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Abstract: Let w and w be two weight functions on R?? and 1 < p,q < co. Also let M (p,q,w) (Rd) denote the
subspace of tempered distributions S’ (Rd) consisting of f € &’ (Rd) such that the Gabor transform Vi f of f isin

the weighted Lorentz space L (p, ¢, wdp) (R2d) . In the present paper we define a space Qgi(up 0 (Rd) as counter image

of M (p,q,w) (Rd) under Toeplitz operator with symbol w. We show that Q%,(Jp’q’w) (Rd) is a generalization of usual

Sobolev-Shubin space Qs (R d) . We also investigate the boundedness and Schatten-class properties of Toeplitz operators.

Key words: Sobolev-Shubin space, Gabor transform, modulation space, weighted Lorentz space, Toeplitz operators,
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1. Introduction

Throughout this paper we denote by S (Rd) the Schwartz space on R% and by &’ (Rd) its topological dual. Let
f be a measurable complex valued function on R?. The translation and modulation operators are defined as
T.f (t) = f(t— ) and M, f (t) = 2™t f () for x,w € R, respectively. The following canonical commutation
relation holds:

Ty M,y = e *™* M, T,

between T, M, and M, T, operators which are called time-frequency shifts [14]. A weight function w on R? is a
non-negative, continuous and locally integrable function. w is called submultiplicative if w (z +y) < w (z)w (y)
for all 2,y € R?. Let v be a submultiplicative weight function on R?. A weight function w on R? is v—moderate

if w(z+y) <v(r)w(y) for all z,y € R If
w(x) <Cvs () =C (1 + |gc|2)E

for some C' >0, s >0 and z € R?, then w is called polynomial growth. Let w; and ws be two weights. We
say that wy < w; if and only if there exists ¢ > 0 such that ws (z) < cwy (2) for all x € R%. Two functions
are called equivalent and we write wy ~ ws, if wo =X wy and w; <X ws.

Let w be a weight function on R Then the weighted LP space is defined by
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b (RY) = {f | fweL? (RY)},
for 1 < p < oo. L, (R?) is a Banach space under the norm I £1l, . = lfwll, . Moreover, if w is submultiplicative

and w > 1 then L] (RY) is a Banach convolution algebra. It is called a Beurling algebra [9] .

A
Let f € L' (R?). Then the Fourier transform f (or Ff ) of f is given by

1) = / f (@) e 2Tty

Rd

d
where (z,t) = > x;t; is the usual scalar product on R%.
i=1

Given any fix function g # 0, which is called the window function, the short-time Fourier transform

(STFT) or Gabor transform of a function f with respect to g is given by

Vo f (2, w) = /f(t) gt — z)e 2mitwgy,
Rd

for z,w € R%, 8], [10], [21]. It is known that if f,g € L? (R?) then V,f € L? (R??) and V,f is uniformly

continuous [14].
Fix a non-zero window g € S (Rd) and 1 < p,q < oo. Let w be a weight function of at most polynomial

growth and v,—moderate on R2?. That means
w(z1+22) <C (1 + |21|2) P w (22)

for all 2y, 2o € R2? and for some C' > 0, s > 0. Then the modulation space MP:? (Rd) consists of all tempered
distributions f € 8" (R?) such that V,f € L5 (R*Y) and || f[| .0 = [[Vafll 1po is finite, where £ (R??) the
weighted mixed-norm space. If p = ¢, and then we write MP (Rd) instead of MPP (Rd) and if w =1, then we

have standard modulation space MP?¢ (Rd) . Moreover, if p = ¢ = 2 and v, is weight function in polynomial
type, that means v (z) = (2)° = (1 + |2|2) " for z € R?d and s € R, then we obtain the space M2 (R?) [14].

Let g € S (R?)\ {0} and w (z,y) be a suitable weight function defined on the time-frequency plane R??.
The Toeplitz operator is given by the formula

(Tpg (w) f1, f2) = (WV f1, Vg f2)

forall f1,fo €S (Rd) . This implies that

Tpg (w) f = Vg (wVyf),

where V[ is the adjoint for V. In this work we shall extend this definition to more general situations.

The fundamental objects in the definition of Toeplitz operators are Gabor transforms. Hence time-frequency
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techniques are used for the analysis of Toeplitz operators. Also, Toeplitz operators are localization operators
whose symbols w (x,y) belong to suitable classes. Since the Gabor transform is injective, it is easy to show

that the Toeplitz operator is injective.

For a given symbol o € &' (R2d) , the pseudodifferential operator L, is defined to be

Lof = / / & (€,u) e ™ T M fdudé.

R2d

The map ¢ — L, is called the Weyl transform, o and ¢ are called the Weyl symbol and the spreading function
of the operator L., respectively.

Let X be a separable Hilbert space, B (X) be the space of bounded linear operators on X and A € B (X)
be a compact operator. Then the linear operator |A|: X — X is positive and compact. Let {¢r : k=1,2,...}
be an orthonormal basis for X consisting of eigenvectors of |A| and let si (A) be the eigenvalue of |A]
corresponding to the eigenvector ¢y, (k=1,2,...).

A compact operator A : X — X is said to be in the Schatten-von Neumann class S,, p € [1,00) if

Z sk (AP < .
k=1

It can be shown that .S, is a Banach space with the norm

1
3

IAlls, = {Zé’k (A)p} , A€sS,
k=1

It is customary to call S; the trace class and Sy the Hilbert-Schmidt class.
The Weyl transform ¢ — L, is a unitary map from L2 (R2d) onto the algebra of Hilbert-Schmidt
operators on L2 (Rd) under the Hilbert-Schmidt norm. This property is known as Pool’s Theorem [14].

Let g € S (R?)\ {0} be a window function and w (z,y) = (1 + |z + |y|2) ® for s € R. Then the usual
Sobolev-Shubin space Qg (Rd) is the set of all f € &' (Rd) such that
1fllg, = 1 Tpg (w) fl 2 < oo

The usual Sobolev-Shubin space @, (R?) coincides with M2 (R?); see [2], [3], [4]. A generalization of usual
Sobolev-Shubin space @ (Rd) is given in [2].
Let f be a complex-valued measurable function defined on the measure space (G,wdu), where w is a

weight function on G. For y > 0, we define

NW=wleGlli@ > = [ w@di).
{zeGl|f()I>y}

The function Ay (y) is called the distribution function of f. The rearrangement of f is defined by
fr@)=inf{y > 0] A (y) <t} =sup{y >0]As(y) >t}
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for ¢t > 0. The average function of f is also defined by

Moreover, Ay, f* and f** are nonincreasing and right continuous functions on (0, cc0). The weighted Lorentz
space L (p, ¢, wdp) (G) is defined to be the vector space of all (equivalent classes) measurable functions f, such

that || f| < 00, where

*
p,q,w

o q
* q a_ %
Ml = (2[00 @Far) L 0<pa<
0
* 1 .«
Hf' p,q,w = Suptpf (t)v 0< P S q = OQ.
t>0

It is known that (L (p, q, wdp) (G), ) is a Banach space, where [5]:

111, .00

o0

Bl = (260 @rar) 1<p<misi<o,
p 0
l £ 3
Ifllpgw = supt? f(t), l<p<g=oo.
t>0

If w =1, then weighted Lorentz space L (p,q, wdu)(G) is the usual Lorentz space L (p, q) (G) [13], [18], [19],
[20].

Let 1 < 7, s < co and a weight w be given. Fix a compact Q@ C R? with nonempty interior. Then
the Wiener amalgam space W (L", L?) (Rd) with local component L”" (Rd) and global component L3, (Rd) is
defined as the space of all measurable functions f : R? — C such that fyx € L" (Rd) for each compact subset
K c R?, for which the norm

HfHW(LT,LfU) = HFf' s, w = ||HfXQ+IH7‘||s,w

is finite, where g is the characteristic function of K and
Fy (x) = ||fxq+ |, € L3, (RY).

It is known that if 71 > ro and s; < sp then W (L™, L5) (RY) € W (L™, L52) (R?). If w is moderate and
r =s then W (L", L) (Rd) =L, (Rd) If wa C, then W (L", L%) (Rd) is the usual Wiener amalgam space
W (L™, L*) (R?), where C' is a constant number [7], [11], [16], [17].

2. Generalized Sobolev-Shubin spaces
In this section we give another generalization of the usual Sobolev -Shubin space @ (Rd) . First we mention a

generalization of the usual modulation space MP-4 (Rd) .
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Let w be a weight function on R?*? and 1 < p,q < oo. Fix a window function g € S (R?)\{0}.
Also let M (p, q,w) (Rd) denote the subspace of tempered distributions &’ (Rd) consisting of f € &’ (Rd)
such that the Gabor transform V,f of f is in the weighted Lorentz space L (p,q,wdpu) (R2d). We endow
it with the norm [|f|[5;¢p 000 = Vo f]

g Where [ is the norm of the weighted Lorentz space. It is

Piqw
known that M (p, q,w) (Rd) is a Banach space and different windows yield equivalent norms [22]. If w = 1,
then M (p,q,w) (R?) = M (p,q) (R?) [12]. Also if w =1 and p = g, then M (p,q,w) (R?) = M (p,p) (R?) =
MP-P (Rd) = MP (Rd) . That means M (p, ¢, w) (Rd) is a generalization of the usual modulation space M? (Rd) .

The space M (p, ¢, w) (R?) is defined and studied in [22].

Definition 1 Let w and w be two weight functions on R?>? and 1 < p,q < oco. Fiz a non-zero window
ges (Rd). Let us denote by Qf]\%p’q’w) (Rd) the subspace of all tempered distributions f € S’ (Rd) such that
the Toeplitz transform Tpy (w) f of f is in the space M (p,q,w) (Rd). Since the Toeplitz operator is injective,

it is easy to see that
Ifllg = ITpg (w) fll rs(p,q,0

is a norm on the vector space Qf]\%p’q’w) (RY).

Proposition 2 Let 1 <p< oo, 1 <q< oo and w be a weight function of polynomial type on R?*. Then the
space Qf]\%p’q’w) (Rd) is independent of the choice of the window function g € S (Rd) .
Proof Tt is known by Proposition 2.6 in [22] that M (p, ¢, w) (Rd) is independent of the choice of the window

function g € S (Rd). Let g, g0 €S (Rd). Take any f € Qf]\%p’q’w) (Rd) . Since

C1[|Tpg (w) fHM(pg,w) < [Tpg, (w) fHM(pg,w) < C2 || Tpy (w) fHM(pg,w)

for some Ci, Co > 0, then Qf]\{u(,p 0w) (Rd) is also independent of the choice of the windows. O

Dp,q

Remark 3 Let 1 <p,q<o0. In [2] a space (o)

(Rd) is defined as counter image of standard modulation
space MP1 (Rd) under the Toeplitz operator with symbol w. It is proven in Theorem 3.5 and Corollary 3.6

in [2] that ?{;qw) (Rd) = MP1 (Rd) for certain w, where ME1? (Rd) s the weighted modulation space. This

relation was extended in [15] to all polynomially moderate weights. Let us take w (z,y) = (1 + |z + |y|2) : for

s € R. It is known that M2? (R?) coincides with the usual Sobolev-Shubin space Qs (R?), where M*? (RY) =
MZ?(RY) [2], [4]. Thus Qz(j(’]qw) (RY) is a generalization of the usual Sobolev-Shubin space Qs (R?).
Now we return to our space Qf]\{u(,p 9) (Rd) . Since

M (p,q,w) (R?) = M (p,q) (RY) = M4 (R?)

for p=¢q, w=1, and Qz(j(’]qw) (Rd) is a generalization of the usual Sobolev-Shubin space @ (Rd) , then by the

above remarks Qf]\{u(,p 9) (Rd) is also an another generalization of usual Sobolev-Shubin space Qg (Rd) .
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It is known that M2? (R?) is a Banach space [14]. We know by Theorem 3.5 and Corollary 3.6 in [2]

that wa) (R?) = ME? (RY) for certain w. We also know that Q)PP (RY) = wa) (R?) for w=1. Then

QUi (&Y = QU (BY) = @17, (%) = M7 (RY)

(g9,w)

for certain w and for w =1. Hence ( fy‘ﬁ,ﬁp’p’“) (RY), [[-/lo) is a Banach space for certain w and for w = 1.

Theorem 4 Let w be a weight function of polynomial type on R3?.

1. If w is a submultiplicative weight function, then the space Qf]\ﬁ(,p 9) (Rd) is invariant under the

time-frequency shifts.

2. If w is a bounded weight function and 1 < p < 0o, 1 < ¢ < oo, then the function z = (21, 22) —
7 (2) f = M,T,, f of R into Qf]\%p’q’w) (R?) is continuous.

Proof 1. Let f € Qf]\%p’q’w) (R?) and 21,22 € R?. Then we have Tpy (w) f =V, (wV,f) € M (p, q,w) (R?)
and V, V)" (wV, f) € L(p,q,wdp) (R??) . By using the equalities

V, (MTog) (z,y) = e ™ 9Voy (u— .t — y)

and
T(Zl7z2)qu (LL', y) = e27ri(y—Z2)z1 Vq (Mzszl f) (LL', y) )
we write
VoV (wVym (2) f) (u, )] (2.1)
= |V‘7Vq* (wVy (M, T, f)) (u, t)| = [(wVy (M., T, ), Vg (M Tug))l

= // w (x,y) Vg (Mo, Te, f) (,y) Vag (u— 2, t — y) e >V dgdy

R2d

= // w(z,y) 6_2”(1/_22)le(21722)qu (x,y) Vg (u—z,t—y) 6_2”im(t_y)dxdy
R2d

IN

/ lw (21 4 v1, 22 + 02) Vg f (v1,02)[ [Veg ((u = v1) — 21, (t — v2) — 22)| dvidvg

R2d

IN

//w (21, 22) [w (v1, 02)[ Vg f (01, 02)| [ T2y 20) Vg (w = v1) , (t = v2)) | dvrdos

R2d

= w(z1,22) (lqufl * |T(21722)Vq9|) (u,t).

As w is a weight function of polynomial type and Vyg € S (R2d) , then V,g € L} (R2d). Also, by Proposition
3.1 in [5], L(p,q,wdp)(R?*) is a Banach module over L} (R?*?) and by Theorem 2.5 in [22], wV,f €

681



SANDIKCI and GﬁRKANLI/Turk J Math

L (p,q,wdp) (R*¥). Then by (2.1) we obtain

HW (z) fHQ = HMzszl fHQ = ||Vq* (qu (Mzszl f))HM(p,q,w)

= VoV (wVy (M, T, )|

p,q,w

< w(z, 22) |||U’qu| * |T(Z1722)ng|||p7q7w
< w(zn,2) [0V flly g 1T Vgl
<

w (21, 22) w (21, 22) [[WV fIl,, o [IVaall , < oo

Thus Qé\{u(,p 95) (Rd) is invariant under the time-frequency shifts.

2. Let fe Qé\%p’q’w) (R?) and z = (21, 22) € R*?. By Theorem 2.5 in [22], we write

I (2) f = fllg = IMTeif = flg (2.2)
= IVy Ve M Terf = D)l aripgy
< WVoglly NV (Me,Te f = Pl g0
< ClVglly o Ve (Mo, Tor f) = Vol g

where C' = supw (z,y). Using the equality
T(Zl7z2)qu (LL', y) = e2m’(y—22)z1 Vq (Mzszl f) (LL', y)

we have

HVQ (M22TZ1 f) - qu|

(2.3)

p,q,w

_ He—27ri(y—zz)z1 T(Z1722)qu _ quH

p,q,w

IN

[

p,q,w

+ H (e—2ﬂi(y—z2)zl _ 1) qu

p,q,w

|| (T(thz)qu - qu) (w,y)”

+ H (e—2ﬂi(y—z2)z1 _ 1) qu

p,q,w P,q,w

Since the translation operator is continuous from R2? into L (p, q, wdu) (R2d) by Proposition 2.2 in [5], then

||T(21722)V<]f - V‘]f”
tends to zero as (21, 22) tends to zero by the proof of Proposition 2.9 in [22]. Hence ||V (M., T%, f) = Vo fll, .. —

— 0 as (21, 22) tends to zero. Moreover, it is known that || (e‘2m’<y—z2)z1 -1) ng||

p,q,w p,q,w

0 as (z1,22) tends to zero. Finally by (2.2) and (2.3) we obtain

M, T f — fHQ <C HngHLw Ve (M., T, f) — Vo f|

—
p,q,w 0

as (z1, z2) tends to zero. This completes the proof. O
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Lemma 5 Let 1 < p,q < oco. Assume that w and w are two weight functions on R??.
1. If w is bounded, M (p, q,w) (Rd) is continuously embedded into Qf]\%p’q’w) (Rd), i.e.
M (p, q,w) (RY) = Qi) (R7) .
2. If |w(2)] < C(1+|2))Y forafix NeN and w is bounded then
S (RY) c @) pre) (RY) .

Proof It is known by Proposition 2.3 in [22] that S (R?) C M (p,q,w) (R?). Let f € M (p,q,w) (R?). Then
Vof € L(p,q,wdp) (R*?). As w is bounded, by Theorem 2.5 in [22]

1Fle = IV @Vl g < Vol o l0Vidll, (2.4)
< sup w(@y) Vegll o Vol gw = K1 g < o°
(z,y)€R24
This implies f € Qf]\%p’q’w) (R?). Hence
M (p,q,w) (R?) € QglP*) (R7) . (2.5)

Also by (2.4) the unite map I of M (p, ¢,w) (R?) into Qf]\%p’q’w) (R?) is continuous. That means M (p, ¢, w) (R?) —
M (p,q,w) (RY).

g,w
It is known by Proposition 2.3 in [22] that S (R?) C M (p, ¢, w) (R?). The proof of 2) is completed by
(2.5). O

Proposition 6 If 1 < ¢; < ¢ < 00, then Q%l(,p’ql’w) (Rd) C Qf]\%p’qz’w) (Rd) .
Proof Since 1 < ¢1 < g2 < oo, then L (p,q1,wdp) (Rd) — L(p, g2, wdp) (Rd) by Proposition 2.5 in [5].
Hence M (p, q1,w) (R?) < M (p, g2, w) (R?). This implies Qf]\%p’ql’w) (RY) — Qf]\%p’qz’w) (RY). O

Proposition 7 Let wi, ws and wy, ws be weight functions on R2d If wo = wy; and we < wy then
i) (81 c QU ().
Proof Let f € Qf]\{u(ff’q’wl) (R?). Then f € & (R?) and Tpy (w1) f = Vi (wiVyf) € M (p,q,w1) (R?) and

w1Vyf € L(p,q,widp) (R2d). Since we =X wy, we = wy and weighted Lorentz space is a solid space, then by
Proposition 2.14 in [22] we have

[wa Ve £l < Cllun Vo f] < Cllun Vo f] < 00

p,q,w2 p,q,w2 p,q,w1

Thus wyVy f € L (p, q,wadp) (R??). By Theorem 2.5 in [22], we write V" (woVy f) = Tpy (w2) f € M (p, ¢, w2) (R?).

Thus we obtain f € Qf]\ﬁ(f;q’wz) (R?). That means Qf]\{u(fz’q’wl) (R?) c Qf]\ﬁ(f;q’wz) (R). O
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3. Boundedness of Toeplitz operators

Theorem 8 Let w, and wo be two weight functions of polynomial type on R** and g € S (Rd)\{O} be a

window function. Then
a. If pge(l,00), t € (1,00), s <t/ <r and F € W (L",L?), then the Toeplitz operator

Tpy (F) : M (tp.tq.1) () — M (1) (tq') \w2) (R?)

is bounded, where 11—7 + ]% =1, é + % =1 and % + % = 1. Moreover we have the norm estimate

ITpg (E) < 1Fllw(zr o) -
b. If te[l,00), s<t<rand F €W (L", L), then the Toeplitz operator
Tpy (F) : M (00, 00,w1) (RY) — M (t,t,wz) (R?)
is bounded. Moreover we have the norm estimate
ITpg (E) < 1Fllw(zr Loy -
c. fte(l,00), s<t' <r and F € W (L", L"), then the Toeplitz operator
Tpy (F) s M (1, t,01) (RY) — M (1, 1,5) (R?)
is bounded, where % + t—l, = 1. Also we have the norm estimate

ITpg (E) < 1Fllw(zr o) -

Proof a. Let t < oo, f € M (tp,tq,w1) (R?) and h € M (tp',tq',w2) (R?). Then f € M (tp,tq) (R?)
and h € M (tp/,tq') (R?) and so we write V,f € L (tp,tq) (R*!) and Vyh € L (tp',tq') (R*). Since V,f €

L (tp, tq) (R*?), then HquH:p 1q < 00. By using the equality (|f|t) = (f*)" for t € (0,00) (see [6]), we obtain

1

Wadlipey = ()27 (o) @)"da (3.0)
0
_ % w7 (Veh) @)'] da

Il
N
N
=
=
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Thus we have |V, f|" € L (p, q) (R?9) . Similarly, we obtain \V,h|" e LY, q) (R?9) . Hence, applying the Holder

inequality for Lorentz spaces and using (3.6), we write

Vol - Vahlly = |V ' = ||Ivast' 1ol

IN

[vast] vl

p

t t
Vo Fllip,eq 1VaPlltpr egr

and
IVaf - Vohlly < 1V fllipeq 1VaPlliy g - (3.7)
Since F € W (L",L*) C W (Lt’, Lf’) — L (R24), then we have
I < IEllw e Lo - (3.8)
Moreover, using (3.7) and (3.8) and applying again Holder inequality, we obtain
(Tpg (F) i) = (Vg (FVo ) )| = KEV, £, Voh) (3.9)

— | [[ P @it @) VR mdndy

R2d

IN

J]1F @l Vb (2] dody
R2d

< |[Flly Ve f - Vghll,

< NENe Ve fllipoiq 1Vohllip g

< NFlwrr,zey 1 areptay 1P arcepr )
<

I e oy 11 ns eprtgon) 1PN s e g7 o).

If (tp'), (tq") # oo, then (M ((tp'), (tq') ,w2) (Rd))* = M (tp',tq',w2) (R?) by Theorem 2.16 in [22]. Thus
we obtain from (3.9) that

[(Tpg (F) f, 1)
1Ty (F) Fllas(cepy by sy = sup ‘
g M((tp"),(tq") \w2) 0£he M (tp/ 1’ ws2) |\hHM(tp,7tq,7w2)

IN

HFHW(LT,LS) HfHM(tp,tq,u.n) :

Hence T'p, (F') is bounded. We also have

Hqu(F)fHM tp’) ,(tq") ,w
ITpy (F)| = sup LIV | Pl gy -
0#feM (tp,tq,w1) HfHM(tp,tq,wl)
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b. Let us take any f € M (00, 00,w;) (R?) and h € M (t',t',wz) (R?). Then V, f € L (o0, 00,widp) (R?*?) and
Vyh € L(t',t, wodp) (R2d) , respectively. Since L (oo, 0o, widu) (R2d) c L™ (R2d) and L (t', ¢, wadp) (R2d)
c L (R?%), we have V, f € L® (R??) and Vyh € L¥ (R??). By (3.8) and Holder inequality we have

(Tpy (F) f.1)] = / / F (2,9) Vy f (2,9) Vyho (2, g)dady

R2d

< EVGFI VRl < IEN: 11 s (00,00 1PNl arcer
< HFHW(LT,LS) HfHM(oo,oo) HhHM(t’,t’)
< HFHW(LT,LS) HfHM(oo,oo,wl) HhHM(t’,t’,wg)
and
ITpg (F) fllas(t,t,00) < W e poy 11 s (00,0000 - (3.10)

Then T'pg (F) is bounded. By (3.10) we obtain [[T'pg (F)|| < [[F'[lyy(zr 1s)-

c. Let f € M (t,t,w;) (R?) and h € M (00, 00,ws) (RY) be given. Then V,f € L (¢, t,widp) (R*) c L (R*?)
and Vyh € L (00,00, wadp) (R2d) C L*® (de), respectively. Applying again the Holder inequality and
(3.8) we have

(o (L0 < Wil [[1F @)1V (o)l dady
R2d
< NF Vol Vlloe < IF ooy 1 ares 1l at ooy
< N Elwzr,zoy I arce,twn 1Pz oo, 00,ws)
and
1T (F) Flarrnns < Wl or oy Il - (3.11)

Hence T'py (F) is bounded and from (3.11) we have ||Tpy (F)| < |[Flly(fr 1+)- This completes the proof.

O

Theorem 9 Let w be a moderate weight and g € N Mkl w) (Rd). If1<s<r<ooand F €
1<k, l<o0
W (L", L) then the Toeplitz operator
Tpy (F): M (p,q,w) (Rd) — M (p, q,w) (Rd)
1s bounded. We have the norm estimate

1Tpg (F)| < ClIEllw (e Ls)

for some C > 0.
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Proof Since s <r, W (L", L) (R*) c W (L*, L) (R*?) = Lg, (R*) and
HFHs7w S HFHW(LT‘7L5)) (312)

for all F € W (L",L%) (R*?). Let B (M (p,q,w) (R?), M (p,q,w) (R?)) be the space of the bounded linear
operators from M (p, q,w) (R?) into M (p, q,w) (R?).

Define an operator A from L (R??) into B (M (p,q,w) (RY), M (p,q,w) (RY)) by A(F) = Tpy (F).
Takeany f € M (p,q,w) (Rd) and h € M (p', ¢, w) (Rd) , where Z%—l—}% = 1. Suppose that F € W (L', L) (R2d) =

LY (R*¥). Applying Holder inequality we obtain

= //F(w,y) Vof (z,y) Vyh (z, y)dzdy (3.13)
R2d
< [[IF @l Wt el Wb (e, dady
R2d
= [[1F @l UM Tl [0 M, T.)] dady
R2d
< [[IF @D g I T8l 1010 Wl
R2d
HMyT‘TgHM(p7q7w) dady
= [ IF @ 097 @) Mol
R2d
1l 0t ) @7 (@ 9) 191 s g0 A2 Y
= HfHM(p,q,w) HgHM(p’,q’,w) HhHM(p’,q’,w) HgHM(p,q,w)/ |F (2, 9)]
R2d
Wit (2,y) dedy
= HfHM(p,q,w) HgHM(p’,q’,w) HhHM(p’,q’,w) HgHM(p,q,w) HFHl,w :
Thus by (3.13)
(Tpy (F) £, 1)
A Flaspasy = 1700 ) laspaey = sup  Lo2aDS 1]

0#heM (p’,q’ ,w) Hh” M (p’,q' \w)

IN

HgHM(p’,q’,w) HgHM(p,q,w) HfHM(p,q,w) HF|

1w
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Hence

HTpg (F) fHM(p,qw)

[AE) = |Tpg (F)ll=  sup (3.14)
otfeM(paw) Il argpgw
< N9l q ) 190 ar g 11l -
Finally the operator
A: Ll (R*) — B (M (p,q,w) (R?), M (p, q,w) (R?)) (3.15)

is bounded.
Now define an operator A

A LT (R*) =W (L, L) (R*) — B (M (p,q,w) (R?) , M (p, ¢, w) (RY))

by A(F)=Tpy (F). Takeany f € M (p, q,w) (Rd) and he M (p', ¢, w) (Rd). Then V, f € L (p, q,wdp) (de),
Voh € L(p', ¢ ,wdp) (R*). Again applying the Hlder inequality

(A(F) f,h)] = [(Tpy(F)f h)|=[V; (FV,f),h) (3.16)

= [PV, Vyh)| = / / F (2,9) Vy f (2,9) Vyh (2, g) dady

R2d

< [[IF @l Wt @)l 1Vih (o 0)] dody

R2d
< 1Pl [ Waf )l Vi (o) dady
R2d

AR A

< HFHoo,w HfHM(p,q,w) HhHM(p’,q’,w) :
By using (3.16) we have

A saey = 1720 (F) Flasn (3.17)

Tp, (F) f,h
o lmin)
OihEM(p’,q’,w) HhHM(p’7q’7w)

S HFH()o7waHM(p7q7w)'
Hence by (3.17)
1Tpg (F) fll arp g
A = 1Tpy (F)] = P < |1l -
0#fEM (p,q,w) HfHM(znqw)
That means the operator
A: LY (R*Y) — B (M (p, q,w) (RY) , M (p,q,w) (R?)) (3.18)
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is bounded. Combining (3.15) and (3.18) we obtain that
A: Ll (R*Y) — B (M (p,q,w) (R?), M (p,q,w) (R?))
is bounded by interpolation theorem [[1], Theorem 5.5.1] for 1 <t¢ < oco. That means the Toeplitz operator
Tpy (F): M (p,q,w) (RY) — M (p,q,w) (R?)
is bounded for 1 < ¢ < co. Hence there exists C > 0 such that
[A(E)]| = ITpg ()| < CIF]; - (3.19)
This implies that it is also true for 1 < s < oo. By (3.12) and (3.19) we have

[A(E) = Tpg (F)I| < C||F|

S,w <C HfHW(LT,L;) : g

Remark 10 It is known by Proposition 2.3 in [22] that S (R?) C M (k,l,w) (R?) if lw (2)| < C (1 + 12N for
afit NeNand 1 <kl <oo. Then S(RY) ¢ N Mk lw) (R if w(z) < CA+1z)Y for a fix

1<k,l<o

N € N. Hence, if ge S (Rd) ,1<s<r<oo and FeW(L", L) (Rd) then the Toeplitz operator
Tpy (F): M (p,q,w) (Rd) — M (p, q,w) (Rd)

is bounded for 1 < p,q < oo by Theorem 9.

Proposition 11 Let g€ (| M (k,l,w)(R?). If 1 < p,q < 0o and Fuw? € LY, q wdp) (R??) then the
1<k, l<o0

Toeplitz operator
Tpy (F): M (p,q,w) (Rd) — M (p, q,w) (Rd)

18 bounded, where 11—7 + z% =1.

Proof Suppose that Fuw? € L(p,q ,wdp) (R?*?). Take any f € M (p,q,w) (R?) and h € M (p/,¢,w) (R?).
Applying Holder inequality we have by (3.13)

(Tpy (F) £.1)] < / \F (2.9)| |V, £ (2, )] (s M, Tog)| dcdy (3.20)
]R2d

IN

J1E @1V @)l 1M T8l 10
R2d

1 @l Vo @ Bl gy @9 ol
R2d

IN

= Wl lsgr ([ 1 @010 0) Vo 2,0)] dndy
R2d

IN

1
L vny 7 petmny g RO (1 WO
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In analogy to (3.14), we have
(3.21)

1705 (F) < lgllas g | Feo?

p',q w

Then the Toeplitz operator from M (p, ¢, w) (Rd) into M (p, ¢, w) (Rd) is bounded. This completes the proof. O

Remark 12 It is known by Proposition 2.3 in [22] that S (R?) C M (k,l,w) (R?) if |w(2)] < C(1+ |12|)Y
for a fit N € N and 1 < k,l < co. Thus if |w(2)] < C(1+|z)" for a fit N € N, then S(RY) c

N Mk l,w) (RY). Henceif g€ S (RY), 1< p,q < oo and Fuwr € LY, q' wdp) (R??), then the Toeplitz

1<k,l<o

operator
Tpy (F): M (p,q,w) (RY) — M (p, q,w) (R?)

18 bounded by Proposition 11.

4. Hilbert-Schmidt and Schatten-class properties for symbols in W (L", L*) (R2d)
Theorem 13 Let 1 < p< oo, 1 <s<r<oo and g € S(Rd). If F e W(L", L?) (Rd), then Tpy (F) :
L? (Rd) — L2 (Rd) is in the Schatten-class S, and the inequality
2
ITpg (F)lls, < llgllz 1Fllw(Lr Lo
holds.
Proof By Remark 10, the Toeplitz operator T'p, (F) : L? (Rd) — L2 (Rd) is bounded under these assumptions.
We will show that Tp, (F) isin S,. Let p=7=s= 1. For z = (x,y) € R?? we consider the rank one operator
A.f = (f,M,T,g) M,T,g, fe€L*(R?). (4.22)
Then
2
[A:]l5, = llgllz- (4.23)
Hence the mapping z — A, is continuous and the vector-valued integral
Tpy (F) = //F(w,y) A dxdy
R2d

is well defined. Also by (4.23) we write

ITp, (F)lls = // F(2,y) Audady| < (4.24)
]RZd Sl
< [[IF ) Ay, dody = [[1F @)l 1], dody
R2d R2d
= gl / / IF (2,9)| dady = |g]I2 ]| Fl,
R2d
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Now let p=1r = s = 00. Since f € L? (Rd) then by the proof of Theorem 8 we have

Ty (V1] = | [[ F @) Vod ) Vol oy (4.25)
R2d
< Pl [ 1V @)l 1Veh (o) dody
R2d
< L IVl 1V5bl = 1F g 151 Vel sl

Hence

17Dy (F)ll0 < 11F L llgll3-
That means Tp, (F) is bounded on L2 (Rd). Since S, denotes the algebra of all bounded operators on
L? (Rd) , we have

ITpy (F)lls, < I1Flloc llgl3 -

Then by the interpolation theorem (see Theorem 2.11. in [23]), for 1 < ¢,p < oo, [L' (R?),L*> (Rd)]® =
L' (R?), [S1,5x]e = Sp and Tp,y (F) € Sy,

1oy (F)lls, < I1F1l, llgll3 (4.26)

for all F € L' (R?). Hence Tp, (F) isin S,.
Moreover, since s < r, there exists 1 < ¢y < oo such that s < tg < r. Hence W (L", L*) (R2d) C
L' (R??) and
Iy < Il e 2oy (4.27)

for all F € W (L", L*) (R*?). Finally by using (4.26) and (4.27), we obtain

2 2
ITpg (F)lls, < I1Fllg, lgllz < lgllz 1Fwzr o)

for all FF € W (L", L®). This completes the proof. O
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