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doi:10.3906/mat-1101-71

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

A note on chaos in product maps

Risong LI,∗ Xiaoliang ZHOU
School of Science, Guangdong Ocean University, Zhanjiang, 524025, P. R. China

Received: 13.02.2011 • Accepted: 25.05.2012 • Published Online: 12.06.2013 • Printed: 08.07.2013

Abstract: In this paper, we mainly discuss how chaos conditions on semi-flows carry over to their products. We show

that if two semi-flows (or even one of them) are sensitive, so does their product. On the other side, the product of

two topologically transitive semi-flows need not be topologically transitive. We then provide several sufficient conditions

under which the product of two chaotic semi-flows is chaotic in the sense of Devaney. Also, stronger forms of sensitivity

and transitivity for product systems are studied. In particular, we introduce the notion of ergodic sensitivity and prove

that for any given two (not-necessarily continuous) maps f : X → X and g : Y → Y (resp. semi-flows ψ : R+ ×X → X

and φ : R+ × Y → Y ) on the metric spaces X and Y , f × g (resp. ψ × φ) is ergodically sensitive if and only if f or g

(resp. ψ or φ) is ergodically sensitive. Our results improve and extend some existing ones.
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1. Introduction

Let X and Y be two metric spaces. Denote R+ := [0, +∞). We say that a map φ : R+×X → X is a semi-flow
if it satisfies the following two properties:

(1) φ(0, x) = x for any x ∈ X ;

(2) φ(t, (s, x)) = φ(t + s, x) for any t, s ∈ R+ and any x ∈ X .

Let φ : R+ × X → X and ψ : Y → Y be two (not-necessarily continuous) semi-flows, which we assume

to be chaotic in the sense of Devaney. It is natural to ask whether their product φ × ψ : R+ × X × Y →
X × Y is chaotic (in the same sense), where the product φ × ψ : R+ × X × Y → X × Y is defined by

φ × ψ(t, (x, y)) = (φ(t, x), ψ(t, y)) for any t ∈ R+ and any (x, y) ∈ X × Y . In [5], for two chaotic maps (in the

sense of Devaney), the authors proved by a counterexample that their product need not be chaotic. They then
discussed the transfer of the sub-conditions of chaos, and finally gave some simple sufficient conditions under
which the product of two given chaotic maps is chaotic. These conditions are satisfied for many known chaotic
maps. In this paper we mainly discuss how chaos conditions on semi-flows carry over to their products. We
show that if two semi-flows (or even one of them) are sensitive, so does their product. On the other side, the
product of two topologically transitive semi-flows need not be topologically transitive. We then provide several
sufficient conditions under which the product of two chaotic semi-flows is chaotic in the sense of Devaney. For
continuous self-maps of compact metric spaces, in [13] the author initiated a preliminary study of stronger forms
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of sensitivity formulated in terms of large subsets of N . Mainly he considered syndetic sensitivity and cofinite
sensitivity and established the following results:

(i) Any syndetically transitive, non-minimal map is syndetically sensitive. (This improves the result that

sensitivity is redundant in Devaney’s definition of chaos.)

(ii) Any sensitive map of [0, 1] is cofinitely sensitive.

(iii) Any sensitive subshift of finite type is cofinitely sensitive.

(iv) Any syndetically transitive, infinite subshift is syndetically sensitive.

(v) No Sturmian subshift is cofinitely sensitive.

Also, in the same paper he constructed a transitive, sensitive map which is not syndetically sensitive. In
this paper, some stronger forms of sensitivity and transitivity for (not-necessarily continuous) product systems
are studied. In particular, we introduce the notion of ergodic sensitivity, and it is shown that for any two

not-necessarily continuous maps f : X → X and g : Y → Y (resp. semi-flows ψ : R+ × X → X and

φ : R+ × Y → Y ) on the metric spaces X and Y , f × g (resp. ψ × φ) is ergodically sensitive if and only

if f (resp. ψ ) or g (resp. φ) is ergodically sensitive. Consequently, we improve and extend the results of
Değirmenci et al.

The organization of this paper is as follows. In Section 2, we recall some notations and basic concepts
and introduce the concept of ergodic sensitivity. Main results are established in Section 3.

2. Preliminaries

First, we complete some notations and recall some concepts.

Let (X, d) be a metric space and Z+ = {0, 1, 2, · · ·} . A (not-necessarily continuous) map f : X → X

(resp., a (not-necessarily continuous) semi-flow ψ : R+ × X → X ) is sensitive, if there exists ε > 0 such that

for any x ∈ X and any neighborhood U of x , there exist x0 ∈ U and an integer n > 0 (resp., a real number

t > 0) such that d(fn(x), fn(x0)) > ε (resp., d(ψt(x), ψt(x0)) > ε).

For U, V ⊂ X and a map f : X → X (resp., a semi-flow ψ : R+ × X → X ), write

Nf (U, V ) = {n ∈ Z+ : fn(U)
⋂

V �= ∅}

and

Nψ(U, V ) = {t ∈ R+ : ψ(t, U)
⋂

V �= ∅}.

Obviously,

Nf (U, V ) = {n ∈ Z+ : f−n(V )
⋂

U �= ∅}

and

Nψ(U, V ) = {t ∈ R+ : ψ−1
t (V )

⋂
U �= ∅}.

A (not-necessarily continuous) map f : X → X (resp., a (not-necessarily continuous) semi-flow ψ :

R+ × X → X ) is topologically transitive if for any two non-empty open sets U, V ⊂ X , Nf (U, V ) �= ∅ (resp.,

Nψ(U, V ) �= ∅).

A (not-necessarily continuous) map f : X → X (resp., a (not-necessarily continuous) semi-flow ψ :

R+ × X → X ) is chaotic in the sense of Devaney, if it is sensitive, topologically transitive and, additionally,

666



LI and ZHOU/Turk J Math

the set of all periodic points of f (resp., ψ ) is dense in X (see [7]). For an infinite metric space X and a

continuous map f : X → X (resp., a continuous semi-flow ψ : R+ × X → X ), topological transitivity and

denseness of periodic points imply sensitivity (see [3, 8]). In general, the topological transitivity is not equivalent

to the existence of a dense orbit (see [6, 10]). Given two maps f :→ X and g : Y → Y (resp., two semi-flows

ψ : R+×X → X and φ : R+×X → X ) on metric spaces X and Y with metrics dX and dY respectively, their

product f ×g : X ×Y → X×Y (resp., ψ×φ : R+×X ×Y → X×Y ) is defined by (f ×g)(x, y) = (f(x), g(y))

(resp., (ψ × φ)(t, (x, y)) = (ψ(t, x), φ(t, y))) for any (x, y) ∈ X × Y and any t ∈ R+ , the product metric dX×Y

on X × Y is defined by dX×Y ((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′) for any x ∈ X and any y ∈ Y .

A map f : X → X (resp., a semi-flow ψ : R+ × X → X ) is said to be topologically weakly mixing if

f × f (resp., ψ × ψ ) is topologically transitive.

A map f : X → X (resp., a semi-flow ψ : R+×X → X ) is said to be syndetically transitive if for any two

nonempty open sets U, V ⊂ X , Nf (U, V ) (resp., Nψ(U, V )) is a syndetic set, that is, there is an integer M > 0

(resp., a real number M > 0) such that Nf (U, V )
⋂{n, n +1, · · · n +M} �= ∅ (resp., Nψ(U, V )

⋂
[t, t +M ] �= ∅)

for any n ∈ Z+ (resp., t ∈ R+ ).

A map f : X → X (resp., a semi-flow ψ : R+ ×X → X ) is said to be topologically mixing if for any two

nonempty open sets U, V ⊂ X , Nf (U, V ) (resp., Nψ(U, V )) is a cofinite set, that is, there is an integer M > 0

(resp., a real number M > 0) such that Nf (U, V ) ⊃ {M, M + 1, · · ·} (resp., Nψ(U, V ) ⊃ [M, +∞)).

For any δ > 0 and any U ⊂ X , we define Nf (U, δ) = {n ∈ Z+ : d(fn(x), fn(y)) > δ for some x, y ∈ U}
and Nψ(U, δ) = {t ∈ R+ : d(ψ(t, x), ψ(t, y)) > δ for some x, y ∈ U} .

Similarly, we give the following concepts (see [13]).

A map f : X → X (resp., a semi-flow ψ : R+ × X → X ) is said to be syndetically sensitive if there

exists δ > 0 such that for any nonempty open set U ⊂ X , Nf (U, δ) (resp., Nψ(U, δ)) is a syndetic set.

A map f : X → X (resp., a semi-flow ψ : R+ × X → X ) is said to be cofinitely sensitive if there exists

δ > 0 such that for any nonempty open set U ⊂ X , Nf(U, δ) (resp., Nψ(U, δ)) is a cofinite set.

A map f : X → X (resp., a semi-flow ψ : R+×X → X ) is said to be multi-sensitive if there exists δ > 0

such that for every integer k > 0 and any nonempty open sets U1, U2, · · · , Uk ⊂ X ,
⋂

1≤i≤k

Nf (Ui, δ) �= ∅ (resp.,

⋂
1≤i≤k

Nψ(Ui, δ) �= ∅).

Let S ⊂ Z+ (resp., S ⊂ R+ ). Its upper density is defined by

d̄(S) := lim sup
k→∞

1
k
| S

⋂
Nk |

(resp., lim sup
t→∞

1
t l(S ∩ [0, t]) , where l(S) is the Lebesgue measure of S [11]).

Motivated by the idea in the definition of topological ergodicity introduced by Akin [1], we now introduce
another stronger form of sensitivity as follows.

A map f (resp., a semi-flow ϕ) is called to be ergodically sensitive if there exists a positive constant

δ > 0 satisfying that Nf (V, δ) (resp., Nϕ(V, δ)) has a positive upper density for any nonempty open subset
V ⊂ X .

We note that a map f : X → X (resp., a semi-flow ψ : R+ × X → X ) is sensitive if and only if there
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exists δ > 0 such that for any nonempty open set U ⊂ X , Nf (U, δ) (resp., Nψ(U, δ)) is nonempty.

3. Main results
In this section we improve and extend the results in [5].

By [2] or [9], one can easily prove the following theorem. For completeness, we now give a different proof
here.

Theorem 3.1 If a continuous tree map f : T → T is topologically transitive and is not topologically mixing,
then f × f is not topologically transitive.

Proof Assume on the contrary that the product map f×f is topologically transitive, that is, f is topologically
weakly mixing.

Now we show that if a tree map f is topologically weak mixing, then it is topologically mixing. Let E(T )

and O(T ) denote the set of all ends of T and the set of all branching points of T , respectively. Let

T − O(T ) =
i=t⋃

j=1

Ij ,

where Ij is a connected component of T − O(T ), for all 1 ≤ j ≤ t . Assume that U and V are any connected

open subsets of T −O(T ). Without loss of generality, we may assume that U ⊂ Io
k for some 1 ≤ k ≤ t . Clearly,

f is topologically transitive. By [15], we have P (f) = T . For any v, w ∈ U
⋂

P (f) with v �= w , we suppose v

is a periodic point of period m1 and w is a periodic point of period m2 . Therefore, we obtain that

Of(v)
⋃

Of(w) ⊂ T − E(T ).

Suppose u ∈ V is a periodic point of f with period m3 and m is a common multiple of m1 , m2 and m3 . So,
we get that

Of (v)
⋃

Of(w)
⋃

{u} ⊂ F (fm).

Let g = fm and W =
∞⋃

n=0
gn(V ). Obviously, W is a connected set. Since g is topologically transitive,

by [4, 14] we have W = T and W ⊃ Ik . Therefore for every x ∈ Of (v)
⋃

Of(w), there is a sx > 0 such that

x ∈ gsx(V ). Let

s = max{sx : x ∈ Of(v)
⋃

Of(w)}.

Since

Of(v)
⋃

Of(w) ⊂ F (g),

Of(v)
⋃

Of(w) ⊂ gs(V ) = fsl(V ).

It is easy to see that

fn(V ) ⊃ Of(v)
⋃

Of(w)

for all n ≥ sl . Consequently, we have fn(V ) ⊃ [v, w] for all n ≥ sl . This shows that fn(V )
⋂

U �= ∅ for all
n ≥ sl . This is a contradiction. Thus, the proof is finished. �
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Remark 3.2 Theorem 3.1 extends Example 1 in [5].

Lemma 3.3 Let X and Y be metric spaces with metrics dX and dY , respectively, and let f : X → X and
g : Y → Y be not-necessarily continuous maps. Then the following hold:

1) If f or g is syndetically sensitive, then f × g is syndetically sensitive.

2) If f or g is cofinitely sensitive, then f × g is cofinitely sensitive.

3) If f or g is multi-sensitive, then f × g is multi-sensitive.

4) f × g is ergodically sensitive if and only if f or g is ergodically sensitive.

Proof Let U ⊂ X and V ⊂ Y be nonempty open sets. Then, for any δ > 0, one can easily verify that
Nf×g(U × V, δ) ⊃ Nf (U, δ)

⋃
Ng(V, δ). Therefore, parts 1), 2) and 3) of Lemma 3.3 are true.

From the above argument it is easy to see that, if f or g is ergodically sensitive, then so is the product
map f × g . Now we suppose that the product map f × g is ergodically sensitive and that both f and g are
not ergodically sensitive. This means that for any given δ > 0, there exists a certain open set U ⊂ X with

d(Nf (U, δ
3
)) = 0. Similarly, there exists a certain open set V ⊂ Y with d(Ng(V, δ

3
)) = 0. It is easy to see that

Nf×g(U × V, δ) ⊂ Nf (U, 1
3δ)

⋃
Ng(V, 1

3δ). This implies that

d(Nf×g(U × V, δ)) ≤ d(Nf (U,
1
3
δ)

⋃
Ng(V,

1
3
δ)) ≤ d(Nf (U,

1
3
) + d(Ng(V,

1
3
δ)) ≤ 0.

It is a contradiction. So, the proof of part 4) is completed.

Thus, the entire proof is ended. �

Remark 3.4 We do not know whether the following hold.

1) If f × g is syndetically sensitive, then f or g is syndetically sensitive.

2) If f × g is cofinitely sensitive, then f or g is cofinitely sensitive.

3) If f × g is multi-sensitive, then f or g is multi-sensitive.

For a semi-flow on a metric space, we have the following lemma.

Lemma 3.5 Let X and Y be metric spaces with metrics dX and dY , respectively, and let ψ : R+ × X → X

and φ : R+ × Y → Y be not-necessarily continuous semi-flows. Then the following hold.

1) ψ × φ : R+ × X × Y → X × Y is sensitive if and only if ψ : R+ × X → X or φ : R+ × Y → Y is
sensitive.

2) ψ×φ : R+×X×Y → X×Y is ergodically sensitive if and only if ψ : R+×X → X or φ : R+×Y → Y

is ergodically sensitive.

Proof Let U ⊂ X and V ⊂ Y be nonempty open sets. Then, for any δ > 0, one can easily verify that

Nψ×φ(U × V, δ) ⊃ Nψ(U, δ)
⋃

Nφ(V, δ). Consequently, if ψ × φ : R+ × X × Y → X × Y is sensitive, then

ψ : R+ × X → X or φ : R+ × Y → Y is sensitive.

Assume that both ψ and φ are not sensitive. This means that for any ε > 0 there exists x ∈ X such that

for a certain open set U ⊂ X with x ∈ U , dX(ψt(x), ψt(x′)) ≤ ε
2

for any x′ ∈ U and any t ∈ R+ . Similarly,

there is y ∈ Y such that for a certain open set V ⊂ Y with y ∈ V , dX(φt(y), ψt(y′)) ≤ ε
2 for any y′ ∈ V
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and any t ∈ R+ . This implies that Nψ×φ(U × V, ε) = ∅ . Hence, ψ × φ is not sensitive, which contradicts the

hypothesis. Consequently, this ends the proof of part 1).

From the above argument it is easily seen that if ψ or φ is ergodically sensitive, then so does the product
semi-flow ψ × φ . Now we suppose that the product semi-flow ψ × φ is ergodically sensitive, and that both
ψ and φ are not ergodically sensitive. This implies that for any given δ > 0, there exists a certain open set

U ⊂ X with d(Nψ(U, δ
3 )) = 0. Similarly, there exists a certain open set V ⊂ Y with d(Nφ(V, δ

3)) = 0. It is

easy to see that Nψ×φ(U × V, δ) ⊂ Nψ(U, 1
3δ)

⋃
Nφ(V, 1

3δ). This implies that

d(Nψ×φ(U × V, δ)) ≤ d(Nψ(U,
1
3
δ)

⋃
Nφ(V,

1
3
δ)) ≤ d(Nψ(U,

1
3
) + d(Nφ(V,

1
3
δ)) ≤ 0.

It is a contradiction. So, the proof of part 2) is completed.

Thus, the entire proof is finished. �

Remark 3.6 Lemmas 3.3 and 3.5 improve and extend Lemma 1 in [5].

Remark 3.7 We do not know whether the following are true:

1) If ψ × φ is syndetically sensitive, then ψ or φ is syndetically sensitive.

2) If ψ × φ is cofinitely sensitive, then ψ or φ is cofinitely sensitive.

3) If ψ × φ is multi-sensitive, then ψ or φ is multi-sensitive.

Remark 3.8 We know from Remark 4 in [5] that the map doubling the circle is locally eventually onto and

hence topologically mixing. Clearly, this map is continuous. By Proposition 2 from [13] the map doubling the

circle is cofinitely sensitive. So, Lemma 3.3 shows that the product map under Remark 6 in [5] is cofinitely

sensitive. Consequently, this result improves the result of Remark 6 in [5], and it also shows that the converse

of Proposition 2 from [13] is not true.

Lemma 3.9 Let f : X → X and g : Y → Y be (not-necessarily continuous) maps. Then the following hold.

1) If the product map f × g is syndetically transitive, then f and g are syndetically transitive.

2) If the product map f × g is topologically weakly mixing, then f and g are topologically weakly mixing.

3) If the product map f × g is topologically mixing, then f and g are topologically mixing.

Proof Let U1, U2 ⊂ X and V1, V2 ⊂ Y be non-empty open sets. Then the sets U = U1 × Y , V = U2 × Y ,
P = X × V1 and Q = X × V2 are open in X × Y . Clearly, Nf×g(U, V ) = Nf (U1, U2) and Nf×g(P, Q) =

Ng(V1, V2). Therefore, by the definitions we know that Lemma 3.9 holds. Thus, the proof is finished. �

Similarly, for a semi-flow on a metric space, we have the following lemma.

Lemma 3.10 Let ψ : R+ × X → X and φ : R+ × Y → Y be (not-necessarily continuous) semi-flows. Then
the following hold.

1) If the product semi-flow ψ × φ is topologically transitive, then ψ and φ are topologically transitive.

2) If the product semi-flow ψ × φ is topologically weakly mixing, then ψ and φ are topologically weakly
mixing.

3) If the product semi-flow ψ × φ is topologically weakly mixing, then ψ and φ are topologically weakly
mixing.
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Proof Let U1, U2 ⊂ X and V1, V2 ⊂ Y be non-empty open sets. Then the sets U = U1 × Y , V = U2 × Y ,
P = X × V1 and Q = X × V2 are open in X × Y . Clearly, Nψ×φ(U, V ) = Nψ(U1, U2) and Nψ×φ(P, Q) =

Nφ(V1, V2). Therefore, by the definitions we know that Lemma 3.10 holds. Thus, the proof is finished. �

Lemma 3.11 Let f : X → X be a continuous map and g : Y → Y be a (not-necessarily continuous) map. If
g is topologically mixing, then the following hold.

1) If f is topologically transitive, then so does the product map f × g .

2) If f is syndetically transitive, then so does the product map f × g .

3) If f is topologically weakly mixing, then so does the product map f × g .

Proof Given nonempty open sets W1, W2 ⊂ X × Y , there exist nonempty open sets U1, U2 ⊂ X and
V1, V2 ⊂ Y with U1 × V1 ⊂ W1 and U2 × V2 ⊂ W2 . Obviously,

Nf×g(U1 × V1, U2 × V2) = Nf (U1, U2)
⋂

Ng(V1, V2).

As g is topologically mixing, there is an integer M > 0 such that

Ng(V1, V2) ⊃ {M, M + 1, · · ·}.

Since f is continuous, f−M (U2) is a nonempty and open subset of X .

(1) If f is topologically transitive, by hypothesis and the definition, there exists l ∈ Z+ such that

Nf (U1, f
−M (U2)) �= ∅,

which implies that

Nf (U1, U2)
⋂

Ng(V1, V2) �= ∅.

Consequently, the product map f × g is topologically transitive.

(2) If f is syndetically transitive, by hypothesis and the definition, there exists an integer l > 0 such
that

Nf (U1, f
−M (U2))

⋂
{n, n + 1, · · · , n + l} �= ∅

for every n ∈ Z+ , which implies that

Nf (U1, U2)
⋂

Ng(V1, V2)
⋂

{n, n + 1, · · · , n + l + M} �= ∅.

Consequently, the product map f × g is syndetically transitive.

(3) Since the proof of part 3) is similar to that of part 1), it is omitted here.

Thus, the entire proof is completed. �

Similarly, we obtain the following lemma.

Lemma 3.12 Let ψ : R+ × X → X be a continuous semi-flow and φ : R+ × Y → Y be a (not-necessarily

continuous) semi-flow. If φ is topologically mixing, then the following hold.

1) If ψ is topologically transitive, then so does the product semi-flow ψ × φ .
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2) If ψ is syndetically transitive, then so does the product semi-flow ψ × φ .

3) If ψ is topologically weakly mixing, then so does the product semi-flow ψ × φ .

4) If ψ is topologically mixing, then so does the product semi-flow ψ × φ .

Proof For any nonempty open sets W1, W2 ⊂ X × Y , there exist nonempty open sets U1, U2 ⊂ X and
V1, V2 ⊂ Y with U1 × V1 ⊂ W1 and U2 × V2 ⊂ W2 . Obviously,

Nψ×φ(U1 × V1, U2 × V2) = Nψ(U1, U2)
⋂

Nφ(V1, V2).

As φ is topologically mixing, there is M > 0 such that

Nφ(V1, V2) ⊃ [M, +∞).

Since ψ is continuous, ψ−1
M (U2) is a nonempty and open subset of X .

(1) If ψ is topologically transitive, by hypothesis and the definition, there exists l ∈ R+ such that

Nψ(U1, ψ
−1
M (U2)) �= ∅,

which implies that

Nψ(U1 , U2)
⋂

Nφ(V1, V2) �= ∅.

Consequently, the product semi-flow ψ × φ is topologically transitive.

(2) If ψ is syndetically transitive, by hypothesis and the definition, there exists l > 0 such that

Nψ(U1, φ
−1
M (U2))

⋂
[t, t + l] �= ∅

for every t ∈ R+ , which implies that

Nψ(U1 , U2)
⋂

Nφ(V1, V2)
⋂

[t, t + l + M ] �= ∅.

Consequently, the product semi-flow ψ × φ is syndetically transitive.

(3) Since the proof of part 3) is similar to that of part 1), it is omitted here.

(4) Since the proof of part 4) is similar to that of part 1), it is omitted here.

Thus, the entire proof is completed. �

By Lemma 3.11, one can easily prove the following theorem which is from [5].

Theorem 3.13 Let f : X → X be a chaotic continuous map on the metric space X and g : Y → Y be a chaotic
(not-necessarily continuous) map on the metric space Y . If g is topologically mixing, then f×g : X×Y → X×Y

is chaotic.

Theorem 3.14 Let ψ : R+ × X → X be a chaotic continuous semi-flow on the metric space X and φ :

R+ × Y → Y be a (not-necessarily continuous) semi-flow on the metric space Y . If φ is topologically mixing

and the set of all periodic points of ψ × φ is dense in X × Y , then ψ × φ : R+ × X × Y → X × Y is chaotic.

Proof By the definition and Lemmas 3.5 and 3.12, ψ × φ : R+ ×X × Y → X × Y is chaotic. Thus, the proof
is completed. �
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Remark 3.15 Theorem 3.14 extends Theorems 1 and 2 in [5] to semi-flows.

Given a metric space X and a not-necessarily continuous map f : X → X , we say that f has the Touhey
property on X if given U and V , non-empty open subsets of X , there exist a periodic point x ∈ U and an

integer k ≥ 0 such that fk(x) ∈ V , that is, if every pair of non-empty open subsets of X shares a periodic

orbit (see [5]). Similarly, we give its corresponding definition for a semi-flow.

Definition 3.16 Given a metric space X and a not-necessarily continuous semi-flow ψ : R+×X → X , we say
that ψ has the Touhey property on X if given U and V , non-empty open subsets of X , there exist a periodic
point x ∈ U and an real number t ≥ 0 such that ψ(t, x) ∈ V .

Theorem 3.17 Let X be a metric space and assume that ψ : R+ × X → X is a continuous semi-flow

with the Touhey property. Let φ : R+ × Y → Y be a not-necessarily continuous, chaotic and topologically
mixing semi-flow on the metric space Y . If the set of all periodic points of ψ × φ is dense in X × Y , then

ψ × φ : R+ × X × Y → X × Y is chaotic.

Proof By the definition and Lemmas 3.5 and 3.12, it is enough to show that ψ ×φ : R+ ×X ×Y → X ×Y is
topologically transitive. Let U1, U2 ⊂ X and V1, V2 ⊂ Y be nonempty open sets. Since φ is topologically mix-
ing, there exists t0 > 0 with φ(t, V1)

⋂
V2 �= ∅ for all t ≥ t0 . By definition there exists a periodic point x ∈ U1

whose orbit enters U2 . Let L be the period of x . Then there exists L′ with 0 ≤ L′ < L and ψ(L′, x) ∈ U2 .

This means that ψ(nL + L′, x) ∈ U2 for any integer n > 0. Choose n > 0 such that L′′ = nL + L′ ≥ t0 .

Therefore, there exists a point y ∈ V1 with φ(L′′, y) ∈ V2 . Consequently, (x, y) ∈ ψ×φ(L′′, U1×V1)
⋂

(U2×V2),

which implies that ψ × φ : R+ × X × Y → X × Y is topologically transitive. Thus, the proof is completed. �

Remark 3.18 Theorem 3.17 extends Theorem 3 in [5] to semi-flows.

Definition 3.19 Let f : X → X (resp., ψ : R+ × X → X ) be a (not-necessarily continuous) map (resp.,

semi-flow) on the topological space X . If for every nonempty open subset U ⊂ X there exists an integer n0 > 0

(resp., a real number t0 > 0) such that for every n ≥ n0 (resp., t ≥ t0 ), fn(U) = X (resp., ψt(U) = X ), then

f (resp., ψ ) is said to be locally eventually onto.

Theorem 3.20 Let f : X → X and g : Y → Y (resp., ψ : R+ × X → X and φ : R+ × Y → Y ) be two

(not-necessarily continuous) locally eventually onto maps (resp., semi-flows) on the topological spaces X and

Y respectively. Then the product map f × g (resp., the product semi-flow ψ × φ) is locally eventually onto.

Proof By the definition, the proof is easy and is omitted. �

Remark 3.21 Theorem 3.20 shows that the products of any two of the maps under Remark 4 in [5] are locally
eventually onto and hence topologically mixing.

Now we present an example of a semi-flow exhibiting Devaney chaos.

For a continuous map f : X → X on a compact metric space X with metric d , we define an equivalence
relation R in the product space [0, 1]× X as follows.
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For any (t1, x1), (t2, x2) ∈ [0, 1]× X , (t1, x1)R(t2, x2) if and only if one of the following conditions:

(1) (t1, x1) = (t2, x2);

(2) t1 = 1, t2 = 0 and x2 = f(x1).

Write Y = ([0, 1] × X)/R . From [16] we know that the quotient space Y is a compact metric space.
For a continuous map f : X → X on a compact metric space X with metric d , its suspended semi-flow

ϕ(f) : R+ × Y → Y is defined by ϕ(f)(r, [(t, x)]) = [t + r − n, fn(x)] where n ≤ t + r < n + 1, r ∈ R+ and

[(t, x)] ∈ Y .

Example 3.22 Let f : X → X be a continuous map on a compact metric space X with a metric d . If f is
chaotic in the sense of Devaney, then so does its suspended semi-flow ϕ(f) .

Proof By the definitions and [16] it is easily seen that x ∈ X is a periodic point of f if and only if [(t, x)] is

a periodic point of ϕ(f) for any 0 ≤ t < 1, and that f is topologically transitive if and only if so does ϕ(f).

So, the set of all periodic points of f is dense in X if and only if the set of all periodic points of ϕ(f) is dense

in Y . Also, by [16] one can easily prove that f is sensitive if and only if so is ϕ(f). By hypothesis and the

definition, ϕ(f) is chaotic in the sense of Devaney. Thus, the proof is complete. �

Remark 3.23 The results of Example 3.22 were first obtained and shown by Lianfa He and Zhenguo Zhang in
[17].
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