m(B-A)}{B}}} - \frac{(1 + A\rho)(|b_{m}| + \rho)}{(1 + B\rho)(1 - B\rho)^{\frac{m(B-A)}{B}}(1 - |b_{m}|)(1 - \rho)} \right] d\rho \leq \\
|f| \leq m \left(\frac{1 + |b_{m}|}{1 - |b_{m}|} \right) \int_{0}^{r} \rho^{m-1} \frac{(1 + A\rho)(1 + \rho)}{(1 + B\rho)(1 - B\rho)^{\frac{m(B-A)}{B}}(1 - \rho)} d\rho, B \neq 0, \\
m \int_{0}^{r} \rho^{m-1} \left[\frac{(1 - A\rho)(1 + |b_{m}|\rho)}{(1 + |b_{m}|)(1 + \rho)} - \frac{(1 + A\rho)(|b_{m}| + \rho)}{(1 - |b_{m}|)(1 - \rho)} \right] e^{-A\rho} d\rho \leq \\
|f| \leq m \left(\frac{1 + |b_{m}|}{1 - |b_{m}|} \right) \int_{0}^{r} \rho^{m-1} \frac{(1 + A\rho)(1 + \rho)}{(1 - \rho)} e^{A\rho} d\rho, B = 0.
\end{cases} (2.21)$$

Proof Since $(|f_z| - |f_{\overline{z}}|)|dz| \leq |df| \leq (|f_z| + |f_{\overline{z}}|)|dz|$, it follows that $(|h'(z)| - |g'(z)|)|dz| \leq |df| \leq (|h'(z)| + |g'(z)|)|dz|$, and using theorem 2.5 we can write the result.

References

- [1] Ahlfors, L.V.: Lectures on Quasiconformal Mappings, Van Nostrand-Reinhold, Princeton, New Jersey. 1966.
- [2] Aouf, M.K.: On a class of p-valent starlike functions of order α . Internat. J. Math. & Math. Sci. 10, 733-744 (1987).
- [3] Clunie, J. Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A.1 9, 3-25 (1984).
- [4] Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press New York 2004.
- [5] Goodman, A.W.: Univalent Functions. Tampa, Florida. Mariner Publishing Company Inc. 1983.
- [6] Janowski, W.: Some extremal problems for certain families of analytic functions I. Ann. Polinici Mathematici. XXVIII, 297-326 (1973).