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Abstract: Let R be a ring with unity. The nilpotent graph of R , denoted by ΓN (R) , is a graph with vertex set

ZN (R)∗ = {0 �= x ∈ R | xy ∈ N(R) for some 0 �= y ∈ R} ; and two distinct vertices x and y are adjacent if and

only if xy ∈ N(R) , where N(R) is the set of all nilpotent elements of R . Recently, it has been proved that if R is

a left Artinian ring, then diam(ΓN(R)) ≤ 3. In this paper, we present a new proof for the above result, where R is

a finite ring. We study the diameter and the girth of matrix algebras. We prove that if F is a field and n ≥ 3, then

diam(ΓN(Mn(F ))) = 2. Also, we determine diam(ΓN (M2(F ))) and classify all finite rings whose nilpotent graphs have

diameter at most 3. Finally, we determine the girth of the nilpotent graph of matrix algebras.
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1. Introduction

The study of algebraic structures using the properties of graphs has become an exciting research topic in the
last twenty years, leading to many fascinating results and questions. There are many papers on assigning a
graph to a ring, see for example [1-6] and [12]. Throughout this paper, all graphs are simple with no loops and

multiple edges. The zero-divisor graph of a commutative ring R , denoted by Γ(R), is a graph with vertex set

Z(R)∗ , the set of non-zero zero-divisors of R , and two distinct vertices x and y are adjacent if and only if

xy = 0. The zero-divisor graph has been studied extensively in recent years, see for example [1–5]. In [7], Chen
defined a graph structure on a ring R whose vertices are all the elements of R , and two distinct vertices x and
y are adjacent if and only if xy ∈ N(R), where N(R) denotes the set of all nilpotent elements of R .

Throughout, R is a ring with unity. The nilpotent graph of R was introduced in [10]. For every X ⊆ R ,

we denote X \ {0} by X∗ . The vertex set of ΓN(R) is ZN (R)∗ , where ZN (R) = {x ∈ R | xy ∈ N(R) for some

y ∈ R∗} , and two distinct vertices x and y in ZN(R)∗ are adjacent if and only if xy ∈ N(R), or equivalently,

yx ∈ N(R). It is easy to see that the usual zero-divisor graph Γ(R) is a subgraph of ΓN (R). Let G be a graph

with vertex set V (G). A path from x to y is a series of adjacent vertices x — x1 — x2 — · · · — xn — y .

For x, y ∈ V (G) with x �= y , d(x, y) denotes the length of a shortest path from x to y , if there is no such path,

we will make the convention d(x, y) = ∞ . The diameter of G is defined as diam(G) = sup{d(x, y)|x and y are

vertices of G} . For any x ∈ V (G), d(x) denotes the number of edges incident with x , called the degree of x . A
cycle is a path that begins and ends at the same vertex in which no edge is repeated and all vertices other than
the starting and ending vertex are distinct. An n-cycle is a cycle with n vertices, where n ≥ 3. We denote
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the complete graph with n vertices by Kn . The girth of G , denoted by gr(G), is the length of a shortest cycle

in G (gr(G) = ∞ if G contains no cycles). A bipartite graph is one whose vertex set can be partitioned into
two subsets X and Y so that each edge has one end in X and one end in Y . A complete bipartite graph is
a bipartite graph with two partitions X and Y in which every vertex in X is joined to every vertex in Y . A
star graph is a bipartite graph with part sizes 1 and n for some positive integer n .

For a ring R , we denote by Mn(R), Rn and I , the ring of all n × n matrices, the set of n× 1 matrices
over R and the identity matrix, respectively. Also, for any i and j , 1 ≤ i, j ≤ n , we use Eij to denote the

element of Mn(R) whose (i, j)-entry is 1 and other entries are 0.

We denote the Jacobson radical of R by J(R). A ring R is called semisimple if its Jacobson radical

is zero. By the Wedderburn-Artin Theorem [8, Theorem 3.5], we know that every semisimple Artinian ring is
isomorphic to the direct product of finitely many full matrix rings over division rings. A ring R is called reduced
if R has no non-zero nilpotent elements.

In [9], the authors proved that if R is a left Artinian ring, then diam(ΓN (R)) ≤ 3. In Section 2,

we prove that if F is a field and n ≥ 3, then diam(ΓN(Mn(F ))) = 2. We show that if F is a field, then

diam(ΓN (M2(F ))) = 3. Furthermore, we present a new proof for Theorem 2.3 of [9] when R is a finite ring.

Also, we classify the diameter of the nilpotent graph for all finite rings with J(R) = 0. In Section 3, we
determine the girth of the nilpotent graph for products of matrix rings.

2. The diameter of nilpotent graph of matrix algebras

In [9], the authors proved that if R is a left Artinian ring, then diam(ΓN (R)) ≤ 3. In this section, we prove that if

F is a field and n ≥ 3, then diam(ΓN(Mn(F ))) = 2. We show that if F is a field, then diam(ΓN(M2(F ))) = 3.

Furthermore, we present a new proof for Theorem 2.3 of [9] when R is a finite ring and classify the diameter of

the nilpotent graph for all finite rings with J(R) = 0. We start with the following remark.

Remark 1 If R = Mn(F ), where F is a field and n ≥ 2, then every nonzero element of R is a vertex of

ΓN (R). In fact, if A is a non-singular matrix, then A is adjacent to A−1E1n and so A ∈ V (ΓN (R)). Also, if

A is a singular matrix, then AY = 0 for some 0 �= Y ∈ R . Therefore A ∈ V (ΓN (R)).

Theorem 1 If F is a field and n ≥ 3 , then diam(ΓN(Mn(F ))) = 2 .

Proof Suppose that A, B ∈ Mn(F ) and C =
[

0 | X
]
, where X ∈ F n . Then AC =

[
0 | AX

]
and

BC =
[

0 | BX
]
. Assume that W1 = {X ∈ F n |AnX = 0} and W2 = {X ∈ F n |BnX = 0} , where

An and Bn are the nth rows of A and B , respectively. Both W1 and W2 are subspaces of F n . We have

dim Wi ≥ n − 1, for i = 1, 2. Since n ≥ 3, there exists 0 �= X0 ∈ W1 ∩ W2 . Let C =
[

0 | X0

]
. Obviously,

C is adjacent to both A and B . Hence diam(ΓN (Mn(F ))) ≤ 2. On the other hand, Enn and I are two

non-adjacent vertices of ΓN(Mn(F )). Therefore diam(ΓN(Mn(F ))) = 2. �

Theorem 2 If F is a field, then diam(ΓN(M2(F ))) ≤ 3 .

Proof Let A, B ∈ M2(F ) and X be a nilpotent matrix in M2(F ). We have the following cases:

Case 1. A and B are non-singular matrices. Then A — XA−1 — B−1X — B is a path.
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Case 2. A is a non-singular matrix and B is a singular matrix. Then BY = 0 for some 0 �= Y . If

Y X = 0, then A — XA−1 — Y — B is a path. If Y X �= 0, then A — XA−1 — Y X — B is a path.

Case 3. A and B are singular matrices. If AB is nilpotent, then A — B is a path. Otherwise, there
exist X, Y �= 0 such that AX = 0 and Y B = 0. If XY = 0, then A — X — Y — B is a path. Also, A —
XY — B is a path, for XY �= 0. Thus diam(ΓN (M2(F ))) ≤ 3. �

Lemma 1 If F is a field and there exists c ∈ F such that c is not a square, then diam(ΓN (M2(F ))) = 3 .

Proof Suppose that c ∈ F such that c is not a square and A =
[

0 1
c 0

]
. We claim that d(I, A) = 3.

By contradiction, assume that X is adjacent to both I and A . Since X is nilpotent, X =
[

x y
z −x

]
, for

some x, y, z ∈ F . On the other hand, XA =
[

cy x
−cx z

]
is nilpotent. This yields that that cy = −z and

cyz = −z2 . Since detX = 0, we have x2 = −yz . This implies that cx2 = z2 . Note that if x = 0, then yz = 0

and by cy = −z , we conclude that X = 0, a contradiction. Therefore x �= 0 and so c = (zx−1)2 , which is a
contradiction. Thus by Theorem 2, the proof is complete. �

Remark 2 It is well known that for a ring R , the set { a ∈ R | a is a unit } is a group under multiplication
and is called the group of units of R . In particular, if F is a field, then F ∗ is a group under multiplication.
Also, by Cauchy’s Theorem [11, Theorem 7.2.2], we know that if G is a finite group and p is a prime number

dividing the order of G (the number of elements in G), then G contains an element of order p . That is, there
is an x in G so that p is the smallest positive integer with xp = e , where e is the identity element.

Lemma 2 Let F be a finite field. Then |F | is an even number if and only if every element of F is square.

Proof First suppose that |F | is an even number. Let f : F → F , f(x) = x2 . Since char(F ) = 2, f is
one-to-one. Since F is finite, f is onto. Hence every element of F is square. Conversely, assume that every

element of F is square. Let f : F ∗ → F ∗ , f(x) = x2 . We know that f is a group homomorphism. Since

every element of F is a square, f is onto. Since F is finite, we conclude that f is one-to-one. If |F ∗| is an

even number, then by Remark 2, there exists an a ∈ F ∗ such that o(a) = 2. Therefore f(a) = 1, which is a

contradiction. Thus |F ∗| is an odd number, and so |F | is an even number. This completes the proof. �

Corollary 1 If F is a finite field and |F | is an odd number, then diam(ΓN (M2(F ))) = 3 .

Proof This is clear by Lemmas 1 and 2. �

Now, we would like to show that diam(ΓN (M2(F ))) = 3 when |F | is an even number. Before starting the
proof, we need the following lemma.

Lemma 3 diam(ΓN (M2(Z2))) = 3 .
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Proof Suppose that A =
[

0 1
1 0

]
and B =

[
1 0
1 1

]
. Obviously, AB is not nilpotent. We claim that

d(A, B) = 3. By contradiction, assume that X =
[

x y
z w

]
is adjacent to both A and B . Therefore the

following matrices should be nilpotent:

C =
[

z w
x y

]
, G =

[
y x
w z

]
, D =

[
x y

x + z y + w

]
, E =

[
x + y y
z + w w

]
.

Since xw = yz , if x = 0, then y = z = 0. On the the other hand, D is nilpotent, which implies that w = 0, a
contradiction. Now, suppose that x �= 0. Since C is nilpotent, we conclude that y = −z . But D is nilpotent;

this implies that D2 = 0 and x2 + xy − y2 = 0 for some 0 �= x, y ∈ Z2 , a contradiction. Now, by Theorem 2,
diam(ΓN (M2(Z2))) = 3. �

Lemma 4 If F is a field and char(F ) = 2 , then diam(ΓN(M2(F ))) = 3 .

Proof If |F | = 2, then by Lemma 3, we are done. Otherwise, |F | ≥ 4. Let S = {α + α−1 |α ∈ F ∗ } .

Clearly, |S| ≤ |F |
2

. Assume that y ∈ F \ (S ∪ {0, 1}). Let x = 1 + y , A =
[

1 1
1 x

]
and B =

[
x 1
1 1

]
.

We claim that d(A, B) = 3. If A is adjacent to B , then det(A)det(B) = 0. Hence (1 + x)2 = 0, and so

y = 0, a contradiction. Therefore d(A, B) ≥ 2. By contradiction, suppose that X =
[

a b
c d

]
is adjacent

to A and B . Since trac(AX) = 0, we have a + c = b + dx . On the other hand, trac(BX) = 0, which

implies that ax + c = b + d . Therefore a(1 + x) = d(1 + x). We note that 1 + x = y ∈ F ∗ , and so a = d .

Therefore X =
[

a b
a + b + ax a

]
. Since det(AX) = 0 and det(A) �= 0, we conclude that det(X) = 0. Hence

a2 + b2 = ab(1 + x). If a = 0, then b = 0 and so X = 0, a contradiction. Therefore a �= 0, and similarly,

b �= 0. This yields that y = (a2 + b2)a−1b−1 = ab−1 + ba−1 ∈ S , a contradiction. Therefore d(A, B) = 3. By

Theorem 2, diam(ΓN (M2(F ))) = 3. �

Now, we are in a position to prove one of the main results.

Theorem 3 If F is a field, then diam(ΓN(M2(F ))) = 3 .

Proof If |F | is an odd number, then by Corollary 1, diam(ΓN(M2(F ))) = 3. Otherwise, char(F ) = 2 and

by Lemma 4, diam(ΓN (M2(F ))) = 3. �

Lemma 5 If R ∼=
∏k

i=1 Mni(Fi) , F1, . . . , Fk are finite fields, and ni ≥ 3 for some i, 1 ≤ i ≤ k , then

diam(ΓN (R)) = 2 .

Proof Without loss of generality, suppose that n1 ≥ 3. Let x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ R . If

x1 = y1 = 0 then x — (1, 0, . . . , 0) — y . Otherwise, by Theorem 1, there exists 0 �= α1 ∈ Mn1(F1) such that

x1α1, y1α1 ∈ N(Mn1(F1)). Hence x(α1, 0, . . . , 0), y(α1, 0, . . . , 0) ∈ N(R), which implies that d(x, y) ≤ 2. Note

that if d(x1, y1) = 2 and xi = yi = 0, for i �= 1, then d(x, y) = 2. Thus diam(ΓN(R)) = 2. �
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Lemma 6 If R ∼=
∏k

i=1 Mni(Fi) , F1, . . . , Fk are finite fields, ni ≤ 2 for i = 1, . . . , k , and nj = 2 for some j ,

1 ≤ j ≤ k , then diam(ΓN (R)) = 3 .

Proof If k = 1, then by Theorem 3, diam(ΓN (R)) = 3. Now, assume that k ≥ 2. First we claim that

diam(ΓN (R)) ≤ 3. Let x = (x1, . . . , xk), y = (y1 , . . . , yk) ∈ V (ΓN (R)). Without loss of generality assume that

n1 = 2. If x1 = y1 = 0, then x and y are adjacent to (1, 0, . . . , 0). If x1, y1 �= 0, then by Remark 1 and

Theorem 3, d(x1, y1) ≤ 3, and so d(x, y) ≤ 3. If x1 = 0 and y1 �= 0, then y1a1 ∈ N(M2(F1)), for some

0 �= a1 ∈ M2(F1). Hence x and y are adjacent to (a1, 0, . . . , 0) and the claim is proved. Now, we show that

diam(ΓN (R)) = 3. If ni = 1, then let 0 �= xi, yi ∈ Mni(Fi). Also, there exist xi, yi ∈ Mni(Fi) such that

d(xi, yi) = 3, where ni = 2. Now, let x = (x1, . . . , xk) and y = (y1, . . . , yk). It is easy to see that d(x, y) = 3.
This completes the proof. �

We note that if R is a commutative reduced ring, then ΓN (R) = Γ(R) and by [5, Theorem 2.3],

diam(Γ(R)) ≤ 3. In particular, if R is a finite direct product of finite fields, then diam(ΓN (R)) ≤ 3. By

Theorem 2.3 of [9], if R is a left Artinian ring, then diam(ΓN (R)) ≤ 3. In the rest of this section, we present
a new proof for the above result when R is a finite ring.

Theorem 4 If R is a finite ring, then diam(ΓN(R)) ≤ 3 .

Proof Since R is a finite ring, it is a left Artinian and by [8, Theorem 4.12], J(R) is nilpotent. We have the
following cases:

Case 1. J(R) �= 0. Assume that 0 �= x ∈ J(R). Clearly, every vertex is adjacent to x and hence

diam(ΓN (R)) ≤ 2.

Case 2. J(R) = 0. By the Wedderburn-Artin theorem [8, Theorem 3.5], R ∼= Mn1(D1)×· · ·×Mnk(Dk),
where D1, . . . , Dk are division rings and n1, . . . , nk, k are positive integers. Since R is a finite ring by Wed-
derburn’s little theorem [8, Theorem 13.1], every Di is a field. Hence R ∼= Mn1(F1) × · · · × Mnk(Fk), where

F1, . . . , Fk are fields and n1, . . . , nk, k are positive integers. By Lemmas 5 and 6, diam(ΓN (R)) ≤ 3. �

According to the proof of Theorem 4, one can easily deduce the next result.

Corollary 2 Let R be a finite ring. If J(R) �= 0 , then diam(ΓN(R)) ≤ 2 .

Also, the following result is a characterization of diameter of the nilpotent graph.

Corollary 3 If R ∼=
∏k

i=1 Mni (Fi) , F1, . . . , Fk are fields and n1, . . . , nk, k are positive integers, then the

following hold:

(i) If ni ≥ 3 , for some i, then diam(ΓN (R)) = 2 .

(ii) If ni ≤ 2 for every i and nj = 2 , for some j , then diam(ΓN (R)) = 3 .

(iii) If k = 2 and n1 = n2 = 1 , then diam(ΓN(R)) ∈ {1, 2} .

(iv) If k ≥ 3 and n1 = · · · = nk = 1 , then diam(ΓN(R)) = 3 .

3. The girth of nilpotent graph of matrix algebras

In this section, we characterize the girth of the nilpotent graph of matrix algebras.

Lemma 7 If R ∼=
∏k

i=1 Mni(Fi) , F1, . . . , Fk are fields, n1, . . . , nk are positive integers and k ≥ 3 , then

gr(ΓN (R)) = 3 .
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Proof Let ei be the 1 × n vector whose ith component is I and other components are 0. Since k ≥ 3, e1

— e2 — e3 — e1 is a 3-cycle of ΓN(R). This implies that gr(ΓN (R)) = 3. �

We note that if F is a field, then ΓN(F ) is empty. So in the following lemma, we determine gr(ΓN (Mn(F ))),
where n ≥ 2.

Lemma 8 If F is a field and n ≥ 2 , then gr(ΓN(Mn(F ))) = 3 .

Proof It is easy to see that E1n — Enn —
∑n

i=1 E1i — E1n is a 3-cycle. This implies that gr(ΓN(Mn(F ))) =
3. �

We note that if F is a field, then by [6, Theorem 2.4], ΓN(Z2 ×F ) is a star graph with center (1, 0) and

gr(ΓN (Z2×F )) = ∞ . Also, if Fi is a field and |Fi| ≥ 3 for every i , 1 ≤ i ≤ 2, then ΓN (F1×F2) = Γ(F1×F2) and

by [6, Remark 2.6], gr(ΓN (F1 ×F2)) = 4. In the following results, we determine gr(ΓN (Mn1(F1)× Mn2(F2))).

Lemma 9 Let R ∼= Mn1(F1) × Mn2(F2) , every Fi be a field and |Fi| ≥ 3 for some i. If n1, n2 ≥ 2 , then

gr(ΓN (R)) = 3 .

Proof Let ei be the 1× n vector whose ith component is I and other components are 0. First suppose that
|F1| ≥ 3. Then e1 — (aE1n1, 0) — e2 — e1 is a 3-cycle, for some a ∈ F1

∗ . Therefore gr(ΓN(R)) = 3. The

argument for |F2| ≥ 3 is similar. �

Lemma 10 If F1, F2 are fields and n ≥ 2 , then gr(ΓN (F1 × Mn(F2))) = 3 .

Proof In view of proof of Lemma 8, we find that E1n — Enn —
∑n

i=1 E1i — E1n is a 3-cycle of ΓN (Mn(F2)).

So, (0, E1n) — (0, Enn) — (0,
∑n

i=1 E1i) — (0, E1n) is a 3-cycle ΓN(F1 × Mn(F2)). �

Lemma 11 gr(ΓN(Mn1 (Z2) × Mn2(Z2)) ∈ {3,∞} .

Proof Let ei be the 1 × n vector whose ith component is I and other components are 0. If n1 ≥ 2, then
e1 — e2 — (E1n1, 0) — e1 is a 3-cycle. This yields that gr(ΓN (R)) = 3. The argument for n2 ≥ 2 is similar.

If n1 = n2 = 1, then ΓN(R) = K2 and so gr(ΓN (R)) = ∞ . �
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