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Abstract: We study the initial-boundary value problem for a system of nonlinear wave equations with nonlinear damping

and source terms, in a bounded domain. The decay estimates of the energy function are established by using Nakao’s

inequality. The nonexistence of global solutions is discussed under some conditions on the given parameters.
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1. Introduction
In this paper we consider the following initial-boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt + |ut|m−1
ut = div

(
ρ
(
|∇u|2

)
∇u
)

+ f1 (u, v) , (x, t) ∈ Ω × (0, T ) ,

vtt + |vt|r−1
vt = div

(
ρ
(
|∇v|2

)
∇v
)

+ f2 (u, v) , (x, t) ∈ Ω × (0, T ) ,

u = v = 0, (x, t) ∈ ∂Ω × (0, T ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn, n = 1, 2, 3; m, r ≥ 1; fi (. , .) : R2 −→ R are
given functions to be specified later. Problems of this type arise in material science and physics.

We assume that ρ is a function which satisfies the relation

ρ (s) ∈ C1, ρ (s) > 0, ρ (s) + 2sρ′ (s) > 0 (1.2)

for s > 0.

(A1). Let F (u, v) = a |u + v|p+1 + 2b |uv|
p+1
2 with a, b > 0, p ≥ 3 if n = 1, 2 and p = 3 if

n = 3; f1 (u, v) = ∂F
∂u , f2 (u, v) = ∂F

∂v ; m, r ≥ 1 if n = 1, 2 and 1 ≤ m, r ≤ 5 if n = 3.

One can easily verify that

u f1 (u, v) + vf2 (u, v) = (p + 1)F (u, v) , ∀ (u, v) ∈ R2. (1.3)

Hao, Zhang and Li [6] considered the single wave equation of the form
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utt − div
(
ρ
(
|∇u|2

)
∇u
)

+ h (ut) = f (u) , x ∈ Ω, t > 0 (1.4)

with initial and Dirichlet boundary condition, where ρ satisfies condition (1.2) and

ρ (s) ≥ b1 + b2s
q , q ≥ 0, (1.5)

where b1, b2 are nonnegative constants and b1 + b2 > 0.

Lemma 1.1 [13]. There exist two positive constants c0 and c1 such that

c0

(
|u|p+1 + |v|p+1

)
≤ F (u, v) ≤ c1

(
|u|p+1 + |v|p+1

)
. (1.6)

Throughout this paper we define ρ by

ρ (s) = b1 + b2s
q , q ≥ 0, (1.7)

where b1, b2 are nonnegative constants and b1 + b2 > 0. Obviously, ρ satisfies condition (1.2) and (1.5).

In the case of ρ = 1, equation (1.4) can be written in the form

utt −�u + h (ut) = f (u) , x ∈ Ω, t > 0. (1.8)

The local existence, global existence, and blow up in finite time of solution for (1.8) were established (see

[7, 8, 5, 11, 12] and references therein). The interaction between the damping h (ut) = |ut|m−1 ut and the

source term f (u) = |u|r−1
u makes the problem more interesting. Levine [7, 8] first considered the interaction

between the linear damping (m = 1) and source term by using the concavity method. He showed that solutions
with negative initial energy blow up in finite time. But this method can not be applied in the case of a nonlinear
damping term.

Georgiev and Todorova in [5] extended Levine’s result to the nonlinear case (m > 1) . For further

knowledge, see [11, 12, 20] and references therein.

Agre and Rammaha [3] studied the global existence and the blow up of solutions of problem (1.1) with

ρ = 1 using the same techniques as in [5], and also Alves et al. [2] investigated the existence, uniform decay rates

and blow up of solutions to systems. After that, the blow up result was improved by Said-Houari [17]. Also,

Said-Houari [18] showed that the local solution obtained in [3] is global and this solution has decay property.

Recently, Wu et al. [21] obtained the global existence and blow up of the solution of problem (1.1) under

some suitable conditions. Also, Fei and Hongjun [4] considered problem (1.1) and improved the blow up result

obtained in [21], for a large class of initial data in positive initial energy, using some techniques as in Payne and

Sattinger [15] and some estimates used firstly by Vitillaro [20].

In this paper, under some restrictions on the initial data, we establish the uniform decay rates by means
of Nakao’s inequality. After that, we show blow up of solution with negative and nonnegative initial energy,
using the same techniques as in [9].

Throughout this paper, ‖.‖ and ‖.‖p denote the usual L2 (Ω) norm and Lp (Ω) norm, respectively.

This paper is organized as follows. In section 2, we present some lemmas. In section 3, we state and
prove the local existence result. In section 4, the global existence and the decay of the solution are given. In
section 5, we show the blow up properties of solution in cases m = r = 1 and m, r > 1.
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2. Preliminaries

Let us begin stating the following lemmas which will be used later.

Lemma 2.1 (Sobolev-Poincare inequality) [1]. Let q be a number with 2 ≤ q < ∞ (n = 1, 2) or 2 ≤ q ≤
2n/ (n − 2) (n ≥ 3) , then there is a constant C∗ = C∗ (Ω, q) such that

‖u‖q ≤ C∗ ‖∇u‖ for u ∈ H1
0 (Ω) . (2.1)

Lemma 2.2 [14]. Let φ (t) be nonincreasing and nonnegative function defined on [0, T ] , T > 1, satisfying

φ1+α (t) ≤ w0 (φ (t) − φ (t + 1)) , t ∈ [0, T ] (2.2)

for w0 is a positive constant, α is a nonnegative constant. Then we have for each t ∈ [0, T ]

⎧⎨
⎩

φ (t) ≤ φ (0) e−w1 [t−1]+ , α = 0,

φ (t) ≤
(
φ (0)−α + w−1

0 α [t − 1]+
)− 1

α

, α > 0,
(2.3)

where [t − 1]+ = max{t − 1, 0} , and w1 = ln
(

w0
w0−1

)
.

Lemma 2.3 [9]. Let δ > 0 and B (t) ∈ C2 (0,∞) be a nonnegative function satisfying

B′′ (t) − 4 (δ + 1)B′ (t) + 4 (δ + 1)B (t) ≥ 0. (2.4)

If

B′ (0) > r2B (0) + K0 (2.5)

with r2 = 2 (δ + 1) − 2
√

(δ + 1) δ, then B′ (t) > K0 for t > 0, where K0 is a constant.

Lemma 2.4 [9]. If H (t) is a nonincreasing function on [t0,∞) and satisfies the differential inequality

[H ′ (t)]2 ≥ a + b [H (t)]2+ 1
δ , for t ≥ t0, (2.6)

where a > 0, b ∈ R, then there exists a finite time T ∗ such that

lim
t−→T∗−

H (t) = 0.

Upper bounds for T ∗ are estimated as follows:

(i) If b < 0 and H (t0) < min
{
1,
√−a

b

}
, then

T ∗ ≤ t0 +
1√
−b

ln

√−a
b√−a

b
− H (t0)

.

(ii) If b = 0, then

T ∗ ≤ t0 +
H (t0)
H ′ (t0)

.
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(iii) If b > 0, then

T ∗ ≤ H (t0)√
a

or T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
a

[
1 − (1 + cH (t0))

− 1
2δ

]
,

where c =
(

a
b

)2+ 1
δ .

3. Local existence

In this section, we state and prove the local existence and uniqueness of the solution of problem (1.1).

Definition 3.1 A pair of functions (u, v) is said to be a weak solution of (1.1) on [0, T ] if

u, v ∈ C
(
[0, T ] ; W 1,2(q+1)

0 (Ω) ∩Lp+1 (Ω)
)

, ut ∈ C
(
[0, T ] ; L2 (Ω)

)
∩ Lm+1 (Ω × (0, T )) and

vt ∈ C
(
[0, T ] ; L2 (Ω)

)
∩ Lr+1 (Ω × (0, T )) . In additon, (u, v) satisfies

∫
Ω

u′ (t)φdx−
∫

Ω

u1 (t)φdx +
∫

Ω

(
ρ
(
|∇u|2

)
∇u
)
∇φdx +

∫ t

0

∫
Ω

|u′|m−1
u′φdxdτ

=
∫ t

0

∫
Ω

f1 (u (τ ) , v (τ ))φdxdτ, (3.1)

∫
Ω

v′ (t)ϕdx −
∫

Ω

v1 (t)ϕdx +
∫

Ω

(
ρ
(
|∇v|2

)
∇v
)
∇ϕdx +

∫ t

0

∫
Ω

|v′|r−1
v′ϕdxdτ

=
∫ t

0

∫
Ω

f2 (u (τ ) , v (τ )) ϕdxdτ (3.2)

for all test functions φ ∈ W
1,2(q+1)
0 (Ω)∩Lm+1 (Ω) , ϕ ∈ W

1,2(q+1)
0 (Ω)∩Lr+1 (Ω) and for almost all t ∈ [0, T ] .

Theorem 3.2 (Local existence). Assume (A1) holds. Then, for any initial data u0, v0 ∈ W
1,2(q+1)
0 (Ω) ∩

Lp+1 (Ω) and u1, v1 ∈ L2 (Ω) , there exists a unique local weak solution (u, v) of problem (1.1) (in the sense of

Definition 3.1) defined in [0, T ] for some T > 0, and satisfies the energy identity

E (t) +
∫ t

0

(
‖uτ (τ )‖m+1

m+1 + ‖vτ (τ )‖r+1
r+1

)
dτ = E (0) , (3.3)

where E (t) is defined in (4.3).

Proof The proof will be done by applying the Faedo-Galerkin method.

Approximate solution:

Let {wj}∞j=1 be a basis for W
1,2(q+1)
0 (Ω) . Let us define Vm =the linear span of {wj}∞j=1 , m ≥ 1. We

look for an approximate solution of our problem in the form

um (t) =
m∑

j=1

um,j (t)wj, vm (t) =
m∑

j=1

vm,j (t)wj , (3.4)
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where um,j (t) and vm,j (t) are the solutions of the ODE system

∫
Ω

{
u′′

m − div
(
ρ
(
|∇um|2

)
∇um

)
+ |u′

m|m−1
u′

m

}
wjdx =

∫
Ω

f1 (um, vm)wjdx, (3.5)

∫
Ω

{
v′′m − div

(
ρ
(
|∇vm|2

)
∇vm

)
+ |v′m|r−1

v′m
}

wjdx =
∫

Ω

f2 (um, vm)wjdx (3.6)

with initial conditions

um (0) = u0m; u′
m (0) = u1m, vm (0) = v0m; v′m (0) = v1m, (3.7)

where u0m, u1m, v0m and v1m are chosen in Vm such that

u0m −→ u0, v0m −→ v0 strongly in W
1,2(q+1)
0 (Ω) (3.8)

and
u1m −→ u1, v1m −→ v1 strongly in L2 (Ω) . (3.9)

Well-known results on the solvability of nonlinear systems of ODE provide the existence of a solution to problem
(3.5)–(3.7) on some interval [0, tm) . Such a solution can be extended to the closed interval [0, T ] by using the
first a priori estimate below.

A priori estimate I:

Multiply (3.5) by u′
m,j (t) , (3.6) by v′m,j (t) , and sum for j = 1, ..., m. One then has

1
2

d

dt

(
‖u′

m (t)‖2 + b1 ‖∇um (t)‖2 +
b2

q + 1
‖∇um (t)‖2(q+1)

2(q+1)

)
+
∫

Ω

|u′
m (t)|m+1

dx

=
∫

Ω

f1 (um, vm)u′
mdx, (3.10)

1
2

d

dt

(
‖v′m (t)‖2 + b1 ‖∇vm (t)‖2 +

b2

q + 1
‖∇vm (t)‖2(q+1)

2(q+1)

)
+
∫

Ω

|v′m (t)|r+1
dx

=
∫

Ω

f2 (um, vm) v′mdx. (3.11)

By summing (3.10) and (3.11) and integrating the resulting identity from 0 to t, we obtain

1
2

(
‖u′

m (t)‖2 + ‖v′m (t)‖2 + b1 ‖∇um (t)‖2 + b1 ‖∇vm (t)‖2
)

+
1
2

(
b2

q + 1
‖∇um (t)‖2(q+1)

2(q+1) +
b2

q + 1
‖∇vm (t)‖2(q+1)

2(q+1)

)

+
∫ t

0

∫
Ω

|u′
m (τ )|m+1

dxdτ +
∫ t

0

∫
Ω

|v′m (τ )|r+1
dxdτ

≤ C0 +
∫ t

0

∫
Ω

(f1 (um, vm)u′
m + f2 (um, vm) v′m) dxdτ. (3.12)
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We need to estimate the right-hand terms of (3.12). Applying (A1), Hölder inequality, Sobolev emmedding
theorem and Young inequality, we obtain

∣∣∣∣
∫ t

0

∫
Ω

f1 (um (τ ) , vm (τ ))u′
m (τ ) dxdτ

∣∣∣∣
≤ C

∫ t

0

∫
Ω

(
|um (τ )|p + |vm (τ )|p + |um (τ )|

p−1
2 |vm (τ )|

p+1
2

)
|u′

m (τ )| dxdτ

≤ C

∫ t

0

(
‖um (τ )‖p

2p + ‖vm (τ )‖p
2p + ‖um (τ )‖

p−1
2

3(p−1) ‖vm (τ )‖
p+1
2

3(p+1)
2

)
‖u′

m (τ )‖dτ

≤ C

∫ t

0

(
‖∇um (τ )‖p + ‖∇vm (τ )‖p + ‖∇um (τ )‖

p−1
2 ‖∇vm (τ )‖

p+1
2

)
‖u′

m (τ )‖dτ

≤ C

∫ t

0

(
‖u′

m (τ )‖2 + ‖∇um (τ )‖p + ‖∇vm (τ )‖p + ‖∇um (τ )‖p−1 ‖∇vm (τ )‖p+1
)

dτ. (3.13)

Likewise, we obtain

∣∣∣∣
∫ t

0

∫
Ω

f2 (um (τ ) , vm (τ )) v′m (τ ) dxdτ

∣∣∣∣
≤ C

∫ t

0

(
‖v′m (τ )‖2 + ‖∇um (τ )‖p + ‖∇vm (τ )‖p + ‖∇um (τ )‖p+1 ‖∇vm (τ )‖p−1

)
dτ. (3.14)

Let ym (t) = 1+ ‖u′
m (t)‖2+‖v′m (t)‖2+

∫
Ω

(
P
(
|∇um (t)|2

)
+ P

(
|∇vm (t)|2

))
dx. Then, it follows from (3.12)-

(3.14) that

ym (t) + 2
∫ t

0

∫
Ω

|u′
m (τ )|m+1

dxdτ + 2
∫ t

0

∫
Ω

|v′m (τ )|r+1
dxdτ ≤ C0 + C

∫ t

0

ym (τ )p
dτ. (3.15)

Particularly, we have

ym (t) ≤ C0 + C

∫ t

0

ym (τ )p
dτ.

Using a Gronwall type inequality, we can state that

ym (t) ≤ [C0 − (p − 1)Ct]−
1

p−1 . (3.16)

Thus, we deduce from (3.16) that there exists a time T > 0 such that

ym (t) ≤ C1, ∀t ∈ [0, T ] , (3.17)

where C1 is a positive constant independent of m.

Combining (3.15) and (3.17), we easily have

∫ t

0

∫
Ω

|u′
m (τ )|m+1

dxdτ + 2
∫ t

0

∫
Ω

|v′m (τ )|r+1
dxdτ ≤ C2, ∀t ∈ [0, T ] . (3.18)
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It follows of (3.17) and (3.18) that we have

um, vm are bounded in L∞
(
[0, T ] ; W 1,2(q+1)

0 (Ω)
)

, (3.19)

u′
m, v′m are bounded in L∞ ([0, T ] ; L2 (Ω)

)
, (3.20)

u′
m is bounded in L2

(
[0, T ] ; Lm+1 (Ω)

)
, (3.21)

v′m is bounded in L2
(
[0, T ] ; Lr+1 (Ω)

)
,

and once A is a bounded operator from W
1,2(q+1)
0 (Ω) −→

(
W

1,2(q+1)
0 (Ω)

)′
, defined by Aω=div

(
ρ
(
|∇ω|2

)
∇ω
)

.

It follows from (3.19) that

A (um) , A (vm) are bounded in L∞
(

[0, T ] ;
(
W

1,2(q+1)
0 (Ω)

)′)
. (3.22)

Using a similar priori estimate II to [19], we obtain u, v ∈ L∞
(
[0, T ] ; W 1,2(q+1)

0 (Ω) ∩ Lp+1 (Ω)
)

, ut ∈

L∞ ([0, T ] ; L2 (Ω)
)
∩ Lm+1 (Ω × (0, T )) and vt ∈ L∞ ([0, T ] ; L2 (Ω)

)
∩Lr+1 (Ω × (0, T )) . By use of a well-known

result (Lemma 8.1–8.2, Lions and Magenes [10]) it follows that u, v ∈ Cw

(
[0, T ] ; W 1,2(q+1)

0 (Ω) ∩ Lp+1 (Ω)
)

,

ut ∈ Cw

(
[0, T ] ; L2 (Ω)

)
∩ Lm+1 (Ω × (0, T )) and vt ∈ Cw

(
[0, T ] ; L2 (Ω)

)
∩Lr+1 (Ω × (0, T )) . By appealing to

Lemma 2.11 in [16] we obtain the regularity. The proof of Theorem 3.1 is completed. �

4. Global existence and decay of solution

In this section, we discuss the global existence and decay of the solution for problem (1.1). In order to do so,
let us first introduce the functionals

J (t) = J (u (t) , v (t)) =
1
2

∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx−

∫
Ω

F (u, v) dx, (4.1)

and

I (t) = I (u (t) , v (t)) =
∫

Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx − (p + 1)

∫
Ω

F (u, v) dx. (4.2)

The energy functional E (t) = E (t, u (t) , v (t)) associated to problem (1.1) is

E (t) =
1
2

(
‖ut‖2 + ‖vt‖2

)
+

1
2

∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx −

∫
Ω

F (u, v)dx. (4.3)

where P (s) =
∫ s

0
ρ (ξ) dξ, s ≥ 0.

We also define

W =
{

(u, v) : (u, v) ∈ W
1,2(q+1)
0 (Ω) × W

1,2(q+1)
0 (Ω) , I (u, v) > 0

}
∪ {(0, 0)} . (4.4)

The next lemma shows that our energy functional (4.3) is a nonincreasing function along the solutions

of (1.1).
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PİŞKİN and POLAT/Turk J Math

Lemma 4.1 E (t) is a nonincreasing function for t ≥ 0 and

d

dt
E (t) = −‖ut (t)‖m+1

m+1 − ‖vt (t)‖r+1
r+1 . (4.5)

Proof Multiplying the first equation of (1.1) by ut, and the second equation by vt, integrating over Ω using
integrating by parts and summing up to the product results, we obtain

E (t) − E (0) = −
∫ t

0

(
‖uτ (τ )‖m+1

m+1 + ‖vτ (τ )‖r+1
r+1

)
dτ for t ≥ 0. (4.6)

�

Lemma 4.2 Suppose that {
p ≥ 3, if n = 1, 2,
p = 3, if n = 3 (4.7)

holds. If (u0, v0) ∈ W and (u1, v1) ∈ L2 (Ω) such that

β = c1C
p+1
∗ (p + 1)

(
2 (p + 1)
b1 (p − 1)

E (0)
)p−1

2

< 1, (4.8)

then (u, v) ∈ W for each t ≥ 0.

Proof Since I (0) > 0, then by continuity, there exists Tm < T, such that

I (t) > 0, ∀t ∈ [0, Tm] ,

which implies that for all t ∈ [0, Tm] ,

J (t) =
p − 1

2 (p + 1)

∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx +

1
p + 1

I (t)

≥ p − 1
2 (p + 1)

∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx

=
p − 1

2 (p + 1)

[
b1

(
‖∇u‖2 + ‖∇v‖2

)
+

b2

q + 1

(
‖∇u‖2(q+1)

2(q+1)
+ ‖∇v‖2(q+1)

2(q+1)

)]
. (4.9)

Hence, we get

‖∇u‖2 + ‖∇v‖2 ≤ 2 (p + 1)
b1 (p − 1)

J (t)

≤ 2 (p + 1)
b1 (p − 1)

E (t)

≤ 2 (p + 1)
b1 (p − 1)

E (0) . (4.10)
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PİŞKİN and POLAT/Turk J Math

By recalling (1.6) and (4.8), we have

c1 (p + 1) ‖u‖p+1
p+1 ≤ c1C

p+1
∗ (p + 1) ‖∇u‖p+1

≤ c1C
p+1
∗ (p + 1) ‖∇u‖p−1 ‖∇u‖2

≤ c1C
p+1
∗ (p + 1)

(
2 (p + 1)
b1 (p − 1)

E (0)
)p−1

2

‖∇u‖2

< ‖∇u‖2 on t ∈ [0, Tm] . (4.11)

Similarly, we get

c1 (p + 1) ‖v‖p+1
p+1 < ‖∇v‖2 on t ∈ [0, Tm] .

Therefore, by using (4.2), we get I (t) > 0 for all t ∈ [0, Tm] . By repeating the procedure, Tm is extended to
T. The proof of Lemma 4.2 is completed.

Also, the following inequality can be written:∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx ≤ 1

1 − c1C
p+1
∗ (p + 1)

(
2(p+1)
b1(p−1)E (0)

) p−1
2

I (t) . (4.12)

�

Theorem 4.3 Suppose that (4.7) holds. If (u0, v0) ∈ W satisfying (4.8). Then the solution of problem (1.1)
is global.

Proof It is sufficient to show that
∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx+ ‖ut‖2 + ‖vt‖2 is bounded independently

of t. To achieve this we use (4.4) and (4.6) to obtain

E (0) ≥ E (t) =
1
2

(
‖ut‖2 + ‖vt‖2

)
+

1
2

∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx −

∫
Ω

F (u, v)dx

=
1
2

(
‖ut‖2 + ‖vt‖2

)
+

p − 1
2 (p + 1)

∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx +

1
p + 1

I (t)

≥ 1
2

(
‖ut‖2 + ‖vt‖2

)
+

p − 1
2 (p + 1)

∫
Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx

since I (t) ≥ 0. Therefore

(
‖ut‖2 + ‖vt‖2

)
+
∫

Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx ≤ CE (0) ,

where C = max
{
2, 2(p+1)

p−1

}
. Then by Theorem 3.1, we have the global existence result. �

Theorem 4.4 Suppose that (A1), (1.6) and (4.8) hold, and further (u0, v0) ∈ W . Thus, we have the following
decay estimates:

E (t) ≤

⎧⎨
⎩

E (0) e−w1[t−1]+ , if m = r = 1,(
E (0)−α + C−1

9 α [t − 1]+
)− 1

α

, if m, r > 1,
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where w1, α and C9 are positive constants which will be defined later.

Proof By integrating

d

dt
E (t) = −‖ut (t)‖m+1

m+1 − ‖vt (t)‖r+1
r+1 , (4.13)

over [t, t + 1] , we have

E (t) − E (t + 1) =
∫ t+1

t

(
‖uτ (τ )‖m+1

m+1 + ‖vτ (τ )‖r+1
r+1

)
dτ

= Dm+1
1 (t) + Dr+1

2 (t) . (4.14)

By virtue of (4.14) and Hölder inequality, we observe that

∫ t+1

t

∫
Ω

|ut|2 dxdt ≤ |Ω|
m−1
m+1 D2

1 (t) = CD2
1 (t) . (4.15)

Similarly, we get ∫ t+1

t

∫
Ω

|vt|2 dxdt ≤ |Ω|
r−1
r+1 D2

2 (t) = CD2
2 (t) . (4.16)

Hence, from (4.15), there exist t1 ∈
[
t, t + 1

4

]
and t2 ∈

[
t + 3

4
, t + 1

]
such that

‖ut (ti)‖ ≤ CD1 (t) , i = 1, 2 (4.17)

and
‖vt (ti)‖ ≤ CD2 (t) , i = 1, 2. (4.18)

Multiplying the first equation of (1.1) by u, the second equation by v, and integrating the result over Ω×[t1, t2] ,
we get

∫ t2

t1

I (t) dt = −
∫ t2

t1

∫
Ω

[uutt + vvtt] dxdt

−
∫ t2

t1

∫
Ω

|ut|m−1
utudxdt−

∫ t2

t1

∫
Ω

|vt|r−1
vtvdxdt. (4.19)

Integrating by parts and Cauchy-Schwarz inequality in the first term of the right-hand side of (4.19), we obtain

∫ t2

t1

I (t) dt ≤ ‖ut (t1)‖ ‖u (t1)‖ + ‖ut (t2)‖ ‖u (t2)‖

+ ‖vt (t1)‖ ‖v (t1)‖ + ‖vt (t2)‖ ‖v (t2)‖

+
∫ t2

t1

‖ut (t)‖2
dt +

∫ t2

t1

‖vt (t)‖2
dt

−
∫ t2

t1

∫
Ω

|ut|m−1
utudxdt−

∫ t2

t1

∫
Ω

|vt|r−1
vtvdxdt. (4.20)
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Now our goal is to estimate the last two terms in the right-hand side of inequality (4.20). By using the Hölder
inequality, we obtain ∫ t2

t1

∫
Ω

|ut|m−1
utudxdt ≤

∫ t2

t1

‖ut (t)‖m
m+1 ‖u (t)‖m+1 dt (4.21)

and ∫ t2

t1

∫
Ω

|vt|r−1
vtvdxdt ≤

∫ t2

t1

‖vt (t)‖r
r+1 ‖v (t)‖r+1 dt. (4.22)

By applying the Sobolev-Poincare inequality and (4.10), we find

∫ t2

t1

‖ut‖m
m+1 ‖u‖m+1 dt ≤ C∗

∫ t2

t1

‖ut‖m
m+1 ‖∇u‖dt

≤ C∗

(
2 (p + 1)
b1 (p − 1)

) 1
2
∫ t2

t1

‖ut‖m
m+1 E

1
2 (s) dt

≤ C∗

(
2 (p + 1)
b1 (p − 1)

) 1
2

sup
t1≤s≤t2

E
1
2 (s)

∫ t2

t1

‖ut‖m
m+1 dt

= C∗

(
2 (p + 1)
b1 (p − 1)

) 1
2

sup
t1≤s≤t2

E
1
2 (s) Dm

1 (t) . (4.23)

From (4.10), (4.17) and the Sobolev-Poincare inequality, we have

‖ut (ti)‖ ‖u (ti)‖ ≤ C1D1 (t) sup
t1≤s≤t2

E
1
2 (s) , (4.24)

where C1 = 2C∗
√

2(p+1)
b1(p−1)C. Similarly, we get

∫ t2

t1

‖vt (t)‖r
r+1 ‖v (t)‖r+1 dt ≤ C∗

(
2 (p + 1)
b1 (p − 1)

) 1
2

sup
t1≤s≤t2

E
1
2 (s) Dr

2 (t) , (4.25)

‖vt (ti)‖ ‖v (ti)‖ ≤ C2D2 (t) sup
t1≤s≤t2

E
1
2 (s) , (4.26)

where C2 = 2C ′
∗

√
2(p+1)
b1(p−1)

C. Then by (4.23)–(4.26) we have

∫ t2

t1

I (t) dt ≤ C3

{
sup

t1≤s≤t2

E
1
2 (s) (D1 (t) + D2 (t)) + D2

1 (t) + D2
2 (t)

+C∗

√
2 (p + 1)
b1 (p − 1)

sup
t1≤s≤t2

E
1
2 (s) (Dm

1 (t) + Dr
2 (t))

}
. (4.27)

On the other hand, from (4.12) we obtain

E (t) ≤ 1
2

(
‖ut‖2 + ‖vt‖2

)
+ C4I (t) , (4.28)
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PİŞKİN and POLAT/Turk J Math

where C4 = p−1

2(p+1)

�
1−c1Cp+1

∗ (p+1)
�

2(p+1)
b1(p−1) E(0)

� p−1
2

� + 1
p+1 .

Integrating (4.28) over [t1, t2] , we have

∫ t2

t1

E (t) dt ≤ 1
2

∫ t2

t1

[
‖ut‖2 + ‖ut‖2

]
dt + C4

∫ t2

t1

I (t) dt.

Then by (4.9), (4.10) and (4.27), we get

∫ t2

t1

E (t) dt ≤ 1
2
CD2

1 (t) +
1
2
CD2

2 (t)

+C4C3

{
sup

t1≤s≤t2

E
1
2 (s) (D1 (t) + D2 (t)) + D2

1 (t) + D2
2 (t)

+C∗

√
2 (p + 1)
b1 (p − 1)

sup
t1≤s≤t2

E
1
2 (s) (Dm

1 (t) + Dr
2 (t))

}
. (4.29)

By integrating (4.5) over [t, t2] , we obtain

E (t) = E (t2) +
∫ t2

t

[
‖uτ (τ )‖m+1

m+1 + ‖vτ (τ )‖r+1
r+1

]
dτ. (4.30)

Therefore, since t2 − t1 ≥ 1
2 , we conclude that

∫ t2

t1

E (t) dt ≥ (t2 − t1)E (t2) ≥
1
2
E (t2) .

That is,

E (t2) ≤ 2
∫ t2

t1

E (t) dt. (4.31)

Consequently, exploiting (4.14), (4.29), (4.30), and (4.31), and since t1, t2 ∈ [t, t + 1] , we get

E (t) ≤ 2
∫ t2

t1

E (t) dt +
∫ t+1

t

(
‖uτ (τ )‖m+1

m+1 + ‖vτ (τ )‖r+1
r+1

)
dτ

= 2
∫ t2

t1

E (t) dt + Dm+1
1 (t) + Dr+1

2 (t) . (4.32)

Then, by (4.29), we have

E (t) ≤
(

1
2
C + C4C

)(
D2

1 (t) + D2
2 (t)

)
+ Dm+1

1 (t) + Dr+1
2 (t)

+C5 [D1 (t) + D2 (t) + Dm
1 (t) + Dr

2 (t)] E
1
2 (t) .

Hence, by Young inequality, we obtain

E (t) ≤ C6

[
D2

1 (t) + D2
2 (t) + Dm+1

1 (t) + Dr+1
2 (t) + D2m

1 (t) + D2r
2 (t)

]
. (4.33)
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Case 1: When m = r = 1, from (4.33), we obtain

E (t) ≤ 3C6

[
D2

1 (t) + D2
2 (t)

]
= 3C6 [E (t) − E (t + 1)] .

By Lemma 2.2, we get

E (t) ≤ E (0) e−w1 [t−1]+ ,

where w1 = ln 3C6
3C6−1 .

Case 2: When m, r > 1, from (4.33), we obtain

E (t) ≤ C6D
2
1 (t)

(
1 + Dm−1

1 (t) + D
2(m−1)
1 (t)

)
+ C6D

2
2 (t)

(
1 + Dr−1

2 (t) + D
2(r−1)
2 (t)

)

≤ C6

(
1 + Dm−1

1 (t) + D
2(m−1)
1 (t) + Dr−1

2 (t) + D
2(r−1)
2 (t)

) (
D2

1 (t) + D2
2 (t)

)
.

Then since E (t) ≤ E (0) , ∀t ≥ 0, we see from (4.14)

E (t) ≤ C6

(
1 + E

m−1
m+1 (0) + E

2(m−1)
m+1 (0) + E

r−1
r+1 (0) + E

2(r−1)
r+1 (0)

) (
D2

1 (t) + D2
2 (t)

)
≤ C7

(
D2

1 (t) + D2
2 (t)

)
, t ≥ 0.

Then we obtain

E (t)1+max{m−1
2 , r−1

2 } ≤
[
C7

(
D2

1 (t) + D2
2 (t)

)]1+max{m−1
2 , r−1

2 }

≤ C8

(
D

max{m+1,r+1}
1 (t) + D

max{m+1,r+1}
2 (t)

)
. (4.34)

We set α = max
{

m−1
2 , r−1

2

}
; then (4.34) is equal to

E (t)1+α ≤ C8

(
Dm+1

1 (t)D2α−m+1
1 (t) + Dr+1

2 (t)D2α−r+1
2 (t)

)
≤ C8

(
Dm+1

1 (t)E
2α−m+1

m+1 (0) + Dr+1
2 (t)E

2α−r+1
r+1 (0)

)
≤ C9

(
Dm+1

1 (t) + Dr+1
2 (t)

)
= C9 [E (t) − E (t + 1)] , (4.35)

where C9 = C8 max
{
E

2α−m+1
m+1 (0) , E

2α−r+1
r+1 (0)

}
. Thus, from (4.35) and Lemma 2.2, we have

E (t) ≤
(
E (0)−α + C−1

9 α [t − 1]+
)− 1

α

.

The proof of Theorem 4.2 is completed. �

5. Blow up of solution

In this section, we deal with the blow up of the solution of problem (1.1).
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5.1. Case 1: m = r = 1
We consider problem (1.1) with m = r = 1.⎧⎨

⎩
utt + ut = div

(
ρ
(
|∇u|2

)
∇u
)

+ f1 (u, v) , (x, t) ∈ Ω × (0, T ) ,

vtt + vt = div
(
ρ
(
|∇v|2

)
∇v
)

+ f2 (u, v) , (x, t) ∈ Ω × (0, T ) .
(5.1)

Definition 5.1 A solution (u, v) of (1.1) with m = r = 1 is called blow up if there exists a finite time T ∗ such
that

lim
t−→T∗−

{∫
Ω

(
u2 + v2

)
dx +

∫ t

0

∫
Ω

(
u2 + v2

)
dxds

}
= ∞. (5.2)

Let

a (t) =
∫

Ω

(
u2 + v2

)
dx +

∫ t

0

∫
Ω

(
u2 + v2

)
dxds, for t ≥ 0. (5.3)

Lemma 5.2 Assume (A1), and that q
2 ≤ δ ≤ p−1

4 , then we have

a′′ (t) ≥ 4 (δ + 1)
∫

Ω

(
u2

t + v2
t

)
dx + (−4 − 8δ)E (0) + (4 + 8δ)

∫ t

0

(
‖ut‖2 + ‖vt‖2

)
dt. (5.4)

Proof From (5.3), we have

a′ (t) = 2
∫

Ω

(uut + vvt) dx + ‖u‖2 + ‖v‖2
. (5.5)

By (5.1) and the divergence theorem, we get

a′′ (t) = 2
∫

Ω

(
u2

t + v2
t

)
dx + 2

∫
Ω

(uutt + vvtt) dx + 2
∫
Ω

(uut + vvt) dx

= 2
∫

Ω

(
u2

t + v2
t

)
dx− 2

∫
Ω

(
ρ
(
|∇u|2

)
|∇u|2 + ρ

(
|∇v|2

)
|∇v|2

)
dx

+2 (p + 1)
∫

Ω

F (u, v) dx. (5.6)

Then from (4.6) and (5.6), we have

a′′ (t) = 4 (δ + 1)
∫

Ω

(
u2

t + v2
t

)
dx + (−4 − 8δ)E (0) + (4 + 8δ)

∫ t

0

(
‖ut‖2 + ‖vt‖2

)
dt

+(4δ + 2)
∫

Ω

(
P
(
|∇u|2

)
+ P

(
|∇v|2

))
dx− 2

∫
Ω

(
ρ
(
|∇u|2

)
|∇u|2 + ρ

(
|∇v|2

)
|∇v|2

)
dx

+(2p − 8δ − 2)
∫

Ω

F (u, v) dx

= 4 (δ + 1)
∫

Ω

(
u2

t + v2
t

)
dx + (−4 − 8δ)E (0) + (4 + 8δ)

∫ t

0

(
‖ut‖2 + ‖vt‖2

)
dt

+4δb1

(
‖∇u‖2 + ‖∇v‖2

)
+ b2

(
4δ + 2
q + 1

− 2
)(

‖∇u‖2(q+1)
2(q+1) + ‖∇v‖2(q+1)

2(q+1)

)

+(2p − 8δ − 2)
∫

Ω

F (u, v) dx.
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Since 0 < δ ≤ p−1
4 , 2p−8δ−2 ≥ 0, and q

2 ≤ δ, 4δ+2
q+1 −2 ≥ 0, consequently q

2 ≤ δ ≤ p−1
4 , and we obtain (5.4). �

Lemma 5.3 Assume (A1) and one of the following statements are satisfied:

(i) E (0) < 0,

(ii) E (0) = 0, and
∫
Ω (u0u1 + v0v1) dx > 0,

(iii) E (0) > 0, and

a′ (0) > r2

[
a (0) +

K1

4 (δ + 1)

]
+
(
‖u0‖2 + ‖v0‖2

)
(5.7)

holds.

Then a′ (t) > ‖u0‖2 + ‖v0‖2 for t > t∗, where t0 = t∗ is given by (5.8) in case (i) and t0 = 0 in cases

(ii) and (iii).

Where K1 and t∗ are defined in (5.13) and (5.8), respectively.

Proof (i) If E (0) < 0, then from (5.4), we have

a′ (t) ≥ a′ (0) − 4 (1 + 2δ)E (0) t, t ≥ 0.

Thus we get a′ (t) > ‖u0‖2 + ‖v0‖2 for t > t∗, where

t∗ = max

⎧⎨
⎩

a′ (0) −
(
‖u0‖2 + ‖v0‖2

)
4 (1 + 2δ)E (0)

, 0

⎫⎬
⎭ . (5.8)

(ii) If E (0) = 0, and
∫
Ω

(u0u1 + v0v1) dx > 0, then a′′ (t) ≥ 0 for t ≥ 0. We have a′ (t) > ‖u0‖2 +

‖v0‖2
, t ≥ 0.

(iii) If E (0) > 0, we first note that

2
∫ t

0

∫
Ω

uutdxdt = ‖u‖2 − ‖u0‖2
. (5.9)

By Hölder inequality and Young inequality, we have from (5.9)

‖u‖2 ≤ ‖u0‖2 +
∫ t

0

‖u‖2 dt +
∫

Ω

‖ut‖2 dt. (5.10)

Similarly,

‖v‖2 ≤ ‖v0‖2 +
∫ t

0

‖v‖2
dt +

∫
Ω

‖vt‖2
dt. (5.11)

By Hölder inequality, Young inequality and inequalities (5.10) and (5.11), we have

a′ (t) ≤ a (t) + ‖u0‖2 + ‖v0‖2 +
∫

Ω

(
u2

t + v2
t

)
dx +

∫ t

0

(
‖ut‖2 + ‖vt‖2

)
dt. (5.12)

Hence, by (5.4) and (5.12), we obtain

a′′ (t) − 4 (δ + 1) a′ (t) + 4 (δ + 1) a (t) + K1 ≥ 0,
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PİŞKİN and POLAT/Turk J Math

where

K1 = (4 + 8δ)E (0) + 4 (δ + 1)
(
‖u0‖2 + ‖v0‖2

)
. (5.13)

Let

b (t) = a (t) +
K1

4 (δ + 1)
, t > 0.

Then b (t) satisfies Lemma 2.3. Consequently, we get from (5.7) a′ (t) >
(
‖u0‖2 + ‖v0‖2

)
, t > 0, where r2 is

given in Lemma 2.3. �

Theorem 5.4 Assume (A1) and one of the following statements are satisfied (for q
2 ≤ δ ≤ p−1

4 ):

(i) E (0) < 0,

(ii) E (0) = 0, and
∫
Ω

(u0u1 + v0v1) dx > 0,

(iii) 0 < E (0) <
(a′(t0)−(‖u0‖2+‖v0‖2))2

8[a(t0)+(T1−t0)(‖u0‖2+‖v0‖2)] , and (5.7) holds.

Then the solution (u, v) blows up in finite time T ∗ in the sense of (5.2). In case (i),

T ∗ ≤ t0 −
H (t0)
H ′ (t0)

. (5.14)

Furthermore, if H (t0) < min
{
1,
√−a

b

}
, we have

T ∗ ≤ t0 +
1√
−b

ln

√−a
b√−a

b
− H (t0)

, (5.15)

where

a = δ2H2+ 2
δ (t0)

[(
a′ (t0) − ‖u0‖2 − ‖v0‖2

)2

− 8E (0)H− 1
δ (t0)

]
> 0, (5.16)

b = 8δ2E (0) . (5.17)

In case (ii),

T ∗ ≤ t0 −
H (t0)
H ′ (t0)

. (5.18)

In case (iii),

T ∗ ≤ H (t0)√
a

or T ∗ ≤ t0 + 2
3δ+1
2δ

(a

b

)2+ 1
δ δ√

a

{
1 −
[
1 +
(a

b

)2+ 1
δ

H (t0)
]− 1

2δ

}
, (5.19)

where a and b are given in (5.16) and (5.17).

Proof Let

H (t) =
[
a (t) + (T1 − t)

(
‖u0‖2 + ‖v0‖2

)]−δ

, for t ∈ [0, T1] , (5.20)
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where T1 > 0 is a certain constant which will be specified later. Then we get

H ′ (t) = −δ
[
a (t) + (T1 − t)

(
‖u0‖2 + ‖v0‖2

)]−δ−1 [
a′ (t) −

(
‖u0‖2 + ‖v0‖2

)]

= −δH1+ 1
δ (t)

[
a′ (t) −

(
‖u0‖2 + ‖v0‖2

)]
, (5.21)

H ′′ (t) = −δH1+ 2
δ (t) a′′ (t)

[
a (t) + (T1 − t)

(
‖u0‖2 + ‖v0‖2

)]

+δH1+ 2
δ (t) (1 + δ)

[
a′ (t) −

(
‖u0‖2 + ‖v0‖2

)]2
, (5.22)

and

H ′′ (t) = −δH1+ 2
δ (t)V (t) , (5.23)

where

V (t) = a′′ (t)
[
a (t) + (T1 − t)

(
‖u0‖2 + ‖v0‖2

)]
− (1 + δ)

[
a′ (t) −

(
‖u0‖2 + ‖v0‖2

)]2
. (5.24)

For simplicity of calculation, we define

Pu =
∫
Ω u2dx, Ru =

∫
Ω u2

t dx, Qu =
∫ t

0 ‖u‖2
dt, Su =

∫ t

0 ‖ut‖2
dt,

Pv =
∫
Ω v2dx, Rv =

∫
Ω v2

t dx, Qv =
∫ t

0 ‖v‖2
dt, Sv =

∫ t

0 ‖vt‖2
dt.

From (5.5), (5.9) and Hölder inequality, we get

a′ (t) = 2
∫

Ω

(uut + vvt) dx + ‖u0‖2 + ‖v0‖2 + 2
∫ t

0

∫
Ω

(uut + vvt) dxdt (5.25)

≤ 2
(√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv

)
+ ‖u0‖2 + ‖v0‖2

.

If case (i) or (ii) holds, by (5.4) we have

a′′ (t) ≥ (−4 − 8δ)E (0) + 4 (1 + δ) (Ru + Su + Rv + Sv) . (5.26)

Thus, from (5.24)–(5.26) and (5.20), we obtain

V (t) ≥ [(−4 − 8δ)E (0) + 4 (1 + δ) (Ru + Su + Rv + Sv)] H− 1
δ (t)

−4 (1 + δ)
(√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv

)2

.

From (5.3),

a (t) =
∫

Ω

(
u2 + v2

)
dx +

∫ t

0

∫
Ω

(
u2 + v2

)
dxds = Pu + Pv + Qu + Qv

and (5.20), we get

V (t) ≥ (−4 − 8δ)E (0)H−1
δ (t) + 4 (1 + δ)

[
(Ru + Su + Rv + Sv) (T1 − t)

(
‖u0‖2 + ‖v0‖2

)
+ Θ(t)

]
,
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where

Θ (t) = (Ru + Su + Rv + Sv) (Pu + Qu + Pv + Qv) −
(√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv

)2

.

By the Schwarz inequality, and Θ (t) being nonnegative, we have

V (t) ≥ (−4 − 8δ)E (0)H− 1
δ (t) , t ≥ t0. (5.27)

Therefore, by (5.23) and (5.27), we get

H ′′ (t) ≤ 4δ (1 + 2δ)E (0)H1+ 1
δ (t) , t ≥ t0. (5.28)

By Lemma 5.2, we know that H ′ (t) < 0 for t ≥ t0. Multiplying (5.28) by H ′ (t) and integrating it from t0 to
t, we get

H ′2 (t) ≥ a + bH2+ 1
δ (t)

for t ≥ t0, where a, b are defined in (5.16) and (5.17) respectively.

If case (iii) holds, by the steps of case (i), we get a > 0 if and only if

E (0) <

(
a′ (t0) −

(
‖u0‖2 + ‖v0‖2

))2

8
[
a (t0) + (T1 − t0)

(
‖u0‖2 + ‖v0‖2

)] .

Then by Lemma 2.4, there exists a finite time T ∗ such that lim
t−→T∗−

H (t) = 0 and the upper bound of T ∗ is

estimated according to the sign of E (0) . This means that (5.2) holds. �

5.2. Case 2: 1 < m, r < p

We consider problem (1.1) with 1 < m, r < p and q = 0.

Theorem 5.5 Suppose that (A1), 1 < m, r < p and q = 0 holds, and further assume that E (0) < 0; then the

solution of (1.1) blows up at a finite time T ∗,

0 < T ∗ ≤ z1−r (0)
c (1 − r)

,

where z (0) = k1

(
−E (0)1−α1

)
+
∫
Ω

(u0u1 + v0v1) dx, here k1, α1 and r are positive constants.

Proof can be done by following the arguments in [3, 22].
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