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Abstract: Let w and ω be two weight functions on �2d and 1 ≤ p, q ≤ ∞. Also let M (p, q, ω)
�
�

d
�

denote the

subspace of tempered distributions S ′ �
�

d
�

consisting of f ∈ S ′ �
�

d
�

such that the Gabor transform Vgf of f is in

the weighted Lorentz space L (p, q, ωdμ)
�
�

2d
�
. In the present paper we define a space Q

M(p,q,ω)
g,w

�
�

d
�

as counter image

of M (p, q, ω)
�
�

d
�

under Toeplitz operator with symbol w. We show that Q
M(p,q,ω)
g,w

�
�

d
�

is a generalization of usual

Sobolev-Shubin space Qs

�
�

d
�
. We also investigate the boundedness and Schatten-class properties of Toeplitz operators.

Key words: Sobolev-Shubin space, Gabor transform, modulation space, weighted Lorentz space, Toeplitz operators,

Schatten-class

1. Introduction

Throughout this paper we denote by S
(
Rd

)
the Schwartz space on Rd and by S′ (Rd

)
its topological dual. Let

f be a measurable complex valued function on Rd. The translation and modulation operators are defined as

Txf (t) = f (t − x) and Mwf (t) = e2πiwtf (t) for x, w ∈ Rd , respectively. The following canonical commutation
relation holds:

TxMw = e−2πixwMwTx

between TxMw and MwTx operators which are called time-frequency shifts [14] . A weight function w on Rd is a

non-negative, continuous and locally integrable function. w is called submultiplicative if w (x + y) ≤ w (x)w (y)

for all x, y ∈ Rd. Let v be a submultiplicative weight function on Rd. A weight function w on Rd is v−moderate

if w (x + y) ≤ v (x)w (y) for all x, y ∈ Rd. If

w (x) ≤ Cvs (x) = C
(
1 + |x|2

) s
2

for some C > 0, s ≥ 0 and x ∈ R
d, then w is called polynomial growth. Let w1 and w2 be two weights. We

say that w2 � w1 if and only if there exists c > 0 such that w2 (x) ≤ cw1 (x) for all x ∈ Rd. Two functions
are called equivalent and we write w1 ≈ w2, if w2 � w1 and w1 � w2 .

Let w be a weight function on Rd. Then the weighted Lp space is defined by
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Lp
w

(
R

d
)

=
{
f | fw ∈ Lp

(
R

d
)}

,

for 1 ≤ p ≤ ∞. Lp
w

(
Rd

)
is a Banach space under the norm ‖f‖p,w = ‖fw‖p . Moreover, if w is submultiplicative

and w ≥ 1 then L1
w

(
Rd

)
is a Banach convolution algebra. It is called a Beurling algebra [9] .

Let f ∈ L1
(
Rd

)
. Then the Fourier transform

∧
f (or Ff ) of f is given by

∧
f (t) =

∫
Rd

f (x) e−2πi〈x,t〉dx,

where 〈x, t〉 =
d∑

i=1

xiti is the usual scalar product on Rd.

Given any fix function g �= 0, which is called the window function, the short-time Fourier transform
(STFT) or Gabor transform of a function f with respect to g is given by

Vgf (x, w) =
∫
Rd

f (t) g (t − x)e−2πitwdt,

for x, w ∈ Rd, [8] , [10] , [21] . It is known that if f, g ∈ L2
(
Rd

)
then Vgf ∈ L2

(
R2d

)
and Vgf is uniformly

continuous [14].

Fix a non-zero window g ∈ S
(
Rd

)
and 1 ≤ p, q ≤ ∞ . Let w be a weight function of at most polynomial

growth and vs−moderate on R
2d. That means

w (z1 + z2) ≤ C
(
1 + |z1|2

) s
2

w (z2)

for all z1, z2 ∈ R2d and for some C > 0, s ≥ 0. Then the modulation space Mp,q
w

(
Rd

)
consists of all tempered

distributions f ∈ S′ (Rd
)

such that Vgf ∈ Lp,q
w

(
R2d

)
and ‖f‖Mp,q

w
= ‖Vgf‖Lp,q

w
is finite, where Lp,q

w

(
R2d

)
the

weighted mixed-norm space. If p = q, and then we write Mp
w

(
Rd

)
instead of Mp,p

w

(
Rd

)
and if w = 1, then we

have standard modulation space Mp,q
(
Rd

)
. Moreover, if p = q = 2 and vs is weight function in polynomial

type, that means vs (z) = 〈z〉s =
(
1 + |z|2

) s
2

for z ∈ R2d and s ∈ R, then we obtain the space M2
s

(
Rd

)
[14] .

Let g ∈ S
(
Rd

)
\ {0} and w (x, y) be a suitable weight function defined on the time-frequency plane R2d.

The Toeplitz operator is given by the formula

(Tpg (w) f1, f2) = (wVgf1, Vgf2)

for all f1, f2 ∈ S
(
Rd

)
. This implies that

Tpg (w) f = V ∗
g (wVgf) ,

where V ∗
g is the adjoint for Vg. In this work we shall extend this definition to more general situations.

The fundamental objects in the definition of Toeplitz operators are Gabor transforms. Hence time-frequency
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techniques are used for the analysis of Toeplitz operators. Also, Toeplitz operators are localization operators
whose symbols w (x, y) belong to suitable classes. Since the Gabor transform is injective, it is easy to show
that the Toeplitz operator is injective.

For a given symbol σ ∈ S′ (R2d
)
, the pseudodifferential operator Lσ is defined to be

Lσf =
∫∫
R2d

∧
σ (ξ, u) e−πiξuT−uMξfdudξ.

The map σ → Lσ is called the Weyl transform, σ and σ̂ are called the Weyl symbol and the spreading function
of the operator Lσ, respectively.

Let X be a separable Hilbert space, B (X) be the space of bounded linear operators on X and A ∈ B (X)

be a compact operator. Then the linear operator |A| : X → X is positive and compact. Let {ϕk : k = 1, 2, ...}
be an orthonormal basis for X consisting of eigenvectors of |A| and let sk (A) be the eigenvalue of |A|
corresponding to the eigenvector ϕk , (k = 1, 2, . . .).

A compact operator A : X → X is said to be in the Schatten-von Neumann class Sp , p ∈ [1,∞) if

∞∑
k=1

sk (A)p
< ∞.

It can be shown that Sp is a Banach space with the norm

‖A‖Sp
=

{ ∞∑
k=1

sk (A)p

} 1
p

, A ∈ Sp.

It is customary to call S1 the trace class and S2 the Hilbert-Schmidt class.

The Weyl transform σ → Lσ is a unitary map from L2
(
R2d

)
onto the algebra of Hilbert-Schmidt

operators on L2
(
Rd

)
under the Hilbert-Schmidt norm. This property is known as Pool’s Theorem [14] .

Let g ∈ S
(
Rd

)
\ {0} be a window function and w (x, y) =

(
1 + |x|2 + |y|2

) s
2

for s ∈ R. Then the usual

Sobolev-Shubin space Qs

(
Rd

)
is the set of all f ∈ S′ (Rd

)
such that

‖f‖Qs
= ‖Tpg (w) f‖L2 < ∞.

The usual Sobolev-Shubin space Qs

(
R

d
)

coincides with M2
s

(
R

d
)
; see [2] , [3], [4] . A generalization of usual

Sobolev-Shubin space Qs

(
Rd

)
is given in [2] .

Let f be a complex-valued measurable function defined on the measure space (G, wdμ), where w is a
weight function on G. For y > 0, we define

λf (y) = w {x ∈ G | |f (x)| > y} =
∫

{x∈G||f(x)|>y}

w (x) dμ (x) .

The function λf (y) is called the distribution function of f. The rearrangement of f is defined by

f∗ (t) = inf {y > 0 | λf (y) ≤ t} = sup {y > 0 | λf (y) > t}
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for t > 0. The average function of f is also defined by

f∗∗ (x) =
1
x

x∫
0

f∗ (t) dt.

Moreover, λf , f∗ and f∗∗ are nonincreasing and right continuous functions on (0,∞) . The weighted Lorentz

space L (p, q, wdμ) (G) is defined to be the vector space of all (equivalent classes) measurable functions f , such

that ‖f‖∗p,q,w < ∞ , where

‖f‖∗p,q,w =

⎛
⎝ q

p

∞∫
0

t
q
p−1 [f∗ (t)]q dt

⎞
⎠

1
q

, 0 < p, q < ∞,

‖f‖∗p,q,w = sup
t>0

t
1
p f∗ (t) , 0 < p ≤ q = ∞.

It is known that
(
L (p, q, wdμ) (G) , ‖.‖p,q,w

)
is a Banach space, where [5]:

‖f‖p,q,w =

⎛
⎝ q

p

∞∫
0

t
q
p−1 [f∗∗ (t)]q dt

⎞
⎠

1
q

, 1 < p < ∞, 1 ≤ q < ∞,

‖f‖p,q,w = sup
t>0

t
1
p f∗∗ (t) , 1 < p ≤ q = ∞.

If w = 1, then weighted Lorentz space L (p, q, wdμ) (G) is the usual Lorentz space L (p, q) (G) [13], [18], [19],

[20] .

Let 1 ≤ r, s ≤ ∞ and a weight w be given. Fix a compact Q ⊂ R
d with nonempty interior. Then

the Wiener amalgam space W (Lr , Ls
w)

(
Rd

)
with local component Lr

(
Rd

)
and global component Ls

w

(
Rd

)
is

defined as the space of all measurable functions f : Rd → C such that fχK ∈ Lr
(
Rd

)
for each compact subset

K ⊂ Rd , for which the norm

‖f‖W(Lr ,Ls
w) = ‖Ff‖s,w =

∥∥‖fχQ+x‖r

∥∥
s,w

is finite, where χK is the characteristic function of K and

Ff (x) = ‖fχQ+x‖r ∈ Ls
w

(
R

d
)
.

It is known that if r1 ≥ r2 and s1 ≤ s2 then W (Lr1 , Ls1
w )

(
Rd

)
⊂ W (Lr2 , Ls2

w )
(
Rd

)
. If w is moderate and

r = s then W (Lr , Lr
w)

(
R

d
)

= Lr
w

(
R

d
)
. If w ≈ C , then W (Lr , Ls

w)
(
R

d
)

is the usual Wiener amalgam space

W (Lr , Ls)
(
Rd

)
, where C is a constant number [7], [11] , [16], [17].

2. Generalized Sobolev-Shubin spaces

In this section we give another generalization of the usual Sobolev -Shubin space Qs

(
Rd

)
. First we mention a

generalization of the usual modulation space Mp,q
(
Rd

)
.
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Let ω be a weight function on R2d and 1 ≤ p, q ≤ ∞ . Fix a window function g ∈ S
(
Rd

)
\ {0} .

Also let M (p, q, ω)
(
R

d
)

denote the subspace of tempered distributions S′ (
R

d
)

consisting of f ∈ S′ (
R

d
)

such that the Gabor transform Vgf of f is in the weighted Lorentz space L (p, q, ωdμ)
(
R2d

)
. We endow

it with the norm ‖f‖M(p,q,ω) = ‖Vgf‖p,q,ω , where ‖.‖p,q,ω is the norm of the weighted Lorentz space. It is

known that M (p, q, ω)
(
Rd

)
is a Banach space and different windows yield equivalent norms [22]. If ω = 1,

then M (p, q, ω)
(
Rd

)
= M (p, q)

(
Rd

)
[12]. Also if ω = 1 and p = q , then M (p, q, ω)

(
Rd

)
= M (p, p)

(
Rd

)
=

Mp,p
(
Rd

)
= Mp

(
Rd

)
. That means M (p, q, ω)

(
Rd

)
is a generalization of the usual modulation space Mp

(
Rd

)
.

The space M (p, q, ω)
(
Rd

)
is defined and studied in [22].

Definition 1 Let w and ω be two weight functions on R2d and 1 ≤ p, q ≤ ∞ . Fix a non-zero window

g ∈ S
(
Rd

)
. Let us denote by Q

M(p,q,ω)
g,w

(
Rd

)
the subspace of all tempered distributions f ∈ S′ (Rd

)
such that

the Toeplitz transform Tpg (w) f of f is in the space M (p, q, ω)
(
Rd

)
. Since the Toeplitz operator is injective,

it is easy to see that
‖f‖Q = ‖Tpg (w) f‖M(p,q,ω)

is a norm on the vector space Q
M(p,q,ω)
g,w

(
Rd

)
.

Proposition 2 Let 1 < p < ∞ , 1 ≤ q < ∞ and ω be a weight function of polynomial type on R2d . Then the

space Q
M(p,q,ω)
g,w

(
Rd

)
is independent of the choice of the window function g ∈ S

(
Rd

)
.

Proof It is known by Proposition 2.6 in [22] that M (p, q, ω)
(
Rd

)
is independent of the choice of the window

function g ∈ S
(
Rd

)
. Let g , g0 ∈ S

(
Rd

)
. Take any f ∈ Q

M(p,q,ω)
g,w

(
Rd

)
. Since

C1 ‖Tpg (w) f‖M(p,q,ω) ≤ ‖Tpg0 (w) f‖M(p,q,ω) ≤ C2 ‖Tpg (w) f‖M(p,q,ω)

for some C1 , C2 > 0, then Q
M(p,q,ω)
g,w

(
Rd

)
is also independent of the choice of the windows. �

Remark 3 Let 1 ≤ p, q ≤ ∞ . In [2] a space Qp,q
(g,w)

(
Rd

)
is defined as counter image of standard modulation

space Mp,q
(
Rd

)
under the Toeplitz operator with symbol w . It is proven in Theorem 3.5 and Corollary 3.6

in [2] that Qp,q
(g,w)

(
R

d
)

= Mp,q
w

(
R

d
)

for certain w , where Mp,q
w

(
R

d
)

is the weighted modulation space. This

relation was extended in [15] to all polynomially moderate weights. Let us take w (x, y) =
(
1 + |x|2 + |y|2

) s
2

for

s ∈ R . It is known that M2,2
s

(
Rd

)
coincides with the usual Sobolev-Shubin space Qs

(
Rd

)
, where M2,2

s

(
Rd

)
=

M2,2
w

(
Rd

)
[2] , [4]. Thus Qp,q

(g,w)

(
Rd

)
is a generalization of the usual Sobolev-Shubin space Qs

(
Rd

)
.

Now we return to our space Q
M(p,q,ω)
g,w

(
Rd

)
. Since

M (p, q, ω)
(
R

d
)

= M (p, q)
(
R

d
)

= Mp,q
(
R

d
)

for p = q , ω = 1, and Qp,q
(g,w)

(
Rd

)
is a generalization of the usual Sobolev-Shubin space Qs

(
Rd

)
, then by the

above remarks Q
M(p,q,ω)
g,w

(
Rd

)
is also an another generalization of usual Sobolev-Shubin space Qs

(
Rd

)
.

680
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It is known that Mp,p
w

(
Rd

)
is a Banach space [14] . We know by Theorem 3.5 and Corollary 3.6 in [2]

that Qp,p
(g,w)

(
Rd

)
= Mp,p

w

(
Rd

)
for certain w . We also know that Q

M(p,p,ω)
g,w

(
Rd

)
= Qp,p

(g,w)

(
Rd

)
for ω = 1. Then

QM(p,p,ω)
g,w

(
R

d
)

= QM(p,p)
g,w

(
R

d
)

= Qp,p
(g,w)

(
R

d
)

= Mp,p
w

(
R

d
)

for certain w and for ω = 1. Hence (QM(p,p,ω)
g,w

(
Rd

)
, ‖.‖Q) is a Banach space for certain w and for ω = 1.

Theorem 4 Let ω be a weight function of polynomial type on R2d .

1. If w is a submultiplicative weight function, then the space Q
M(p,q,ω)
g,w

(
Rd

)
is invariant under the

time-frequency shifts.

2. If w is a bounded weight function and 1 < p < ∞ , 1 ≤ q < ∞ , then the function z = (z1, z2) →
π (z) f = Mz2Tz1f of R2d into Q

M(p,q,ω)
g,w

(
Rd

)
is continuous.

Proof 1. Let f ∈ Q
M(p,q,ω)
g,w

(
Rd

)
and z1, z2 ∈ Rd . Then we have Tpg (w) f = V ∗

g (wVgf) ∈ M (p, q, ω)
(
Rd

)
and VgV ∗

g (wVgf) ∈ L (p, q, ωdμ)
(
R2d

)
. By using the equalities

Vγ (MtTug) (x, y) = e−2πix(t−y)Vgγ (u − x, t − y)

and
T(z1,z2)Vgf (x, y) = e2πi(y−z2)z1Vg (Mz2Tz1f) (x, y) ,

we write

∣∣VgV ∗
g (wVgπ (z) f) (u, t)

∣∣ (2.1)

=
∣∣VgV ∗

g (wVg (Mz2Tz1f)) (u, t)
∣∣ = |〈wVg (Mz2Tz1f) , Vg (MtTug)〉|

=

∣∣∣∣∣∣
∫∫
R2d

w (x, y) Vg (Mz2Tz1f) (x, y)Vgg (u − x, t − y) e−2πix(t−y)dxdy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫∫
R2d

w (x, y) e−2πi(y−z2)z1T(z1,z2)Vgf (x, y)Vgg (u − x, t− y) e−2πix(t−y)dxdy

∣∣∣∣∣∣

≤
∫∫
R2d

|w (z1 + v1, z2 + v2)| |Vgf (v1, v2)| |Vgg ((u − v1) − z1, (t − v2) − z2)|dv1dv2

≤
∫∫
R2d

w (z1, z2) |w (v1, v2)| |Vgf (v1, v2)|
∣∣T(z1,z2)Vgg ((u − v1) , (t − v2))

∣∣dv1dv2

= w (z1, z2)
(
|wVgf | ∗

∣∣T(z1,z2)Vgg
∣∣) (u, t) .

As ω is a weight function of polynomial type and Vgg ∈ S
(
R2d

)
, then Vgg ∈ L1

ω

(
R2d

)
. Also, by Proposition

3.1 in [5], L (p, q, ωdμ)
(
R2d

)
is a Banach module over L1

ω

(
R2d

)
and by Theorem 2.5 in [22] , wVgf ∈
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L (p, q, ωdμ)
(
R2d

)
. Then by (2.1) we obtain

‖π (z) f‖Q = ‖Mz2Tz1f‖Q =
∥∥V ∗

g (wVg (Mz2Tz1f))
∥∥

M(p,q,ω)

=
∥∥VgV ∗

g (wVg (Mz2Tz1f))
∥∥

p,q,ω

≤ w (z1, z2)
∥∥|wVgf | ∗

∣∣T(z1,z2)Vgg
∣∣∥∥

p,q,ω

≤ w (z1, z2) ‖wVgf‖p,q,ω

∥∥T(z1,z2)Vgg
∥∥

1,ω

≤ w (z1, z2)ω (z1, z2) ‖wVgf‖p,q,ω ‖Vgg‖1,ω < ∞.

Thus Q
M(p,q,ω)
g,w

(
Rd

)
is invariant under the time-frequency shifts.

2. Let f ∈ Q
M(p,q,ω)
g,w

(
R

d
)

and z = (z1, z2) ∈ R
2d . By Theorem 2.5 in [22] , we write

‖π (z) f − f‖Q = ‖Mz2Tz1f − f‖Q (2.2)

=
∥∥V ∗

g (wVg (Mz2Tz1f − f))
∥∥

M(p,q,ω)

≤ ‖Vgg‖1,ω ‖wVg (Mz2Tz1f − f)‖p,q,ω

≤ C ‖Vgg‖1,ω ‖Vg (Mz2Tz1f) − Vgf‖p,q,ω ,

where C = sup w (x, y). Using the equality

T(z1,z2)Vgf (x, y) = e2πi(y−z2)z1Vg (Mz2Tz1f) (x, y)

we have

‖Vg (Mz2Tz1f) − Vgf‖p,q,ω (2.3)

=
∥∥∥e−2πi(y−z2)z1T(z1,z2)Vgf − Vgf

∥∥∥
p,q,ω

≤
∥∥∥e−2πi(y−z2)z1

(
T(z1,z2)Vgf − Vgf

)∥∥∥
p,q,ω

+
∥∥∥(e−2πi(y−z2)z1 − 1

)
Vgf

∥∥∥
p,q,ω

=
∥∥(T(z1,z2)Vgf − Vgf

)
(x, y)

∥∥
p,q,ω

+
∥∥∥(e−2πi(y−z2)z1 − 1

)
Vgf

∥∥∥
p,q,ω

.

Since the translation operator is continuous from R2d into L (p, q, ωdμ)
(
R2d

)
by Proposition 2.2 in [5], then∥∥T(z1,z2)Vgf − Vgf

∥∥
p,q,ω

→ 0 as (z1, z2) tends to zero. Moreover, it is known that
∥∥(e−2πi(y−z2)z1 − 1

)
Vgf

∥∥
p,q,ω

tends to zero as (z1, z2) tends to zero by the proof of Proposition 2.9 in [22]. Hence ‖Vg (Mz2Tz1f) − Vgf‖p,q,ω →
0 as (z1, z2) tends to zero. Finally by (2.2) and (2.3) we obtain

‖Mz2Tz1f − f‖Q ≤ C ‖Vgg‖1,ω ‖Vg (Mz2Tz1f) − Vgf‖p,q,ω → 0

as (z1, z2) tends to zero. This completes the proof. �
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Lemma 5 Let 1 ≤ p, q < ∞ . Assume that ω and w are two weight functions on R2d .

1. If w is bounded, M (p, q, ω)
(
Rd

)
is continuously embedded into Q

M(p,q,ω)
g,w

(
Rd

)
, i.e.

M (p, q, ω)
(
R

d
)

↪→ QM(p,q,ω)
g,w

(
R

d
)
.

2. If |ω (z)| ≤ C (1 + |z|)N for a fix N ∈ N and w is bounded then

S
(
R

d
)
⊂ QM(p,q,ω)

g,w

(
R

d
)
.

Proof It is known by Proposition 2.3 in [22] that S
(
Rd

)
⊂ M (p, q, ω)

(
Rd

)
. Let f ∈ M (p, q, ω)

(
Rd

)
. Then

Vgf ∈ L (p, q, ωdμ)
(
R2d

)
. As w is bounded, by Theorem 2.5 in [22]

‖f‖Q =
∥∥V ∗

g (wVgf)
∥∥

M(p,q,ω)
≤ ‖Vgg‖1,ω ‖wVgf‖p,q,ω (2.4)

≤ sup
(x,y)∈R2d

w (x, y) ‖Vgg‖1,ω ‖Vgf‖p,q,ω = K ‖f‖M(p,q,ω) < ∞.

This implies f ∈ Q
M(p,q,ω)
g,w

(
Rd

)
. Hence

M (p, q, ω)
(
R

d
)
⊂ QM(p,q,ω)

g,w

(
R

d
)
. (2.5)

Also by (2.4) the unite map I of M (p, q, ω)
(
Rd

)
into Q

M(p,q,ω)
g,w

(
Rd

)
is continuous. That means M (p, q, ω)

(
Rd

)
↪→

Q
M(p,q,ω)
g,w

(
Rd

)
.

It is known by Proposition 2.3 in [22] that S
(
Rd

)
⊂ M (p, q, ω)

(
Rd

)
. The proof of 2) is completed by

(2.5). �

Proposition 6 If 1 ≤ q1 ≤ q2 ≤ ∞ , then Q
M(p,q1,ω)
g,w

(
Rd

)
⊂ Q

M(p,q2,ω)
g,w

(
Rd

)
.

Proof Since 1 ≤ q1 ≤ q2 ≤ ∞ , then L (p, q1, ωdμ)
(
R

d
)

↪→ L (p, q2, ωdμ)
(
R

d
)

by Proposition 2.5 in [5] .

Hence M (p, q1, ω)
(
Rd

)
↪→ M (p, q2, ω)

(
Rd

)
. This implies Q

M(p,q1,ω)
g,w

(
Rd

)
↪→ Q

M(p,q2,ω)
g,w

(
Rd

)
. �

Proposition 7 Let w1 , w2 and ω1 , ω2 be weight functions on R2d . If w2 � w1 and ω2 � ω1 then

Q
M(p,q,ω1)
g,w1

(
Rd

)
⊂ Q

M(p,q,ω2)
g,w2

(
Rd

)
.

Proof Let f ∈ Q
M(p,q,ω1)
g,w1

(
Rd

)
. Then f ∈ S′ (Rd

)
and Tpg (w1) f = V ∗

g (w1Vgf) ∈ M (p, q, ω1)
(
Rd

)
and

w1Vgf ∈ L (p, q, ω1dμ)
(
R2d

)
. Since w2 � w1 , ω2 � ω1 and weighted Lorentz space is a solid space, then by

Proposition 2.14 in [22] we have

‖w2Vgf‖p,q,ω2
≤ C ‖w1Vgf‖p,q,ω2

≤ C ‖w1Vgf‖p,q,ω1
< ∞.

Thus w2Vgf ∈ L (p, q, ω2dμ)
(
R2d

)
. By Theorem 2.5 in [22] , we write V ∗

g (w2Vgf) = Tpg (w2) f ∈ M (p, q, ω2)
(
Rd

)
.

Thus we obtain f ∈ Q
M(p,q,ω2)
g,w2

(
Rd

)
. That means Q

M(p,q,ω1)
g,w1

(
Rd

)
⊂ Q

M(p,q,ω2)
g,w2

(
Rd

)
. �
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3. Boundedness of Toeplitz operators

Theorem 8 Let ω1 and ω2 be two weight functions of polynomial type on R2d and g ∈ S
(
Rd

)
\ {0} be a

window function.Then

a. If p, q ∈ (1,∞), t′ ∈ (1,∞), s ≤ t′ ≤ r and F ∈ W (Lr, Ls), then the Toeplitz operator

Tpg (F ) : M (tp, tq, ω1)
(
R

d
)
→ M

(
(tp′)′ , (tq′)′ , ω2

) (
R

d
)

is bounded, where 1
p + 1

p′ = 1, 1
q + 1

q′ = 1 and 1
t + 1

t′ = 1. Moreover we have the norm estimate

‖Tpg (F )‖ ≤ ‖F ‖W(Lr ,Ls) .

b. If t ∈ [1,∞), s ≤ t ≤ r and F ∈ W (Lr , Ls), then the Toeplitz operator

Tpg (F ) : M (∞,∞, ω1)
(
R

d
)
→ M (t, t, ω2)

(
R

d
)

is bounded. Moreover we have the norm estimate

‖Tpg (F )‖ ≤ ‖F ‖W(Lr ,Ls) .

c. If t ∈ (1,∞), s ≤ t′ ≤ r and F ∈ W (Lr , Ls) , then the Toeplitz operator

Tpg (F ) : M (t, t, ω1)
(
R

d
)
→ M (1, 1, ω2)

(
R

d
)

is bounded, where 1
t + 1

t′ = 1. Also we have the norm estimate

‖Tpg (F )‖ ≤ ‖F ‖W(Lr ,Ls) .

Proof a. Let t < ∞ , f ∈ M (tp, tq, ω1)
(
Rd

)
and h ∈ M (tp′, tq′, ω2)

(
Rd

)
. Then f ∈ M (tp, tq)

(
Rd

)
and h ∈ M (tp′, tq′)

(
Rd

)
and so we write Vgf ∈ L (tp, tq)

(
R2d

)
and Vgh ∈ L (tp′, tq′)

(
R2d

)
. Since Vgf ∈

L (tp, tq)
(
R2d

)
, then ‖Vgf‖∗tp,tq < ∞ . By using the equality

(
|f |t

)∗
= (f∗)t for t ∈ (0,∞) (see [6]), we obtain

‖Vgf‖∗tp,tq =

⎛
⎝ tq

tp

∞∫
0

x
tq
tp−1

(
(Vgf)∗ (x)

)tq
dx

⎞
⎠

1
tq

(3.6)

=

⎛
⎝ q

p

∞∫
0

x
q
p −1

[(
(Vgf)∗ (x)

)t
]q

dx

⎞
⎠

1
tq

=

⎡
⎢⎣
⎛
⎝ q

p

∞∫
0

x
q
p−1

[(
|Vgf |t

)∗
(x)

]q

dx

⎞
⎠

1
q

⎤
⎥⎦

1
t

=
(∥∥∥|Vgf |t

∥∥∥∗

p,q

) 1
t

.
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Thus we have |Vgf |t ∈ L (p, q)
(
R2d

)
. Similarly, we obtain |Vgh|t ∈ L (p′, q′)

(
R2d

)
. Hence, applying the Hölder

inequality for Lorentz spaces and using (3.6) , we write

‖Vgf · Vgh‖t
t =

∥∥∥(Vgf)t (Vgh)t
∥∥∥

1
=

∥∥∥|Vgf |t |Vgh|t
∥∥∥

1

≤
∥∥∥|Vgf |t

∥∥∥
p,q

∥∥∥|Vgh|t
∥∥∥

p′,q′

= ‖Vgf‖t
tp,tq ‖Vgh‖t

tp′,tq′

and
‖Vgf · Vgh‖t ≤ ‖Vgf‖tp,tq ‖Vgh‖tp′,tq′ . (3.7)

Since F ∈ W (Lr , Ls) ⊂ W
(
Lt′ , Lt′

)
= Lt′

(
R2d

)
, then we have

‖F ‖t′ ≤ ‖F ‖W(Lr ,Ls) . (3.8)

Moreover, using (3.7) and (3.8) and applying again Hölder inequality, we obtain

|〈Tpg (F ) f, h〉| =
∣∣〈V ∗

g (FVgf) , h
〉∣∣ = |〈FVgf, Vgh〉| (3.9)

=

∣∣∣∣∣∣
∫∫
R2d

F (x, y)Vgf (x, y) Vgh (x, y)dxdy

∣∣∣∣∣∣
≤

∫∫
R2d

|F (x, y)| |(Vgf · Vgh) (x, y)| dxdy

≤ ‖F ‖t′ ‖Vgf · Vgh‖t

≤ ‖F ‖t′ ‖Vgf‖tp,tq ‖Vgh‖tp′,tq′

≤ ‖F ‖W(Lr ,Ls) ‖f‖M(tp,tq) ‖h‖M(tp′,tq′)

≤ ‖F ‖W(Lr ,Ls) ‖f‖M(tp,tq,ω1)
‖h‖M(tp′,tq′,ω2).

If (tp′)′ , (tq′)′ �= ∞ , then
(
M

(
(tp′)′ , (tq′)′ , ω2

) (
Rd

))∗
= M (tp′, tq′, ω2)

(
Rd

)
by Theorem 2.16 in [22]. Thus

we obtain from (3.9) that

‖Tpg (F ) f‖M((tp′)′,(tq′)′,ω2)
= sup

0 	=h∈M(tp′,tq′,ω2)

|〈Tpg (F )f, h〉|
‖h‖M(tp′,tq′,ω2)

≤ ‖F ‖W(Lr,Ls) ‖f‖M(tp,tq,ω1)
.

Hence Tpg (F ) is bounded. We also have

‖Tpg (F )‖ = sup
0 	=f∈M(tp,tq,ω1)

‖Tpg (F )f‖M((tp′)′,(tq′)′,ω2)

‖f‖M(tp,tq,ω1)

≤ ‖F ‖W(Lr,Ls) .
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b. Let us take any f ∈ M (∞,∞, ω1)
(
Rd

)
and h ∈ M (t′, t′, ω2)

(
Rd

)
. Then Vgf ∈ L (∞,∞, ω1dμ)

(
R2d

)
and

Vgh ∈ L (t′, t′, ω2dμ)
(
R

2d
)
, respectively. Since L (∞,∞, ω1dμ)

(
R

2d
)
⊂ L∞ (

R
2d

)
and L (t′, t′, ω2dμ)

(
R

2d
)

⊂ Lt′
(
R2d

)
, we have Vgf ∈ L∞ (

R2d
)

and Vgh ∈ Lt′
(
R2d

)
. By (3.8) and Hölder inequality we have

|〈Tpg (F )f, h〉| =

∣∣∣∣∣∣
∫∫
R2d

F (x, y)Vgf (x, y)Vgh (x, y)dxdy

∣∣∣∣∣∣
≤ ‖FVgf‖t ‖Vgh‖t′ ≤ ‖F ‖t ‖f‖M(∞,∞) ‖h‖M(t′,t′)

≤ ‖F ‖W(Lr,Ls) ‖f‖M(∞,∞) ‖h‖M(t′,t′)

≤ ‖F ‖W(Lr,Ls) ‖f‖M(∞,∞,ω1)
‖h‖M(t′,t′,ω2)

and
‖Tpg (F ) f‖M(t,t,ω2)

≤ ‖F ‖W(Lr,Ls) ‖f‖M(∞,∞,ω1)
. (3.10)

Then Tpg (F ) is bounded. By (3.10) we obtain ‖Tpg (F )‖ ≤ ‖F ‖W(Lr ,Ls) .

c. Let f ∈ M (t, t, ω1)
(
R

d
)

and h ∈ M (∞,∞, ω2)
(
R

d
)

be given. Then Vgf ∈ L (t, t, ω1dμ)
(
R

2d
)
⊂ Lt

(
R

2d
)

and Vgh ∈ L (∞,∞, ω2dμ)
(
R2d

)
⊂ L∞ (

R2d
)
, respectively. Applying again the Hölder inequality and

(3.8) we have

|〈Tpg (F )f, h〉| ≤ ‖Vgh‖∞
∫∫
R2d

|F (x, y)| |Vgf (x, y)|dxdy

≤ ‖F ‖t′ ‖Vgf‖t ‖Vgh‖∞ ≤ ‖F ‖W(Lr ,Ls) ‖f‖M(t,t) ‖h‖M(∞,∞)

≤ ‖F ‖W(Lr,Ls) ‖f‖M(t,t,ω1)
‖h‖M(∞,∞,ω2)

and
‖Tpg (F )f‖M(1,1,ω2)

≤ ‖F ‖W(Lr ,Ls) ‖f‖M(t,t,ω1)
. (3.11)

Hence Tpg (F ) is bounded and from (3.11) we have ‖Tpg (F )‖ ≤ ‖F ‖W(Lr,Ls) . This completes the proof.

�

Theorem 9 Let ω be a moderate weight and g ∈ ⋂
1≤k,l<∞

M (k, l, ω)
(
Rd

)
. If 1 ≤ s ≤ r ≤ ∞ and F ∈

W (Lr , Ls
ω) then the Toeplitz operator

Tpg (F ) : M (p, q, ω)
(
R

d
)
→ M (p, q, ω)

(
R

d
)

is bounded. We have the norm estimate

‖Tpg (F )‖ ≤ C ‖F ‖W(Lr,Ls
ω)

for some C > 0 .
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Proof Since s ≤ r , W (Lr, Ls
ω)

(
R2d

)
⊂ W (Ls, Ls

ω)
(
R2d

)
= Ls

ω

(
R2d

)
and

‖F ‖s,ω ≤ ‖F ‖W(Lr,Ls
ω) (3.12)

for all F ∈ W (Lr , Ls
ω)

(
R2d

)
. Let B

(
M (p, q, ω)

(
Rd

)
, M (p, q, ω)

(
Rd

))
be the space of the bounded linear

operators from M (p, q, ω)
(
Rd

)
into M (p, q, ω)

(
Rd

)
.

Define an operator A from L1
ω

(
R2d

)
into B

(
M (p, q, ω)

(
Rd

)
, M (p, q, ω)

(
Rd

))
by A (F ) = Tpg (F ).

Take any f ∈ M (p, q, ω)
(
Rd

)
and h ∈ M (p′, q′, ω)

(
Rd

)
, where 1

p
+ 1

p′ = 1. Suppose that F ∈ W
(
L1, L1

ω

) (
R2d

)
=

L1
ω

(
R2d

)
. Applying Hölder inequality we obtain

|〈A (F ) f, h〉| = |〈Tpg (F ) f, h〉| =
∣∣〈V ∗

g (FVgf) , h
〉∣∣ = |〈FVgf, Vgh〉|

=

∣∣∣∣∣∣
∫∫
R2d

F (x, y)Vgf (x, y)Vgh (x, y)dxdy

∣∣∣∣∣∣ (3.13)

≤
∫∫
R2d

|F (x, y)| |Vgf (x, y)| |Vgh (x, y)| dxdy

=
∫∫
R2d

|F (x, y)| |〈f, MyTxg〉| |〈h, MyTxg〉| dxdy

≤
∫∫
R2d

|F (x, y)| ‖f‖M(p,q,ω) ‖MyTxg‖M(p′,q′,ω) ‖h‖M(p′,q′,ω)

‖MyTxg‖M(p,q,ω) dxdy

=
∫∫
R2d

|F (x, y)| ‖f‖M(p,q,ω) ω
1
p′ (x, y) ‖g‖M(p′,q′,ω)

‖h‖M(p′,q′,ω) ω
1
p (x, y) ‖g‖M(p,q,ω) dxdy

= ‖f‖M(p,q,ω) ‖g‖M(p′,q′,ω) ‖h‖M(p′,q′,ω) ‖g‖M(p,q,ω)

∫∫
R2d

|F (x, y)|

ω
1
p′ +

1
p (x, y) dxdy

= ‖f‖M(p,q,ω) ‖g‖M(p′,q′,ω) ‖h‖M(p′,q′,ω) ‖g‖M(p,q,ω) ‖F ‖1,ω .

Thus by (3.13)

‖A (F ) f‖M(p,q,ω) = ‖Tpg (F ) f‖M(p,q,ω) = sup
0 	=h∈M(p′,q′,ω)

|〈Tpg (F )f, h〉|
‖h‖M(p′,q′,ω)

≤ ‖g‖M(p′,q′,ω) ‖g‖M(p,q,ω) ‖f‖M(p,q,ω) ‖F ‖1,ω .

687
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Hence

‖A (F )‖ = ‖Tpg (F )‖ = sup
0 	=f∈M(p,q,ω)

‖Tpg (F )f‖M(p,q,ω)

‖f‖M(p,q,ω)

(3.14)

≤ ‖g‖M(p′,q′,ω) ‖g‖M(p,q,ω) ‖F ‖1,ω .

Finally the operator

A : L1
ω

(
R

2d
)
→ B

(
M (p, q, ω)

(
R

d
)
, M (p, q, ω)

(
R

d
))

(3.15)

is bounded.
Now define an operator A

A : L∞
ω

(
R

2d
)

= W (L∞, L∞
ω )

(
R

2d
)
→ B

(
M (p, q, ω)

(
R

d
)
, M (p, q, ω)

(
R

d
))

by A (F ) = Tpg (F ). Take any f ∈ M (p, q, ω)
(
Rd

)
and h ∈ M (p′, q′, ω)

(
Rd

)
. Then Vgf ∈ L (p, q, ωdμ)

(
R2d

)
,

Vgh ∈ L (p′, q′, ωdμ)
(
R2d

)
. Again applying the Hölder inequality

|〈A (F ) f, h〉| = |〈Tpg (F )f, h〉| =
∣∣〈V ∗

g (FVgf) , h
〉∣∣ (3.16)

= |〈FVgf, Vgh〉| =

∣∣∣∣∣∣
∫∫
R2d

F (x, y)Vgf (x, y)Vgh (x, y)dxdy

∣∣∣∣∣∣
≤

∫∫
R2d

|F (x, y)| · |Vgf (x, y)| · |Vgh (x, y)| dxdy

≤ ‖F ‖∞
∫∫
R2d

|Vgf (x, y)| |Vgh (x, y)|dxdy

≤ ‖F ‖∞ ‖Vgf‖p,q,ω ‖Vgh‖p′,q′,ω

≤ ‖F ‖∞,ω ‖f‖M(p,q,ω) ‖h‖M(p′,q′,ω) .

By using (3.16) we have

‖A (F ) f‖M(p,q,ω) = ‖Tpg (F ) f‖M(p,q,ω) (3.17)

= sup
0 	=h∈M(p′,q′,ω)

|〈Tpg (F ) f, h〉|
‖h‖M(p′,q′,ω)

≤ ‖F ‖∞,ω ‖f‖M(p,q,ω) .

Hence by (3.17)

‖A (F )‖ = ‖Tpg (F )‖ = sup
0 	=f∈M(p,q,ω)

‖Tpg (F ) f‖M(p,q,ω)

‖f‖M(p,q,ω)

≤ ‖F ‖∞,ω .

That means the operator

A : L∞
ω

(
R

2d
)
→ B

(
M (p, q, ω)

(
R

d
)
, M (p, q, ω)

(
R

d
))

(3.18)
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is bounded. Combining (3.15) and (3.18) we obtain that

A : Lt
ω

(
R

2d
)
→ B

(
M (p, q, ω)

(
R

d
)
, M (p, q, ω)

(
R

d
))

is bounded by interpolation theorem [[1] , Theorem 5.5.1] for 1 ≤ t ≤ ∞ . That means the Toeplitz operator

Tpg (F ) : M (p, q, ω)
(
R

d
)
→ M (p, q, ω)

(
R

d
)

is bounded for 1 ≤ t ≤ ∞ . Hence there exists C > 0 such that

‖A (F )‖ = ‖Tpg (F )‖ ≤ C ‖F ‖t,ω . (3.19)

This implies that it is also true for 1 ≤ s ≤ ∞ . By (3.12) and (3.19) we have

‖A (F )‖ = ‖Tpg (F )‖ ≤ C ‖F ‖s,ω ≤ C ‖f‖W(Lr,Ls
ω) . �

Remark 10 It is known by Proposition 2.3 in [22] that S
(
Rd

)
⊂ M (k, l, ω)

(
Rd

)
if |ω (z)| ≤ C (1 + |z|)N for

a fix N ∈ N and 1 ≤ k, l < ∞ . Then S
(
Rd

)
⊂ ⋂

1≤k,l<∞
M (k, l, ω)

(
Rd

)
if |ω (z)| ≤ C (1 + |z|)N for a fix

N ∈ N . Hence, if g ∈ S
(
Rd

)
, 1 ≤ s ≤ r ≤ ∞ and F ∈ W (Lr , Ls

ω)
(
Rd

)
then the Toeplitz operator

Tpg (F ) : M (p, q, ω)
(
R

d
)
→ M (p, q, ω)

(
R

d
)

is bounded for 1 ≤ p, q < ∞ by Theorem 9.

Proposition 11 Let g ∈ ⋂
1≤k,l<∞

M (k, l, ω)
(
Rd

)
. If 1 ≤ p, q < ∞ and Fω

1
p ∈ L (p′, q′, ωdμ)

(
R2d

)
then the

Toeplitz operator

Tpg (F ) : M (p, q, ω)
(
R

d
)
→ M (p, q, ω)

(
R

d
)

is bounded, where 1
p + 1

p′ = 1 .

Proof Suppose that Fω
1
p ∈ L (p′, q′, ωdμ)

(
R2d

)
. Take any f ∈ M (p, q, ω)

(
Rd

)
and h ∈ M (p′, q′, ω)

(
Rd

)
.

Applying Hölder inequality we have by (3.13)

|〈Tpg (F )f, h〉| ≤
∫∫
R2d

|F (x, y)| |Vgf (x, y)| |〈h, MyTxg〉|dxdy (3.20)

≤
∫∫
R2d

|F (x, y)| |Vgf (x, y)| ‖h‖M(p′,q′,ω) ‖MyTxg‖M(p,q,ω) dxdy

≤
∫∫
R2d

|F (x, y)| |Vgf (x, y)| ‖h‖M(p′,q′,ω) ω
1
p (x, y) ‖g‖M(p,q,ω) dxdy

= ‖h‖M(p′,q′,ω) ‖g‖M(p,q,ω)

∫∫
R2d

|F (x, y)|ω 1
p (x, y) |Vgf (x, y)|dxdy

≤ ‖h‖M(p′,q′,ω) ‖g‖M(p,q,ω) ‖f‖M(p,q,ω)

∥∥∥Fω
1
p

∥∥∥
p′,q′,ω

.
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In analogy to (3.14), we have

‖Tpg (F )‖ ≤ ‖g‖M(p,q,ω)

∥∥∥Fω
1
p

∥∥∥
p′,q′,ω

. (3.21)

Then the Toeplitz operator from M (p, q, ω)
(
Rd

)
into M (p, q, ω)

(
Rd

)
is bounded. This completes the proof. �

Remark 12 It is known by Proposition 2.3 in [22] that S
(
Rd

)
⊂ M (k, l, ω)

(
Rd

)
if |ω (z)| ≤ C (1 + |z|)N

for a fix N ∈ N and 1 ≤ k, l < ∞ . Thus if |ω (z)| ≤ C (1 + |z|)N for a fix N ∈ N , then S
(
Rd

)
⊂⋂

1≤k,l<∞
M (k, l, ω)

(
Rd

)
. Hence if g ∈ S

(
Rd

)
, 1 ≤ p, q < ∞ and Fω

1
p ∈ L (p′, q′, ωdμ)

(
R2d

)
, then the Toeplitz

operator

Tpg (F ) : M (p, q, ω)
(
R

d
)
→ M (p, q, ω)

(
R

d
)

is bounded by Proposition 11.

4. Hilbert-Schmidt and Schatten-class properties for symbols in W (Lr , Ls)
(
R2d

)
Theorem 13 Let 1 ≤ p ≤ ∞ , 1 ≤ s ≤ r ≤ ∞ and g ∈ S

(
Rd

)
. If F ∈ W (Lr , Ls)

(
Rd

)
, then Tpg (F ) :

L2
(
Rd

)
→ L2

(
Rd

)
is in the Schatten-class Sp and the inequality

‖Tpg (F )‖Sp
≤ ‖g‖2

2 ‖F ‖W(Lr,Ls)

holds.

Proof By Remark 10, the Toeplitz operator Tpg (F ) : L2
(
Rd

)
→ L2

(
Rd

)
is bounded under these assumptions.

We will show that Tpg (F ) is in Sp . Let p = r = s = 1. For z = (x, y) ∈ R2d we consider the rank one operator

Λzf = 〈f, MyTxg〉MyTxg, f ∈ L2
(
R

d
)
. (4.22)

Then
‖Λz‖S1

= ‖g‖2
2 . (4.23)

Hence the mapping z → Λz is continuous and the vector-valued integral

Tpg (F ) =
∫∫
R2d

F (x, y) Λzdxdy

is well defined. Also by (4.23) we write

‖Tpg (F )‖S1
=

∥∥∥∥∥∥
∫∫
R2d

F (x, y) Λzdxdy

∥∥∥∥∥∥
S1

≤ (4.24)

≤
∫∫
R2d

‖F (x, y) Λz‖S1
dxdy =

∫∫
R2d

|F (x, y)| ‖Λz‖S1
dxdy

= ‖g‖2
2

∫∫
R2d

|F (x, y)|dxdy = ‖g‖2
2 ‖F ‖1 .
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Now let p = r = s = ∞ . Since f ∈ L2
(
Rd

)
then by the proof of Theorem 8 we have

|〈Tpg (F )f, h〉| =

∣∣∣∣∣∣
∫∫
R2d

F (x, y)Vgf (x, y)Vgh (x, y)dxdy

∣∣∣∣∣∣ (4.25)

≤ ‖F ‖∞
∫∫
R2d

|Vgf (x, y)| |Vgh (x, y)|dxdy

≤ ‖F ‖∞ ‖Vgf‖2 ‖Vgh‖2 = ‖F ‖∞ ‖f‖2 ‖h‖2 ‖g‖
2
2 .

Hence
‖Tpg (F )‖∞ ≤ ‖F ‖∞ ‖g‖2

2 .

That means Tpg (F ) is bounded on L2
(
Rd

)
. Since S∞ denotes the algebra of all bounded operators on

L2
(
Rd

)
, we have

‖Tpg (F )‖S∞
≤ ‖F ‖∞ ‖g‖2

2 .

Then by the interpolation theorem (see Theorem 2.11. in [23]), for 1 ≤ t, p ≤ ∞ ,
[
L1

(
Rd

)
, L∞ (

Rd
)]

Θ
=

Lt
(
Rd

)
, [S1, S∞]Θ = Sp and Tpg (F ) ∈ Sp ,

‖Tpg (F )‖Sp
≤ ‖F ‖t ‖g‖

2
2 (4.26)

for all F ∈ Lt
(
Rd

)
. Hence Tpg (F ) is in Sp .

Moreover, since s ≤ r , there exists 1 ≤ t0 ≤ ∞ such that s ≤ t0 ≤ r . Hence W (Lr , Ls)
(
R2d

)
⊂

Lt0
(
R2d

)
and

‖F ‖t0
≤ ‖F ‖W(Lr ,Ls) (4.27)

for all F ∈ W (Lr , Ls)
(
R2d

)
. Finally by using (4.26) and (4.27), we obtain

‖Tpg (F )‖Sp
≤ ‖F ‖t0

‖g‖2
2 ≤ ‖g‖2

2 ‖F ‖W(Lr,Ls)

for all F ∈ W (Lr , Ls). This completes the proof. �
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