Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $676-692$
(c) TÜBİTAK
doi:10.3906/mat-1203-5

Generalized Sobolev-Shubin spaces, boundedness and Schatten class properties of Toeplitz operators

Ayşe SANDIKÇI,* Ahmet Turan GÜRKANLI

Ondokuz Mayıs University Faculty of Arts and Sciences, Department of Mathematics, 55139, Kurupelit, Samsun, Turkey

| Received: 02.03 .2012 | Accepted: 06.07 .2012 | • | Published Online: 12.06 .2013 | \bullet | Printed: 08.07 .2013 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

Let w and ω be two weight functions on $\mathbb{R}^{2 d}$ and $1 \leq p, q \leq \infty$. Also let $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ denote the subspace of tempered distributions $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ consisting of $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that the Gabor transform $V_{g} f$ of f is in the weighted Lorentz space $L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$. In the present paper we define a space $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ as counter image of $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ under Toeplitz operator with symbol w. We show that $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is a generalization of usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$. We also investigate the boundedness and Schatten-class properties of Toeplitz operators.

Key words: Sobolev-Shubin space, Gabor transform, modulation space, weighted Lorentz space, Toeplitz operators, Schatten-class

1. Introduction

Throughout this paper we denote by $\mathcal{S}\left(\mathbb{R}^{d}\right)$ the Schwartz space on \mathbb{R}^{d} and by $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ its topological dual. Let f be a measurable complex valued function on \mathbb{R}^{d}. The translation and modulation operators are defined as $T_{x} f(t)=f(t-x)$ and $M_{w} f(t)=e^{2 \pi i w t} f(t)$ for $x, w \in \mathbb{R}^{d}$, respectively. The following canonical commutation relation holds:

$$
T_{x} M_{w}=e^{-2 \pi i x w} M_{w} T_{x}
$$

between $T_{x} M_{w}$ and $M_{w} T_{x}$ operators which are called time-frequency shifts [14]. A weight function w on \mathbb{R}^{d} is a non-negative, continuous and locally integrable function. w is called submultiplicative if $w(x+y) \leq w(x) w(y)$ for all $x, y \in \mathbb{R}^{d}$. Let v be a submultiplicative weight function on \mathbb{R}^{d}. A weight function w on \mathbb{R}^{d} is v-moderate if $w(x+y) \leq v(x) w(y)$ for all $x, y \in \mathbb{R}^{d}$. If

$$
w(x) \leq C v_{s}(x)=C\left(1+|x|^{2}\right)^{\frac{s}{2}}
$$

for some $C>0, s \geq 0$ and $x \in \mathbb{R}^{d}$, then w is called polynomial growth. Let w_{1} and w_{2} be two weights. We say that $w_{2} \preceq w_{1}$ if and only if there exists $c>0$ such that $w_{2}(x) \leq c w_{1}(x)$ for all $x \in \mathbb{R}^{d}$. Two functions are called equivalent and we write $w_{1} \approx w_{2}$, if $w_{2} \preceq w_{1}$ and $w_{1} \preceq w_{2}$.

Let w be a weight function on \mathbb{R}^{d}. Then the weighted L^{p} space is defined by

[^0]$$
L_{w}^{p}\left(\mathbb{R}^{d}\right)=\left\{f \mid f w \in L^{p}\left(\mathbb{R}^{d}\right)\right\},
$$
for $1 \leq p \leq \infty . L_{w}^{p}\left(\mathbb{R}^{d}\right)$ is a Banach space under the norm $\|f\|_{p, w}=\|f w\|_{p}$. Moreover, if w is submultiplicative and $w \geq 1$ then $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ is a Banach convolution algebra. It is called a Beurling algebra [9] .

Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. Then the Fourier transform \hat{f} (or $\mathcal{F} f$) of f is given by

$$
\hat{f}(t)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i\langle x, t\rangle} d x
$$

where $\langle x, t\rangle=\sum_{i=1}^{d} x_{i} t_{i}$ is the usual scalar product on \mathbb{R}^{d}.
Given any fix function $g \neq 0$, which is called the window function, the short-time Fourier transform (STFT) or Gabor transform of a function f with respect to g is given by

$$
V_{g} f(x, w)=\int_{\mathbb{R}^{d}} f(t) \overline{g(t-x)} e^{-2 \pi i t w} d t
$$

for $x, w \in \mathbb{R}^{d},[8],[10],[21]$. It is known that if $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$ then $V_{g} f \in L^{2}\left(\mathbb{R}^{2 d}\right)$ and $V_{g} f$ is uniformly continuous [14].

Fix a non-zero window $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $1 \leq p, q \leq \infty$. Let w be a weight function of at most polynomial growth and v_{s} - moderate on $\mathbb{R}^{2 d}$. That means

$$
w\left(z_{1}+z_{2}\right) \leq C\left(1+\left|z_{1}\right|^{2}\right)^{\frac{s}{2}} w\left(z_{2}\right)
$$

for all $z_{1}, z_{2} \in \mathbb{R}^{2 d}$ and for some $C>0, s \geq 0$. Then the modulation space $M_{w}^{p, q}\left(\mathbb{R}^{d}\right)$ consists of all tempered distributions $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that $V_{g} f \in L_{w}^{p, q}\left(\mathbb{R}^{2 d}\right)$ and $\|f\|_{M_{w}^{p, q}}=\left\|V_{g} f\right\|_{L_{w}^{p, q}}$ is finite, where $L_{w}^{p, q}\left(\mathbb{R}^{2 d}\right)$ the weighted mixed-norm space. If $p=q$, and then we write $M_{w}^{p}\left(\mathbb{R}^{d}\right)$ instead of $M_{w}^{p, p}\left(\mathbb{R}^{d}\right)$ and if $w=1$, then we have standard modulation space $M^{p, q}\left(\mathbb{R}^{d}\right)$. Moreover, if $p=q=2$ and v_{s} is weight function in polynomial type, that means $v_{s}(z)=\langle z\rangle^{s}=\left(1+|z|^{2}\right)^{\frac{s}{2}}$ for $z \in \mathbb{R}^{2 d}$ and $s \in \mathbb{R}$, then we obtain the space $M_{s}^{2}\left(\mathbb{R}^{d}\right)$ [14].

Let $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ and $w(x, y)$ be a suitable weight function defined on the time-frequency plane $\mathbb{R}^{2 d}$. The Toeplitz operator is given by the formula

$$
\left(T p_{g}(w) f_{1}, f_{2}\right)=\left(w V_{g} f_{1}, V_{g} f_{2}\right)
$$

for all $f_{1}, f_{2} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. This implies that

$$
T p_{g}(w) f=V_{g}^{*}\left(w V_{g} f\right),
$$

where V_{g}^{*} is the adjoint for V_{g}. In this work we shall extend this definition to more general situations. The fundamental objects in the definition of Toeplitz operators are Gabor transforms. Hence time-frequency
techniques are used for the analysis of Toeplitz operators. Also, Toeplitz operators are localization operators whose symbols $w(x, y)$ belong to suitable classes. Since the Gabor transform is injective, it is easy to show that the Toeplitz operator is injective.

For a given symbol $\sigma \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2 d}\right)$, the pseudodifferential operator L_{σ} is defined to be

$$
L_{\sigma} f=\iint_{\mathbb{R}^{2 d}} \hat{\sigma}(\xi, u) e^{-\pi i \xi u} T_{-u} M_{\xi} f d u d \xi
$$

The map $\sigma \rightarrow L_{\sigma}$ is called the Weyl transform, σ and $\hat{\sigma}$ are called the Weyl symbol and the spreading function of the operator L_{σ}, respectively.

Let X be a separable Hilbert space, $B(X)$ be the space of bounded linear operators on X and $A \in B(X)$ be a compact operator. Then the linear operator $|A|: X \rightarrow X$ is positive and compact. Let $\left\{\varphi_{k}: k=1,2, \ldots\right\}$ be an orthonormal basis for X consisting of eigenvectors of $|A|$ and let $s_{k}(A)$ be the eigenvalue of $|A|$ corresponding to the eigenvector $\varphi_{k},(k=1,2, \ldots)$.

A compact operator $A: X \rightarrow X$ is said to be in the Schatten-von Neumann class $S_{p}, p \in[1, \infty)$ if

$$
\sum_{k=1}^{\infty} s_{k}(A)^{p}<\infty
$$

It can be shown that S_{p} is a Banach space with the norm

$$
\|A\|_{S_{p}}=\left\{\sum_{k=1}^{\infty} s_{k}(A)^{p}\right\}^{\frac{1}{p}}, \quad A \in S_{p}
$$

It is customary to call S_{1} the trace class and S_{2} the Hilbert-Schmidt class.
The Weyl transform $\sigma \rightarrow L_{\sigma}$ is a unitary map from $L^{2}\left(\mathbb{R}^{2 d}\right)$ onto the algebra of Hilbert-Schmidt operators on $L^{2}\left(\mathbb{R}^{d}\right)$ under the Hilbert-Schmidt norm. This property is known as Pool's Theorem [14].

Let $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ be a window function and $w(x, y)=\left(1+|x|^{2}+|y|^{2}\right)^{\frac{s}{2}}$ for $s \in \mathbb{R}$. Then the usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$ is the set of all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\|f\|_{Q_{s}}=\left\|T p_{g}(w) f\right\|_{L^{2}}<\infty
$$

The usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$ coincides with $M_{s}^{2}\left(\mathbb{R}^{d}\right)$; see [2], [3], [4]. A generalization of usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$ is given in [2].

Let f be a complex-valued measurable function defined on the measure space ($G, w d \mu$), where w is a weight function on G. For $y>0$, we define

$$
\lambda_{f}(y)=w\{x \in G| | f(x) \mid>y\}=\int_{\{x \in G \| f(x) \mid>y\}} w(x) d \mu(x)
$$

The function $\lambda_{f}(y)$ is called the distribution function of f. The rearrangement of f is defined by

$$
f^{*}(t)=\inf \left\{y>0 \mid \lambda_{f}(y) \leq t\right\}=\sup \left\{y>0 \mid \lambda_{f}(y)>t\right\}
$$

for $t>0$. The average function of f is also defined by

$$
f^{* *}(x)=\frac{1}{x} \int_{0}^{x} f^{*}(t) d t
$$

Moreover, λ_{f}, f^{*} and $f^{* *}$ are nonincreasing and right continuous functions on $(0, \infty)$. The weighted Lorentz space $L(p, q, w d \mu)(G)$ is defined to be the vector space of all (equivalent classes) measurable functions f, such that $\|f\|_{p, q, w}^{*}<\infty$, where

$$
\begin{array}{ll}
\|f\|_{p, q, w}^{*}=\left(\frac{q}{p} \int_{0}^{\infty} t^{\frac{q}{p}-1}\left[f^{*}(t)\right]^{q} d t\right)^{\frac{1}{q}}, & 0<p, q<\infty \\
\|f\|_{p, q, w}^{*}=\sup _{t>0} t^{\frac{1}{p}} f^{*}(t), & 0<p \leq q=\infty
\end{array}
$$

It is known that $\left(L(p, q, w d \mu)(G),\|\cdot\|_{p, q, w}\right)$ is a Banach space, where [5]:

$$
\begin{array}{rlr}
\|f\|_{p, q, w}=\left(\frac{q}{p} \int_{0}^{\infty} t^{\frac{q}{p}-1}\left[f^{* *}(t)\right]^{q} d t\right)^{\frac{1}{q}}, 1<p<\infty, 1 \leq q<\infty \\
\|f\|_{p, q, w}=\sup _{t>0} t^{\frac{1}{p}} f^{* *}(t) & 1<p \leq q=\infty
\end{array}
$$

If $w=1$, then weighted Lorentz space $L(p, q, w d \mu)(G)$ is the usual Lorentz space $L(p, q)(G)$ [13], [18], [19], [20].

Let $1 \leq r, s \leq \infty$ and a weight w be given. Fix a compact $Q \subset \mathbb{R}^{d}$ with nonempty interior. Then the Wiener amalgam space $W\left(L^{r}, L_{w}^{s}\right)\left(\mathbb{R}^{d}\right)$ with local component $L^{r}\left(\mathbb{R}^{d}\right)$ and global component $L_{w}^{s}\left(\mathbb{R}^{d}\right)$ is defined as the space of all measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that $f \chi_{K} \in L^{r}\left(\mathbb{R}^{d}\right)$ for each compact subset $K \subset \mathbb{R}^{d}$, for which the norm

$$
\|f\|_{W\left(L^{r}, L_{w}^{s}\right)}=\left\|F_{f}\right\|_{s, w}=\| \| f \chi_{Q+x}\left\|_{r}\right\|_{s, w}
$$

is finite, where χ_{K} is the characteristic function of K and

$$
F_{f}(x)=\left\|f \chi_{Q+x}\right\|_{r} \in L_{w}^{s}\left(\mathbb{R}^{d}\right)
$$

It is known that if $r_{1} \geq r_{2}$ and $s_{1} \leq s_{2}$ then $W\left(L^{r_{1}}, L_{w}^{s_{1}}\right)\left(\mathbb{R}^{d}\right) \subset W\left(L^{r_{2}}, L_{w}^{s_{2}}\right)\left(\mathbb{R}^{d}\right)$. If w is moderate and $r=s$ then $W\left(L^{r}, L_{w}^{r}\right)\left(\mathbb{R}^{d}\right)=L_{w}^{r}\left(\mathbb{R}^{d}\right)$. If $w \approx C$, then $W\left(L^{r}, L_{w}^{s}\right)\left(\mathbb{R}^{d}\right)$ is the usual Wiener amalgam space $W\left(L^{r}, L^{s}\right)\left(\mathbb{R}^{d}\right)$, where C is a constant number [7], [11], [16], [17].

2. Generalized Sobolev-Shubin spaces

In this section we give another generalization of the usual Sobolev -Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$. First we mention a generalization of the usual modulation space $M^{p, q}\left(\mathbb{R}^{d}\right)$.

Let ω be a weight function on $\mathbb{R}^{2 d}$ and $1 \leq p, q \leq \infty$. Fix a window function $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}$. Also let $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ denote the subspace of tempered distributions $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ consisting of $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that the Gabor transform $V_{g} f$ of f is in the weighted Lorentz space $L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$. We endow it with the norm $\|f\|_{M(p, q, \omega)}=\left\|V_{g} f\right\|_{p, q, \omega}$, where $\|\cdot\|_{p, q, \omega}$ is the norm of the weighted Lorentz space. It is known that $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ is a Banach space and different windows yield equivalent norms [22]. If $\omega=1$, then $M(p, q, \omega)\left(\mathbb{R}^{d}\right)=M(p, q)\left(\mathbb{R}^{d}\right)[12]$. Also if $\omega=1$ and $p=q$, then $M(p, q, \omega)\left(\mathbb{R}^{d}\right)=M(p, p)\left(\mathbb{R}^{d}\right)=$ $M^{p, p}\left(\mathbb{R}^{d}\right)=M^{p}\left(\mathbb{R}^{d}\right)$. That means $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ is a generalization of the usual modulation space $M^{p}\left(\mathbb{R}^{d}\right)$. The space $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ is defined and studied in [22].

Definition 1 Let w and ω be two weight functions on $\mathbb{R}^{2 d}$ and $1 \leq p, q \leq \infty$. Fix a non-zero window $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Let us denote by $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ the subspace of all tempered distributions $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that the Toeplitz transform $T p_{g}(w) f$ of f is in the space $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$. Since the Toeplitz operator is injective, it is easy to see that

$$
\|f\|_{Q}=\left\|T p_{g}(w) f\right\|_{M(p, q, \omega)}
$$

is a norm on the vector space $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$.
Proposition 2 Let $1<p<\infty, 1 \leq q<\infty$ and ω be a weight function of polynomial type on $\mathbb{R}^{2 d}$. Then the space $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is independent of the choice of the window function $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
Proof It is known by Proposition 2.6 in [22] that $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ is independent of the choice of the window function $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Let $g, g_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Take any $f \in Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$. Since

$$
C_{1}\left\|T p_{g}(w) f\right\|_{M(p, q, \omega)} \leq\left\|T p_{g_{0}}(w) f\right\|_{M(p, q, \omega)} \leq C_{2}\left\|T p_{g}(w) f\right\|_{M(p, q, \omega)}
$$

for some $C_{1}, C_{2}>0$, then $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is also independent of the choice of the windows.

Remark 3 Let $1 \leq p, q \leq \infty$. In [2] a space $Q_{(g, w)}^{p, q}\left(\mathbb{R}^{d}\right)$ is defined as counter image of standard modulation space $M^{p, q}\left(\mathbb{R}^{d}\right)$ under the Toeplitz operator with symbol w. It is proven in Theorem 3.5 and Corollary 3.6 in $[2]$ that $Q_{(g, w)}^{p, q}\left(\mathbb{R}^{d}\right)=M_{w}^{p, q}\left(\mathbb{R}^{d}\right)$ for certain w, where $M_{w}^{p, q}\left(\mathbb{R}^{d}\right)$ is the weighted modulation space. This relation was extended in [15] to all polynomially moderate weights. Let us take $w(x, y)=\left(1+|x|^{2}+|y|^{2}\right)^{\frac{s}{2}}$ for $s \in \mathbb{R}$. It is known that $M_{s}^{2,2}\left(\mathbb{R}^{d}\right)$ coincides with the usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$, where $M_{s}^{2,2}\left(\mathbb{R}^{d}\right)=$ $M_{w}^{2,2}\left(\mathbb{R}^{d}\right)[2],[4]$. Thus $Q_{(g, w)}^{p, q}\left(\mathbb{R}^{d}\right)$ is a generalization of the usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$.

Now we return to our space $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$. Since

$$
M(p, q, \omega)\left(\mathbb{R}^{d}\right)=M(p, q)\left(\mathbb{R}^{d}\right)=M^{p, q}\left(\mathbb{R}^{d}\right)
$$

for $p=q, \omega=1$, and $Q_{(g, w)}^{p, q}\left(\mathbb{R}^{d}\right)$ is a generalization of the usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$, then by the above remarks $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is also an another generalization of usual Sobolev-Shubin space $Q_{s}\left(\mathbb{R}^{d}\right)$.

It is known that $M_{w}^{p, p}\left(\mathbb{R}^{d}\right)$ is a Banach space [14]. We know by Theorem 3.5 and Corollary 3.6 in [2] that $Q_{(g, w)}^{p, p}\left(\mathbb{R}^{d}\right)=M_{w}^{p, p}\left(\mathbb{R}^{d}\right)$ for certain w. We also know that $Q_{g, w}^{M(p, p, \omega)}\left(\mathbb{R}^{d}\right)=Q_{(g, w)}^{p, p}\left(\mathbb{R}^{d}\right)$ for $\omega=1$. Then

$$
Q_{g, w}^{M(p, p, \omega)}\left(\mathbb{R}^{d}\right)=Q_{g, w}^{M(p, p)}\left(\mathbb{R}^{d}\right)=Q_{(g, w)}^{p, p}\left(\mathbb{R}^{d}\right)=M_{w}^{p, p}\left(\mathbb{R}^{d}\right)
$$

for certain w and for $\omega=1$. Hence $\left(Q_{g, w}^{M(p, p, \omega)}\left(\mathbb{R}^{d}\right),\|\cdot\|_{Q}\right)$ is a Banach space for certain w and for $\omega=1$.

Theorem 4 Let ω be a weight function of polynomial type on $\mathbb{R}^{2 d}$.

1. If w is a submultiplicative weight function, then the space $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is invariant under the time-frequency shifts.
2. If w is a bounded weight function and $1<p<\infty, 1 \leq q<\infty$, then the function $z=\left(z_{1}, z_{2}\right) \rightarrow$ $\pi(z) f=M_{z_{2}} T_{z_{1}} f$ of $\mathbb{R}^{2 d}$ into $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is continuous.

Proof 1. Let $f \in Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ and $z_{1}, z_{2} \in \mathbb{R}^{d}$. Then we have $T p_{g}(w) f=V_{g}^{*}\left(w V_{g} f\right) \in M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ and $V_{g} V_{g}^{*}\left(w V_{g} f\right) \in L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$. By using the equalities

$$
\overline{V_{\gamma}\left(M_{t} T_{u} g\right)(x, y)}=e^{-2 \pi i x(t-y)} V_{g} \gamma(u-x, t-y)
$$

and

$$
T_{\left(z_{1}, z_{2}\right)} V_{g} f(x, y)=e^{2 \pi i\left(y-z_{2}\right) z_{1}} V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)(x, y),
$$

we write

$$
\begin{align*}
& \left|V_{g} V_{g}^{*}\left(w V_{g} \pi(z) f\right)(u, t)\right| \tag{2.1}\\
= & \left|V_{g} V_{g}^{*}\left(w V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)\right)(u, t)\right|=\left|\left\langle w V_{g}\left(M_{z_{2}} T_{z_{1}} f\right), V_{g}\left(M_{t} T_{u} g\right)\right\rangle\right| \\
= & \left|\iint_{R^{2 d}} w(x, y) V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)(x, y) V_{g} g(u-x, t-y) e^{-2 \pi i x(t-y)} d x d y\right| \\
= & \left|\iint_{R^{2 d}} w(x, y) e^{-2 \pi i\left(y-z_{2}\right) z_{1}} T_{\left(z_{1}, z_{2}\right)} V_{g} f(x, y) V_{g} g(u-x, t-y) e^{-2 \pi i x(t-y)} d x d y\right| \\
\leq & \iint_{R^{2 d}}\left|w\left(z_{1}+v_{1}, z_{2}+v_{2}\right)\right|\left|V_{g} f\left(v_{1}, v_{2}\right)\right|\left|V_{g} g\left(\left(u-v_{1}\right)-z_{1},\left(t-v_{2}\right)-z_{2}\right)\right| d v_{1} d v_{2} \\
\leq & \int_{R^{2 d}} w\left(z_{1}, z_{2}\right)\left|w\left(v_{1}, v_{2}\right)\right|\left|V_{g} f\left(v_{1}, v_{2}\right)\right|\left|T_{\left(z_{1}, z_{2}\right)} V_{g} g\left(\left(u-v_{1}\right),\left(t-v_{2}\right)\right)\right| d v_{1} d v_{2} \\
= & w\left(z_{1}, z_{2}\right)\left(\left|w V_{g} f\right| *\left|T_{\left(z_{1}, z_{2}\right)} V_{g} g\right|\right)(u, t) .
\end{align*}
$$

As ω is a weight function of polynomial type and $V_{g} g \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$, then $V_{g} g \in L_{\omega}^{1}\left(\mathbb{R}^{2 d}\right)$. Also, by Proposition 3.1 in [5], $L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$ is a Banach module over $L_{\omega}^{1}\left(\mathbb{R}^{2 d}\right)$ and by Theorem 2.5 in [22], $w V_{g} f \in$
$L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$. Then by (2.1) we obtain

$$
\begin{aligned}
\|\pi(z) f\|_{Q} & =\left\|M_{z_{2}} T_{z_{1}} f\right\|_{Q}=\left\|V_{g}^{*}\left(w V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)\right)\right\|_{M(p, q, \omega)} \\
& =\left\|V_{g} V_{g}^{*}\left(w V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)\right)\right\|_{p, q, \omega} \\
& \leq w\left(z_{1}, z_{2}\right)\left\|\left|w V_{g} f\right| *\left|T_{\left(z_{1}, z_{2}\right)} V_{g} g\right|\right\|_{p, q, \omega} \\
& \leq w\left(z_{1}, z_{2}\right)\left\|w V_{g} f\right\|_{p, q, \omega}\left\|T_{\left(z_{1}, z_{2}\right)} V_{g} g\right\|_{1, \omega} \\
& \leq w\left(z_{1}, z_{2}\right) \omega\left(z_{1}, z_{2}\right)\left\|w V_{g} f\right\|_{p, q, \omega}\left\|V_{g} g\right\|_{1, \omega}<\infty .
\end{aligned}
$$

Thus $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is invariant under the time-frequency shifts.
2. Let $f \in Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ and $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2 d}$. By Theorem 2.5 in [22], we write

$$
\begin{align*}
\|\pi(z) f-f\|_{Q} & =\left\|M_{z_{2}} T_{z_{1}} f-f\right\|_{Q} \tag{2.2}\\
& =\left\|V_{g}^{*}\left(w V_{g}\left(M_{z_{2}} T_{z_{1}} f-f\right)\right)\right\|_{M(p, q, \omega)} \\
& \leq\left\|V_{g} g\right\|_{1, \omega}\left\|w V_{g}\left(M_{z_{2}} T_{z_{1}} f-f\right)\right\|_{p, q, \omega} \\
& \leq C\left\|V_{g} g\right\|_{1, \omega}\left\|V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)-V_{g} f\right\|_{p, q, \omega}
\end{align*}
$$

where $C=\sup w(x, y)$. Using the equality

$$
T_{\left(z_{1}, z_{2}\right)} V_{g} f(x, y)=e^{2 \pi i\left(y-z_{2}\right) z_{1}} V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)(x, y)
$$

we have

$$
\begin{align*}
& \left\|V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)-V_{g} f\right\|_{p, q, \omega} \tag{2.3}\\
= & \left\|e^{-2 \pi i\left(y-z_{2}\right) z_{1}} T_{\left(z_{1}, z_{2}\right)} V_{g} f-V_{g} f\right\|_{p, q, \omega} \\
\leq & \left\|e^{-2 \pi i\left(y-z_{2}\right) z_{1}}\left(T_{\left(z_{1}, z_{2}\right)} V_{g} f-V_{g} f\right)\right\|_{p, q, \omega} \\
& +\left\|\left(e^{-2 \pi i\left(y-z_{2}\right) z_{1}}-1\right) V_{g} f\right\|_{p, q, \omega} \\
= & \left\|\left(T_{\left(z_{1}, z_{2}\right)} V_{g} f-V_{g} f\right)(x, y)\right\|_{p, q, \omega}+\left\|\left(e^{-2 \pi i\left(y-z_{2}\right) z_{1}}-1\right) V_{g} f\right\|_{p, q, \omega} .
\end{align*}
$$

Since the translation operator is continuous from $\mathbb{R}^{2 d}$ into $L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$ by Proposition 2.2 in [5], then $\left\|T_{\left(z_{1}, z_{2}\right)} V_{g} f-V_{g} f\right\|_{p, q, \omega} \rightarrow 0$ as $\left(z_{1}, z_{2}\right)$ tends to zero. Moreover, it is known that $\left\|\left(e^{-2 \pi i\left(y-z_{2}\right) z_{1}}-1\right) V_{g} f\right\|_{p, q, \omega}$ tends to zero as $\left(z_{1}, z_{2}\right)$ tends to zero by the proof of Proposition 2.9 in [22]. Hence $\left\|V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)-V_{g} f\right\|_{p, q, \omega} \rightarrow$ 0 as $\left(z_{1}, z_{2}\right)$ tends to zero. Finally by (2.2) and (2.3) we obtain

$$
\left\|M_{z_{2}} T_{z_{1}} f-f\right\|_{Q} \leq C\left\|V_{g} g\right\|_{1, \omega}\left\|V_{g}\left(M_{z_{2}} T_{z_{1}} f\right)-V_{g} f\right\|_{p, q, \omega} \rightarrow 0
$$

as $\left(z_{1}, z_{2}\right)$ tends to zero. This completes the proof.

Lemma 5 Let $1 \leq p, q<\infty$. Assume that ω and w are two weight functions on $\mathbb{R}^{2 d}$.

1. If w is bounded, $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ is continuously embedded into $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$, i.e.

$$
M(p, q, \omega)\left(\mathbb{R}^{d}\right) \hookrightarrow Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)
$$

2. If $|\omega(z)| \leq C(1+|z|)^{N}$ for a fix $N \in \mathbb{N}$ and w is bounded then

$$
\mathcal{S}\left(\mathbb{R}^{d}\right) \subset Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)
$$

Proof It is known by Proposition 2.3 in [22] that $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset M(p, q, \omega)\left(\mathbb{R}^{d}\right)$. Let $f \in M(p, q, \omega)\left(\mathbb{R}^{d}\right)$. Then $V_{g} f \in L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$. As w is bounded, by Theorem 2.5 in [22]

$$
\begin{align*}
\|f\|_{Q} & =\left\|V_{g}^{*}\left(w V_{g} f\right)\right\|_{M(p, q, \omega)} \leq\left\|V_{g} g\right\|_{1, \omega}\left\|w V_{g} f\right\|_{p, q, \omega} \tag{2.4}\\
& \leq \sup _{(x, y) \in \mathbb{R}^{2 d}} w(x, y)\left\|V_{g} g\right\|_{1, \omega}\left\|V_{g} f\right\|_{p, q, \omega}=K\|f\|_{M(p, q, \omega)}<\infty .
\end{align*}
$$

This implies $f \in Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$. Hence

$$
\begin{equation*}
M(p, q, \omega)\left(\mathbb{R}^{d}\right) \subset Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right) . \tag{2.5}
\end{equation*}
$$

Also by (2.4) the unite map I of $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ into $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$ is continuous. That means $M(p, q, \omega)\left(\mathbb{R}^{d}\right) \hookrightarrow$ $Q_{g, w}^{M(p, q, \omega)}\left(\mathbb{R}^{d}\right)$.

It is known by Proposition 2.3 in [22] that $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset M(p, q, \omega)\left(\mathbb{R}^{d}\right)$. The proof of 2$)$ is completed by (2.5).

Proposition 6 If $1 \leq q_{1} \leq q_{2} \leq \infty$, then $Q_{g, w}^{M\left(p, q_{1}, \omega\right)}\left(\mathbb{R}^{d}\right) \subset Q_{g, w}^{M\left(p, q_{2}, \omega\right)}\left(\mathbb{R}^{d}\right)$.
Proof Since $1 \leq q_{1} \leq q_{2} \leq \infty$, then $L\left(p, q_{1}, \omega d \mu\right)\left(\mathbb{R}^{d}\right) \hookrightarrow L\left(p, q_{2}, \omega d \mu\right)\left(\mathbb{R}^{d}\right)$ by Proposition 2.5 in [5]. Hence $M\left(p, q_{1}, \omega\right)\left(\mathbb{R}^{d}\right) \hookrightarrow M\left(p, q_{2}, \omega\right)\left(\mathbb{R}^{d}\right)$. This implies $Q_{g, w}^{M\left(p, q_{1}, \omega\right)}\left(\mathbb{R}^{d}\right) \hookrightarrow Q_{g, w}^{M\left(p, q_{2}, \omega\right)}\left(\mathbb{R}^{d}\right)$.

Proposition 7 Let w_{1}, w_{2} and ω_{1}, ω_{2} be weight functions on $\mathbb{R}^{2 d}$. If $w_{2} \preceq w_{1}$ and $\omega_{2} \preceq \omega_{1}$ then $Q_{g, w_{1}}^{M\left(p, q, \omega_{1}\right)}\left(\mathbb{R}^{d}\right) \subset Q_{g, w_{2}}^{M\left(p, q, \omega_{2}\right)}\left(\mathbb{R}^{d}\right)$.
Proof Let $f \in Q_{g, w_{1}}^{M\left(p, q, \omega_{1}\right)}\left(\mathbb{R}^{d}\right)$. Then $f \in \mathcal{S}^{\prime}\left(R^{d}\right)$ and $T p_{g}\left(w_{1}\right) f=V_{g}^{*}\left(w_{1} V_{g} f\right) \in M\left(p, q, \omega_{1}\right)\left(\mathbb{R}^{d}\right)$ and $w_{1} V_{g} f \in L\left(p, q, \omega_{1} d \mu\right)\left(\mathbb{R}^{2 d}\right)$. Since $w_{2} \preceq w_{1}, \omega_{2} \preceq \omega_{1}$ and weighted Lorentz space is a solid space, then by Proposition 2.14 in [22] we have

$$
\left\|w_{2} V_{g} f\right\|_{p, q, \omega_{2}} \leq C\left\|w_{1} V_{g} f\right\|_{p, q, \omega_{2}} \leq C\left\|w_{1} V_{g} f\right\|_{p, q, \omega_{1}}<\infty .
$$

Thus $w_{2} V_{g} f \in L\left(p, q, \omega_{2} d \mu\right)\left(\mathbb{R}^{2 d}\right)$. By Theorem 2.5 in [22], we write $V_{g}^{*}\left(w_{2} V_{g} f\right)=T p_{g}\left(w_{2}\right) f \in M\left(p, q, \omega_{2}\right)\left(\mathbb{R}^{d}\right)$.
Thus we obtain $f \in Q_{g, w_{2}}^{M\left(p, q, \omega_{2}\right)}\left(\mathbb{R}^{d}\right)$. That means $Q_{g, w_{1}}^{M\left(p, q, \omega_{1}\right)}\left(\mathbb{R}^{d}\right) \subset Q_{g, w_{2}}^{M\left(p, q, \omega_{2}\right)}\left(\mathbb{R}^{d}\right)$.

3. Boundedness of Toeplitz operators

Theorem 8 Let ω_{1} and ω_{2} be two weight functions of polynomial type on $\mathbb{R}^{2 d}$ and $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ be a window function. Then
a. If $p, q \in(1, \infty), t^{\prime} \in(1, \infty), s \leq t^{\prime} \leq r$ and $F \in W\left(L^{r}, L^{s}\right)$, then the Toeplitz operator

$$
T p_{g}(F): M\left(t p, t q, \omega_{1}\right)\left(\mathbb{R}^{d}\right) \rightarrow M\left(\left(t p^{\prime}\right)^{\prime},\left(t q^{\prime}\right)^{\prime}, \omega_{2}\right)\left(\mathbb{R}^{d}\right)
$$

is bounded, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1$ and $\frac{1}{t}+\frac{1}{t^{\prime}}=1$. Moreover we have the norm estimate

$$
\left\|T p_{g}(F)\right\| \leq\|F\|_{W\left(L^{r}, L^{s}\right)}
$$

b. If $t \in[1, \infty), s \leq t \leq r$ and $F \in W\left(L^{r}, L^{s}\right)$, then the Toeplitz operator

$$
T p_{g}(F): M\left(\infty, \infty, \omega_{1}\right)\left(\mathbb{R}^{d}\right) \rightarrow M\left(t, t, \omega_{2}\right)\left(\mathbb{R}^{d}\right)
$$

is bounded. Moreover we have the norm estimate

$$
\left\|T p_{g}(F)\right\| \leq\|F\|_{W\left(L^{r}, L^{s}\right)}
$$

c. If $t \in(1, \infty), s \leq t^{\prime} \leq r$ and $F \in W\left(L^{r}, L^{s}\right)$, then the Toeplitz operator

$$
T p_{g}(F): M\left(t, t, \omega_{1}\right)\left(\mathbb{R}^{d}\right) \rightarrow M\left(1,1, \omega_{2}\right)\left(\mathbb{R}^{d}\right)
$$

is bounded, where $\frac{1}{t}+\frac{1}{t^{\prime}}=1$. Also we have the norm estimate

$$
\left\|T p_{g}(F)\right\| \leq\|F\|_{W\left(L^{r}, L^{s}\right)}
$$

Proof a. Let $t<\infty, f \in M\left(t p, t q, \omega_{1}\right)\left(\mathbb{R}^{d}\right)$ and $h \in M\left(t p^{\prime}, t q^{\prime}, \omega_{2}\right)\left(\mathbb{R}^{d}\right)$. Then $f \in M(t p, t q)\left(\mathbb{R}^{d}\right)$ and $h \in M\left(t p^{\prime}, t q^{\prime}\right)\left(\mathbb{R}^{d}\right)$ and so we write $V_{g} f \in L(t p, t q)\left(\mathbb{R}^{2 d}\right)$ and $V_{g} h \in L\left(t p^{\prime}, t q^{\prime}\right)\left(\mathbb{R}^{2 d}\right)$. Since $V_{g} f \in$ $L(t p, t q)\left(\mathbb{R}^{2 d}\right)$, then $\left\|V_{g} f\right\|_{t p, t q}^{*}<\infty$. By using the equality $\left(|f|^{t}\right)^{*}=\left(f^{*}\right)^{t}$ for $t \in(0, \infty)$ (see [6]), we obtain

$$
\begin{align*}
\left\|V_{g} f\right\|_{t p, t q}^{*} & =\left(\frac{t q}{t p} \int_{0}^{\infty} x^{\frac{t q}{t_{p}}-1}\left(\left(V_{g} f\right)^{*}(x)\right)^{t q} d x\right)^{\frac{1}{t_{q}}} \tag{3.6}\\
& =\left(\frac{q}{p} \int_{0}^{\infty} x^{\frac{q}{p}-1}\left[\left(\left(V_{g} f\right)^{*}(x)\right)^{t}\right]^{q} d x\right)^{\frac{1}{t q}} \\
& =\left[\left(\frac{q}{p} \int_{0}^{\infty} x^{\frac{q}{p}-1}\left[\left(\left|V_{g} f\right|^{t}\right)^{*}(x)\right]^{q} d x\right)^{\frac{1}{q}}\right]^{\frac{1}{t}} \\
& =\left(\left\|\left|V_{g} f\right|^{t}\right\|_{p, q}^{*}\right)^{\frac{1}{t}} .
\end{align*}
$$

Thus we have $\left|V_{g} f\right|^{t} \in L(p, q)\left(\mathbb{R}^{2 d}\right)$. Similarly, we obtain $\left|V_{g} h\right|^{t} \in L\left(p^{\prime}, q^{\prime}\right)\left(\mathbb{R}^{2 d}\right)$. Hence, applying the Hölder inequality for Lorentz spaces and using (3.6), we write

$$
\begin{aligned}
\left\|V_{g} f \cdot V_{g} h\right\|_{t}^{t} & =\left\|\left(V_{g} f\right)^{t}\left(V_{g} h\right)^{t}\right\|_{1}=\left\|\left|V_{g} f\right|^{t}\left|V_{g} h\right|^{t}\right\|_{1} \\
& \leq\left\|\left|V_{g} f\right|^{t}\right\|_{p, q}\left\|\left|V_{g} h\right|^{t}\right\|_{p^{\prime}, q^{\prime}} \\
& =\left\|V_{g} f\right\|_{t p, t q}^{t}\left\|V_{g} h\right\|_{t p^{\prime}, t q^{\prime}}^{t}
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|V_{g} f \cdot V_{g} h\right\|_{t} \leq\left\|V_{g} f\right\|_{t p, t q}\left\|V_{g} h\right\|_{t p^{\prime}, t q^{\prime}} \tag{3.7}
\end{equation*}
$$

Since $F \in W\left(L^{r}, L^{s}\right) \subset W\left(L^{t^{\prime}}, L^{t^{\prime}}\right)=L^{t^{\prime}}\left(\mathbb{R}^{2 d}\right)$, then we have

$$
\begin{equation*}
\|F\|_{t^{\prime}} \leq\|F\|_{W\left(L^{r}, L^{s}\right)} \tag{3.8}
\end{equation*}
$$

Moreover, using (3.7) and (3.8) and applying again Hölder inequality, we obtain

$$
\begin{align*}
\left|\left\langle T p_{g}(F) f, h\right\rangle\right| & =\left|\left\langle V_{g}^{*}\left(F V_{g} f\right), h\right\rangle\right|=\left|\left\langle F V_{g} f, V_{g} h\right\rangle\right| \tag{3.9}\\
& =\left|\int_{\mathbb{R}^{2 d}} F(x, y) V_{g} f(x, y) \overline{V_{g} h(x, y)} d x d y\right| \\
& \leq \iint_{\mathbb{R}^{2 d}}|F(x, y)|\left|\left(V_{g} f \cdot V_{g} h\right)(x, y)\right| d x d y \\
& \leq\|F\|_{t^{\prime}}\left\|V_{g} f \cdot V_{g} h\right\|_{t} \\
& \leq\|F\|_{t^{\prime}}\left\|V_{g} f\right\|_{t p, t q}\left\|V_{g} h\right\|_{t p^{\prime}, t q^{\prime}} \\
& \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M(t p, t q)}\|h\|_{M\left(t p^{\prime}, t q^{\prime}\right)} \\
& \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M\left(t p, t q, \omega_{1}\right)}\|h\|_{M\left(t p^{\prime}, t q^{\prime}, \omega_{2}\right)}
\end{align*}
$$

If $\left(t p^{\prime}\right)^{\prime},\left(t q^{\prime}\right)^{\prime} \neq \infty$, then $\left(M\left(\left(t p^{\prime}\right)^{\prime},\left(t q^{\prime}\right)^{\prime}, \omega_{2}\right)\left(\mathbb{R}^{d}\right)\right)^{*}=M\left(t p^{\prime}, t q^{\prime}, \omega_{2}\right)\left(\mathbb{R}^{d}\right)$ by Theorem 2.16 in [22]. Thus we obtain from (3.9) that

$$
\begin{aligned}
\left\|T p_{g}(F) f\right\|_{M\left(\left(t p^{\prime}\right)^{\prime},\left(t q^{\prime}\right)^{\prime}, \omega_{2}\right)} & =\sup _{0 \neq h \in M\left(t p^{\prime}, t q^{\prime}, \omega_{2}\right)} \frac{\left|\left\langle T p_{g}(F) f, h\right\rangle\right|}{\|h\|_{M\left(t p^{\prime}, t q^{\prime}, \omega_{2}\right)}} \\
& \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M\left(t p, t q, \omega_{1}\right)} .
\end{aligned}
$$

Hence $T p_{g}(F)$ is bounded. We also have

$$
\left\|T p_{g}(F)\right\|=\sup _{0 \neq f \in M\left(t p, t q, \omega_{1}\right)} \frac{\left\|T p_{g}(F) f\right\|_{M\left(\left(t p^{\prime}\right)^{\prime},\left(t q^{\prime}\right)^{\prime}, \omega_{2}\right)}}{\|f\|_{M\left(t p, t q, \omega_{1}\right)}} \leq\|F\|_{W\left(L^{r}, L^{s}\right)}
$$

b. Let us take any $f \in M\left(\infty, \infty, \omega_{1}\right)\left(\mathbb{R}^{d}\right)$ and $h \in M\left(t^{\prime}, t^{\prime}, \omega_{2}\right)\left(\mathbb{R}^{d}\right)$. Then $V_{g} f \in L\left(\infty, \infty, \omega_{1} d \mu\right)\left(\mathbb{R}^{2 d}\right)$ and $V_{g} h \in L\left(t^{\prime}, t^{\prime}, \omega_{2} d \mu\right)\left(\mathbb{R}^{2 d}\right)$, respectively. Since $L\left(\infty, \infty, \omega_{1} d \mu\right)\left(\mathbb{R}^{2 d}\right) \subset L^{\infty}\left(\mathbb{R}^{2 d}\right)$ and $L\left(t^{\prime}, t^{\prime}, \omega_{2} d \mu\right)\left(\mathbb{R}^{2 d}\right)$ $\subset L^{t^{\prime}}\left(\mathbb{R}^{2 d}\right)$, we have $V_{g} f \in L^{\infty}\left(\mathbb{R}^{2 d}\right)$ and $V_{g} h \in L^{t^{\prime}}\left(\mathbb{R}^{2 d}\right)$. By (3.8) and Hölder inequality we have

$$
\begin{aligned}
\left|\left\langle T p_{g}(F) f, h\right\rangle\right| & =\left|\iint_{\mathbb{R}^{2} 2} F(x, y) V_{g} f(x, y) \overline{V_{g} h(x, y)} d x d y\right| \\
& \leq\left\|F V_{g} f\right\|_{t}\left\|V_{g} h\right\|_{t^{\prime}} \leq\|F\|_{t}\|f\|_{M(\infty, \infty)}\|h\|_{M\left(t^{\prime}, t^{\prime}\right)} \\
& \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M(\infty, \infty)}\|h\|_{M\left(t^{\prime}, t^{\prime}\right)} \\
& \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M\left(\infty, \infty, \omega_{1}\right)}\|h\|_{M\left(t^{\prime}, t^{\prime}, \omega_{2}\right)}
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|T p_{g}(F) f\right\|_{M\left(t, t, \omega_{2}\right)} \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M\left(\infty, \infty, \omega_{1}\right)} \tag{3.10}
\end{equation*}
$$

Then $T p_{g}(F)$ is bounded. By (3.10) we obtain $\left\|T p_{g}(F)\right\| \leq\|F\|_{W\left(L^{r}, L^{s}\right)}$.
c. Let $f \in M\left(t, t, \omega_{1}\right)\left(\mathbb{R}^{d}\right)$ and $h \in M\left(\infty, \infty, \omega_{2}\right)\left(\mathbb{R}^{d}\right)$ be given. Then $V_{g} f \in L\left(t, t, \omega_{1} d \mu\right)\left(\mathbb{R}^{2 d}\right) \subset L^{t}\left(\mathbb{R}^{2 d}\right)$ and $V_{g} h \in L\left(\infty, \infty, \omega_{2} d \mu\right)\left(\mathbb{R}^{2 d}\right) \subset L^{\infty}\left(\mathbb{R}^{2 d}\right)$, respectively. Applying again the Hölder inequality and (3.8) we have

$$
\begin{aligned}
\left|\left\langle T p_{g}(F) f, h\right\rangle\right| & \leq\left\|V_{g} h\right\|_{\infty} \iint_{\mathbb{R}^{2 d}}|F(x, y)|\left|V_{g} f(x, y)\right| d x d y \\
& \leq\|F\|_{t^{\prime}}\left\|V_{g} f\right\|_{t}\left\|V_{g} h\right\|_{\infty} \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M(t, t)}\|h\|_{M(\infty, \infty)} \\
& \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M\left(t, t, \omega_{1}\right)}\|h\|_{M\left(\infty, \infty, \omega_{2}\right)}
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|T p_{g}(F) f\right\|_{M\left(1,1, \omega_{2}\right)} \leq\|F\|_{W\left(L^{r}, L^{s}\right)}\|f\|_{M\left(t, t, \omega_{1}\right)} \tag{3.11}
\end{equation*}
$$

Hence $T p_{g}(F)$ is bounded and from (3.11) we have $\left\|T p_{g}(F)\right\| \leq\|F\|_{W\left(L^{r}, L^{s}\right)}$. This completes the proof.

Theorem 9 Let ω be a moderate weight and $g \in \bigcap_{1 \leq k, l<\infty} M(k, l, \omega)\left(\mathbb{R}^{d}\right)$. If $1 \leq s \leq r \leq \infty$ and $F \in$ $W\left(L^{r}, L_{\omega}^{s}\right)$ then the Toeplitz operator

$$
T p_{g}(F): M(p, q, \omega)\left(\mathbb{R}^{d}\right) \rightarrow M(p, q, \omega)\left(\mathbb{R}^{d}\right)
$$

is bounded. We have the norm estimate

$$
\left\|T p_{g}(F)\right\| \leq C\|F\|_{W\left(L^{r}, L_{\omega}^{s}\right)}
$$

for some $C>0$.

Proof Since $s \leq r, W\left(L^{r}, L_{\omega}^{s}\right)\left(\mathbb{R}^{2 d}\right) \subset W\left(L^{s}, L_{\omega}^{s}\right)\left(\mathbb{R}^{2 d}\right)=L_{\omega}^{s}\left(\mathbb{R}^{2 d}\right)$ and

$$
\begin{equation*}
\|F\|_{s, \omega} \leq\|F\|_{W\left(L^{r}, L_{\omega}^{s}\right)} \tag{3.12}
\end{equation*}
$$

for all $F \in W\left(L^{r}, L_{\omega}^{s}\right)\left(\mathbb{R}^{2 d}\right)$. Let $B\left(M(p, q, \omega)\left(\mathbb{R}^{d}\right), M(p, q, \omega)\left(\mathbb{R}^{d}\right)\right)$ be the space of the bounded linear operators from $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ into $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$.

Define an operator A from $L_{\omega}^{1}\left(\mathbb{R}^{2 d}\right)$ into $B\left(M(p, q, \omega)\left(\mathbb{R}^{d}\right), M(p, q, \omega)\left(\mathbb{R}^{d}\right)\right)$ by $A(F)=T p_{g}(F)$. Take any $f \in M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ and $h \in M\left(p^{\prime}, q^{\prime}, \omega\right)\left(\mathbb{R}^{d}\right)$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Suppose that $F \in W\left(L^{1}, L_{\omega}^{1}\right)\left(\mathbb{R}^{2 d}\right)=$ $L_{\omega}^{1}\left(\mathbb{R}^{2 d}\right)$. Applying Hölder inequality we obtain

$$
\begin{align*}
|\langle A(F) f, h\rangle| & =\left|\left\langle T p_{g}(F) f, h\right\rangle\right|=\left|\left\langle V_{g}^{*}\left(F V_{g} f\right), h\right\rangle\right|=\left|\left\langle F V_{g} f, V_{g} h\right\rangle\right| \\
& =\left|\int_{\mathbb{R}^{2 d}} F(x, y) V_{g} f(x, y) \overline{V_{g} h(x, y)} d x d y\right| \tag{3.13}\\
& \leq \iint_{\mathbb{R}^{2 d}}|F(x, y)|\left|V_{g} f(x, y)\right|\left|V_{g} h(x, y)\right| d x d y \\
& =\iint_{\mathbb{R}^{2 d}}|F(x, y)|\left|\left\langle f, M_{y} T_{x} g\right\rangle\right|\left|\left\langle h, M_{y} T_{x} g\right\rangle\right| d x d y \\
& \leq \int_{\mathbb{R}^{2 d}}|F(x, y)|\|f\|_{M(p, q, \omega)}\left\|M_{y} T_{x} g\right\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)} \\
& =\int_{\mathbb{R}^{2 d}}|F(x, y)|\|f\|_{M(p, q, \omega)} \omega_{x} g \|_{M(p, q, \omega)} d x d y \\
& \|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)} \omega^{\frac{1}{p}}(x, y)\|g\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)} \\
& =\|f\|_{M(p, q)}\|g\|_{M(p, q, \omega)} d x d y \\
& \|g\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|g\|_{M(p, q, \omega)} \iint_{\mathbb{R}^{2 d}}|F(x, y)| \\
& =\|f\|_{M(p, q, \omega)}\|g\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|g\|_{M(p, q, \omega)}\|F\|_{1, \omega} .
\end{align*}
$$

Thus by (3.13)

$$
\begin{aligned}
\|A(F) f\|_{M(p, q, \omega)} & =\left\|T p_{g}(F) f\right\|_{M(p, q, \omega)}=\sup _{0 \neq h \in M\left(p^{\prime}, q^{\prime}, \omega\right)} \frac{\left|\left\langle T p_{g}(F) f, h\right\rangle\right|}{\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}} \\
& \leq\|g\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|g\|_{M(p, q, \omega)}\|f\|_{M(p, q, \omega)}\|F\|_{1, \omega}
\end{aligned}
$$

Hence

$$
\begin{align*}
\|A(F)\| & =\left\|T p_{g}(F)\right\|=\sup _{0 \neq f \in M(p, q, \omega)} \frac{\left\|T p_{g}(F) f\right\|_{M(p, q, \omega)}}{\|f\|_{M(p, q, \omega)}} \tag{3.14}\\
& \leq\|g\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|g\|_{M(p, q, \omega)}\|F\|_{1, \omega} .
\end{align*}
$$

Finally the operator

$$
\begin{equation*}
A: L_{\omega}^{1}\left(\mathbb{R}^{2 d}\right) \rightarrow B\left(M(p, q, \omega)\left(\mathbb{R}^{d}\right), M(p, q, \omega)\left(\mathbb{R}^{d}\right)\right) \tag{3.15}
\end{equation*}
$$

is bounded.
Now define an operator A

$$
A: L_{\omega}^{\infty}\left(\mathbb{R}^{2 d}\right)=W\left(L^{\infty}, L_{\omega}^{\infty}\right)\left(\mathbb{R}^{2 d}\right) \rightarrow B\left(M(p, q, \omega)\left(\mathbb{R}^{d}\right), M(p, q, \omega)\left(\mathbb{R}^{d}\right)\right)
$$

by $A(F)=T p_{g}(F)$. Take any $f \in M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ and $h \in M\left(p^{\prime}, q^{\prime}, \omega\right)\left(\mathbb{R}^{d}\right)$. Then $V_{g} f \in L(p, q, \omega d \mu)\left(\mathbb{R}^{2 d}\right)$, $V_{g} h \in L\left(p^{\prime}, q^{\prime}, \omega d \mu\right)\left(\mathbb{R}^{2 d}\right)$. Again applying the Hölder inequality

$$
\begin{align*}
|\langle A(F) f, h\rangle| & =\left|\left\langle T p_{g}(F) f, h\right\rangle\right|=\left|\left\langle V_{g}^{*}\left(F V_{g} f\right), h\right\rangle\right| \tag{3.16}\\
& =\left|\left\langle F V_{g} f, V_{g} h\right\rangle\right|=\left|\iint_{\mathbb{R}^{2 d}} F(x, y) V_{g} f(x, y) \overline{V_{g} h(x, y)} d x d y\right| \\
& \leq \iint_{\mathbb{R}^{2 d}}|F(x, y)| \cdot\left|V_{g} f(x, y)\right| \cdot\left|V_{g} h(x, y)\right| d x d y \\
& \leq\|F\|_{\infty} \iint_{\mathbb{R}^{2 d}}\left|V_{g} f(x, y)\right|\left|V_{g} h(x, y)\right| d x d y \\
& \leq\|F\|_{\infty}\left\|V_{g} f\right\|_{p, q, \omega}\left\|V_{g} h\right\|_{p^{\prime}, q^{\prime}, \omega} \\
& \leq\|F\|_{\infty, \omega}\|f\|_{M(p, q, \omega)}\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}
\end{align*}
$$

By using (3.16) we have

$$
\begin{aligned}
\|A(F) f\|_{M(p, q, \omega)} & =\left\|T p_{g}(F) f\right\|_{M(p, q, \omega)} \\
& =\sup _{0 \neq h \in M\left(p^{\prime}, q^{\prime}, \omega\right)} \frac{\left|\left\langle T p_{g}(F) f, h\right\rangle\right|}{\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}} \\
& \leq\|F\|_{\infty, \omega}\|f\|_{M(p, q, \omega)}
\end{aligned}
$$

Hence by (3.17)

$$
\|A(F)\|=\left\|T p_{g}(F)\right\|=\sup _{0 \neq f \in M(p, q, \omega)} \frac{\left\|T p_{g}(F) f\right\|_{M(p, q, \omega)}}{\|f\|_{M(p, q, \omega)}} \leq\|F\|_{\infty, \omega}
$$

That means the operator

$$
\begin{equation*}
A: L_{\omega}^{\infty}\left(\mathbb{R}^{2 d}\right) \rightarrow B\left(M(p, q, \omega)\left(\mathbb{R}^{d}\right), M(p, q, \omega)\left(\mathbb{R}^{d}\right)\right) \tag{3.18}
\end{equation*}
$$

is bounded. Combining (3.15) and (3.18) we obtain that

$$
A: L_{\omega}^{t}\left(\mathbb{R}^{2 d}\right) \rightarrow B\left(M(p, q, \omega)\left(\mathbb{R}^{d}\right), M(p, q, \omega)\left(\mathbb{R}^{d}\right)\right)
$$

is bounded by interpolation theorem [[1], Theorem 5.5.1] for $1 \leq t \leq \infty$. That means the Toeplitz operator

$$
T p_{g}(F): M(p, q, \omega)\left(\mathbb{R}^{d}\right) \rightarrow M(p, q, \omega)\left(\mathbb{R}^{d}\right)
$$

is bounded for $1 \leq t \leq \infty$. Hence there exists $C>0$ such that

$$
\begin{equation*}
\|A(F)\|=\left\|T p_{g}(F)\right\| \leq C\|F\|_{t, \omega} \tag{3.19}
\end{equation*}
$$

This implies that it is also true for $1 \leq s \leq \infty$. By (3.12) and (3.19) we have

$$
\|A(F)\|=\left\|T p_{g}(F)\right\| \leq C\|F\|_{s, \omega} \leq C\|f\|_{W\left(L^{r}, L_{\omega}^{s}\right)}
$$

Remark 10 It is known by Proposition 2.3 in $[22]$ that $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset M(k, l, \omega)\left(\mathbb{R}^{d}\right)$ if $|\omega(z)| \leq C(1+|z|)^{N}$ for a fix $N \in \mathbb{N}$ and $1 \leq k, l<\infty$. Then $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset \bigcap_{1 \leq k, l<\infty} M(k, l, \omega)\left(\mathbb{R}^{d}\right)$ if $|\omega(z)| \leq C(1+|z|)^{N}$ for a fix $N \in \mathbb{N}$. Hence, if $g \in \mathcal{S}\left(\mathbb{R}^{d}\right), 1 \leq s \leq r \leq \infty$ and $F \in W\left(L^{r}, L_{\omega}^{s}\right)\left(\mathbb{R}^{d}\right)$ then the Toeplitz operator

$$
T p_{g}(F): M(p, q, \omega)\left(\mathbb{R}^{d}\right) \rightarrow M(p, q, \omega)\left(\mathbb{R}^{d}\right)
$$

is bounded for $1 \leq p, q<\infty$ by Theorem 9 .

Proposition 11 Let $g \in \bigcap_{1 \leq k, l<\infty} M(k, l, \omega)\left(\mathbb{R}^{d}\right)$. If $1 \leq p, q<\infty$ and $F \omega^{\frac{1}{p}} \in L\left(p^{\prime}, q^{\prime}, \omega d \mu\right)\left(\mathbb{R}^{2 d}\right)$ then the Toeplitz operator

$$
T p_{g}(F): M(p, q, \omega)\left(\mathbb{R}^{d}\right) \rightarrow M(p, q, \omega)\left(\mathbb{R}^{d}\right)
$$

is bounded, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
Proof Suppose that $F \omega^{\frac{1}{p}} \in L\left(p^{\prime}, q^{\prime}, \omega d \mu\right)\left(\mathbb{R}^{2 d}\right)$. Take any $f \in M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ and $h \in M\left(p^{\prime}, q^{\prime}, \omega\right)\left(\mathbb{R}^{d}\right)$. Applying Hölder inequality we have by (3.13)

$$
\begin{align*}
\left|\left\langle T p_{g}(F) f, h\right\rangle\right| & \leq \iint_{\mathbb{R}^{2} d}|F(x, y)|\left|V_{g} f(x, y)\right|\left|\left\langle h, M_{y} T_{x} g\right\rangle\right| d x d y \tag{3.20}\\
& \leq \iint_{\mathbb{R}^{2} d}|F(x, y)|\left|V_{g} f(x, y)\right|\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\left\|M_{y} T_{x} g\right\|_{M(p, q, \omega)} d x d y \\
& \leq \iint_{\mathbb{R}^{2} d}|F(x, y)|\left|V_{g} f(x, y)\right|\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)} \omega^{\frac{1}{p}}(x, y)\|g\|_{M(p, q, \omega)} d x d y \\
& =\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|g\|_{M(p, q, \omega)} \iint_{\mathbb{R}^{2} d}|F(x, y)| \omega^{\frac{1}{p}}(x, y)\left|V_{g} f(x, y)\right| d x d y \\
& \leq\|h\|_{M\left(p^{\prime}, q^{\prime}, \omega\right)}\|g\|_{M(p, q, \omega)}\|f\|_{M(p, q, \omega)}\left\|F \omega^{\frac{1}{p}}\right\|_{p^{\prime}, q^{\prime}, \omega} .
\end{align*}
$$

In analogy to (3.14), we have

$$
\begin{equation*}
\left\|T p_{g}(F)\right\| \leq\|g\|_{M(p, q, \omega)}\left\|F \omega^{\frac{1}{p}}\right\|_{p^{\prime}, q^{\prime}, \omega} . \tag{3.21}
\end{equation*}
$$

Then the Toeplitz operator from $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ into $M(p, q, \omega)\left(\mathbb{R}^{d}\right)$ is bounded. This completes the proof.

Remark 12 It is known by Proposition 2.3 in [22] that $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset M(k, l, \omega)\left(\mathbb{R}^{d}\right)$ if $|\omega(z)| \leq C(1+|z|)^{N}$ for a fix $N \in \mathbb{N}$ and $1 \leq k, l<\infty$. Thus if $|\omega(z)| \leq C(1+|z|)^{N}$ for a fix $N \in \mathbb{N}$, then $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset$ $\bigcap_{1 \leq k, l<\infty} M(k, l, \omega)\left(\mathbb{R}^{d}\right)$. Hence if $g \in \mathcal{S}\left(\mathbb{R}^{d}\right), 1 \leq p, q<\infty$ and $F \omega^{\frac{1}{p}} \in L\left(p^{\prime}, q^{\prime}, \omega d \mu\right)\left(\mathbb{R}^{2 d}\right)$, then the Toeplitz operator

$$
T p_{g}(F): M(p, q, \omega)\left(\mathbb{R}^{d}\right) \rightarrow M(p, q, \omega)\left(\mathbb{R}^{d}\right)
$$

is bounded by Proposition 11.
4. Hilbert-Schmidt and Schatten-class properties for symbols in $W\left(L^{r}, L^{s}\right)\left(\mathbb{R}^{2 d}\right)$

Theorem 13 Let $1 \leq p \leq \infty, 1 \leq s \leq r \leq \infty$ and $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. If $F \in W\left(L^{r}, L^{s}\right)\left(\mathbb{R}^{d}\right)$, then $T p_{g}(F)$: $L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is in the Schatten-class S_{p} and the inequality

$$
\left\|T p_{g}(F)\right\|_{S_{p}} \leq\|g\|_{2}^{2}\|F\|_{W\left(L^{r}, L^{s}\right)}
$$

holds.
Proof By Remark 10, the Toeplitz operator $T p_{g}(F): L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ is bounded under these assumptions. We will show that $T p_{g}(F)$ is in S_{p}. Let $p=r=s=1$. For $z=(x, y) \in \mathbb{R}^{2 d}$ we consider the rank one operator

$$
\begin{equation*}
\Lambda_{z} f=\left\langle f, M_{y} T_{x} g\right\rangle M_{y} T_{x} g, \quad f \in L^{2}\left(\mathbb{R}^{d}\right) \tag{4.22}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\Lambda_{z}\right\|_{S_{1}}=\|g\|_{2}^{2} \tag{4.23}
\end{equation*}
$$

Hence the mapping $z \rightarrow \Lambda_{z}$ is continuous and the vector-valued integral

$$
T p_{g}(F)=\iint_{\mathbb{R}^{2 d}} F(x, y) \Lambda_{z} d x d y
$$

is well defined. Also by (4.23) we write

$$
\begin{align*}
\left\|T p_{g}(F)\right\|_{S_{1}} & =\left\|\iint_{\mathbb{R}^{2 d}} F(x, y) \Lambda_{z} d x d y\right\|_{S_{1}} \leq \tag{4.24}\\
& \leq \iint_{\mathbb{R}^{2 d}}\left\|F(x, y) \Lambda_{z}\right\|_{S_{1}} d x d y=\iint_{\mathbb{R}^{2 d}}|F(x, y)|\left\|\Lambda_{z}\right\|_{S_{1}} d x d y \\
& =\|g\|_{2}^{2} \iint_{\mathbb{R}^{2 d}}|F(x, y)| d x d y=\|g\|_{2}^{2}\|F\|_{1}
\end{align*}
$$

Now let $p=r=s=\infty$. Since $f \in L^{2}\left(\mathbb{R}^{d}\right)$ then by the proof of Theorem 8 we have

$$
\begin{align*}
\left|\left\langle T p_{g}(F) f, h\right\rangle\right| & =\left|\iint_{\mathbb{R}^{2 d}} F(x, y) V_{g} f(x, y) \overline{V_{g} h(x, y)} d x d y\right| \tag{4.25}\\
& \leq\|F\|_{\infty} \iint_{\mathbb{R}^{2 d}}\left|V_{g} f(x, y)\right|\left|V_{g} h(x, y)\right| d x d y \\
& \leq\|F\|_{\infty}\left\|V_{g} f\right\|_{2}\left\|V_{g} h\right\|_{2}=\|F\|_{\infty}\|f\|_{2}\|h\|_{2}\|g\|_{2}^{2}
\end{align*}
$$

Hence

$$
\left\|T p_{g}(F)\right\|_{\infty} \leq\|F\|_{\infty}\|g\|_{2}^{2}
$$

That means $T p_{g}(F)$ is bounded on $L^{2}\left(\mathbb{R}^{d}\right)$. Since S_{∞} denotes the algebra of all bounded operators on $L^{2}\left(\mathbb{R}^{d}\right)$, we have

$$
\left\|T p_{g}(F)\right\|_{S_{\infty}} \leq\|F\|_{\infty}\|g\|_{2}^{2}
$$

Then by the interpolation theorem (see Theorem 2.11. in [23]), for $1 \leq t, p \leq \infty,\left[L^{1}\left(\mathbb{R}^{d}\right), L^{\infty}\left(\mathbb{R}^{d}\right)\right]_{\Theta}=$ $L^{t}\left(\mathbb{R}^{d}\right),\left[S_{1}, S_{\infty}\right]_{\Theta}=S_{p}$ and $T p_{g}(F) \in S_{p}$,

$$
\begin{equation*}
\left\|T p_{g}(F)\right\|_{S_{p}} \leq\|F\|_{t}\|g\|_{2}^{2} \tag{4.26}
\end{equation*}
$$

for all $F \in L^{t}\left(\mathbb{R}^{d}\right)$. Hence $T p_{g}(F)$ is in S_{p}.
Moreover, since $s \leq r$, there exists $1 \leq t_{0} \leq \infty$ such that $s \leq t_{0} \leq r$. Hence $W\left(L^{r}, L^{s}\right)\left(\mathbb{R}^{2 d}\right) \subset$ $L^{t_{0}}\left(\mathbb{R}^{2 d}\right)$ and

$$
\begin{equation*}
\|F\|_{t_{0}} \leq\|F\|_{W\left(L^{r}, L^{s}\right)} \tag{4.27}
\end{equation*}
$$

for all $F \in W\left(L^{r}, L^{s}\right)\left(\mathbb{R}^{2 d}\right)$. Finally by using (4.26) and (4.27), we obtain

$$
\left\|T p_{g}(F)\right\|_{S_{p}} \leq\|F\|_{t_{0}}\|g\|_{2}^{2} \leq\|g\|_{2}^{2}\|F\|_{W\left(L^{r}, L^{s}\right)}
$$

for all $F \in W\left(L^{r}, L^{s}\right)$. This completes the proof.

References

[1] Berg, J., Löfström, J.: Interpolation Spaces, Springer-Verlag, Berlin 1976.
[2] Boggiatto, P., Toft, T.: Embeddings and compactness for generalized Sobolev-Shubin spaces and modulation spaces, Appl. Anal. 84, No.3, 269-282 (2005).
[3] Boggiatto, P.: Localization operators with L^{p} symbols on the modulation spaces, Universita di Torino, Quaderni del Dipartimento di Matematica, Quaderno N.7/2003, (2003).
[4] Boggiatto, P., Cordero, E., Gröchenig, K.: Generalized anti-Wick operators with symbols in distributional Sobolev spaces, Int. Equ. Oper. Theory 48, 427-442 (2004).
[5] Duyar, C., Gürkanlı, A.T.: Multipliers and relative completion in weighted Lorentz space, Acta Math. Sci. 23B (4), 467-476 (2003).
[6] Edmunds, D.E., Evans, W.D.: Hardy Operators Function Spaces and Embeddings, Springer Berlin Heidelberg New York 2004.
[7] Feichtinger, H.G.: Banach convolution algebras of Wiener type, in Proc. Conf. on Functions, Series, Operators, Budapest 1980, North Holland, Colloq. Math. Soc. Janos Bolyai, vol.35, [Amsterdam], 509-524 (1983).
[8] Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal., 86 (2), 307-340 (1989).
[9] Feichtinger, H.G., Gürkanlı, A.T.: On a family of weighted convolution algebras, Int. J. Math. Math. Sci. 13, No. $3,517-526$ (1990).
[10] Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms Theory and Applications, Birkhäuser, Boston 1998.
[11] Fournier, J.J., Stewart, J.: Amalgams of L^{p} and ℓ^{q}, Bull. Amer. Math. Soc. 13, 1-21 (1985).
[12] Gröchenig, K.: Foundation of Time-Frequency Analysis, Birkhäuser, Boston 2001.
[13] Gröchenig, K., Toft, T.: Isomorphism properties of Toeplitz operators in time-frequency analysis, Journal d'Analyse, 114 (1), 255-283 (2011).
[14] Gürkanlı, A.T.: Time-frequency analysis and multipliers of the spaces $M(p, q)\left(R^{d}\right)$ and $S(p, q)\left(R^{d}\right)$, J. Math. Kyoto Univ. 46-3, 595-616 (2006) .
[15] Gürkanlı, A.T.: On the inclusion of some Lorentz spaces, J. Math. Kyoto Univ. 44-2, 441-450 (2004).
[16] Heil, C.: An introduction to weighted Wiener amalgams, in: Wavelets and their applications (Chennai, January 2002), M. Krishna, R. Radha, and S. Thangavelu, eds., Allied Publishers, New Delhi, 183-216 (2003).
[17] Holland, F.: Harmonic analysis on amalgams of L^{p} and ℓ^{q}, J. London Math. Soc. (2), 10, 295-305 (1975).
[18] Hunt, R.A.: On $L(p, q)$ spaces, Extrait de L'Enseignement Mathematique, T.XII, fasc.4, 249-276 (1966).
[19] Quek, T.S., Yap, Y.H.L.: A test for membership in Lorentz spaces and some applications, Hokkaido Math. J. 17, 279-288 (1988).
[20] Sandıkçı, A., Gürkanlı, A.T.: The space $\Omega_{m}^{p}\left(R^{d}\right)$ and some properties, Ukrainian Math. J. 58 No.1, 139-145 (2006) .
[21] Sandıkçı, A., Gürkanlı, A.T.: Gabor Analysis of the spaces $M(p, q, w)\left(\mathbb{R}^{d}\right)$ and $S(p, q, r, w, \omega)\left(\mathbb{R}^{d}\right)$, Vol. 1 , Acta Math. Sci. 31B, 141-158 (2011) .
[22] Wong, M.W.: Wavelet Transforms and Localization Operators, Birkhäuser 2002.
[23] Yap, Y.H.L.: On two classes of subalgebras of $L^{1}(G)$, Proc. Japan Acad. 48, 315-319 (1972).

[^0]: *Correspondence: ayses@omu.edu.tr
 2000 AMS Mathematics Subject Classification: 43A15.

