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Ataturk University, Faculty of Science, Department of Mathematics, 25240 Erzurum, Turkey

Received: 21.08.2011 • Accepted: 17.07.2012 • Published Online: 12.06.2013 • Printed: 08.07.2013

Abstract: The main purpose of the present paper is to study the geometry of Riemannian manifolds endowed with

Golden structures. We discuss the problem of integrability for Golden Riemannian structures by using a φ -operator

which is applied to pure tensor fields. Also, the curvature properties for Golden Riemannian metrics and some properties

of twin Golden Riemannian metrics are investigated. Finally, some examples are presented.
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1. Introduction

Let M be a C∞ - manifold of finite dimension n . We denote by �r
s(M) the module over F (M) of all C∞ -tensor

fields of type (r, s) on M , i.e. of contravariant degree r and covariant degree s , where F (M) is the algebra of
C∞ -functions on M . Manifolds, tensor fields and connections are always assumed to be differentiable and of
class C∞ .

Yano [25] introduced the notion of an f -structure which is a (1, 1)-tensor field of constant rank on

M and satisfies the equality f3 + f = 0. This notion is a generalization of almost complex and almost
contact structures. In its turn, it has been generalized by Goldberg and Yano [2], who defined a polynomial

structure of degree d which is a (1, 1)-tensor field f of constant rank on M and satisfies the equation

Q(f) = fd + adfd−1 + ... + a2f + a1I = 0, where a1, a2, ..., ad are real numbers and I is the identity tensor of

type (1, 1).

For a manifold M , let ϕ be a (1, 1)-tensor field on M . If the polynomial X2 − X − 1 is the minimal

polynomial for a structure ϕ satisfying ϕ2−ϕ−I = 0 , then ϕ is called a golden structure on M and (M, ϕ) is

a golden manifold [1, 4, 5]. This structure was inspired by the Golden Ratio, which was described by Johannes

Kepler (1571–1630). The number η = 1+
√

5
2 ≈ 1.618... , which is a solution of the equation x2 − x − 1 = 0, is

the golden ratio. We note that for golden structures, ϕ �= aI , where a ∈ R . If ϕ = aI, a = 1+
√

5
2

, then its

minimal polynomial is X − a . However, the minimal polynomial of the golden structure ϕ is X2 − X − 1.

Let (M, g) be a Riemannian manifold endowed with the Golden structure ϕ such that [1, 4, 5]

g(ϕX, Y ) = g(X, ϕY ), (1.1)
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for all X, Y ∈ �1
0(M). If we substitute ϕX into X in (1.1), the equation (1.1) may also be written as

g(ϕX, ϕY ) = g(ϕ2X, Y ) = g((ϕ + I)X, Y ) = g(ϕX, Y ) + g(X, Y ).

The Riemannian metric (1.1) is called ϕ-compatible and (M, ϕ, g) is named a Golden Riemannian manifold.

Such Riemannian metrics are also referred to as pure metrics [6, 10-20].

Let ϕ be a (1, 1)-tensor field on M , i.e. ϕ ∈ �1
1(M). A tensor field t of type (r, s) is called a pure

tensor field with respect to ϕ if

t(ϕX1, X2, ..., Xs;
1

ξ,
2

ξ, ...,
r

ξ) = t(X1 , ϕX2, ..., Xs;
1

ξ,
2

ξ, ...,
r

ξ)

...

= t(X1 , X2, ..., ϕXs;
1

ξ,
2

ξ, ...,
r

ξ)

= t(X1, X2, ..., Xs;′ ϕ
1

ξ,
2

ξ, ...,
r

ξ)

...

= t(X1, X2, ..., Xs;
1

ξ,
2

ξ, ...,′ϕ
r

ξ)

for any X1, X2, ..., Xs ∈ �1
0(M) and

1

ξ,
2

ξ, ...,
r

ξ ∈ �0
1(M), where ′ϕ is the adjoint operator of ϕ defined by

(′ϕξ)(X) = ξ(ϕX) = (ξ ◦ ϕ)(X), X ∈ �1
0(M), ξ ∈ �0

1(M).

We define an operator

φϕ : �0
s(M) → �0

s+1(M)

applied to the pure tensor field t of type (0,s) with respect to ϕ by [12, 15]

(φϕt) (X, Y1, ..., Ys) = (ϕX) t (Y1, ..., Ys) − Xt (ϕY1, ..., Ys) (1.2)

+
s∑

λ=1

t (Y1, ..., (LYλϕ) X, ..., Ys)

for any X, Y1, ..., Ys ∈ �1
0(M), where LY denotes the Lie differentiation with respect to Y .

Golden structure on a Riemannian manifod is important because this structure has relation with pure
Riemannian metrics with respect to the structure. Pure metrics with respect to certain structures were studied
by various authors (for example see [6–27], etc.). Since Riemannian golden and almost product structures are

related to each other (see Theorem 2.3 in the present paper), the method of φ -operator used in the theory
of almost product structures can be transferred to golden structures. Thus, in this paper a more difficult

polynomial structure, ϕ2 − ϕ − I = 0, is investigated by using the simple polynomial structure ϕ2 − I = 0.

The paper is organized as follows. In section 2, a new sufficient condition of integrability for Golden
Riemannian structures is given. Sections 3 and 4 deal with the some properties of twin Golden Riemannian
metrics and the curvature properties of locally decomposable Golden Riemannian manifolds. Section 5 closes
the paper with some examples of locally decomposable Golden Riemannian manifolds.
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2. Integrable Golden Riemannian structures

Let M be a Golden manifold with a Golden structure ϕ . In order that the Golden structure ϕ is integrable,
it is necessary and sufficient that it is possible to introduce a torsion-free affine connection ∇ with respect to
which the structure tensor ϕ is covariantly constant. Also, we know that the integrability of ϕ is equivalent
to the vanishing of the Nijenhuis tensor Nϕ [1]. Now we shall introduce another possible sufficient condition of
the integrability of Golden structures on Riemannian manifolds.

Theorem 2.1 Let (M, ϕ, g) be a Golden Riemannian manifold. Then ϕ is integrable if φϕg = 0 .

Proof As a direct consequence of (1.1) and ∇g = 0, we obtain

g(X, (∇Zϕ)Y ) = g((∇Zϕ)X, Y ), (2.3)

for all X, Y ∈ �1
0(M), where ∇ denotes the operator of the Riemannian covariant derivative with respect to g .

Using (2.3) and [X, Y ] = ∇XY −∇Y X , we can transform (1.2) as follows:

(φϕg)(X, Z1 , Z2) = −g((∇Xϕ)Z1 , Z2) + g((∇Z1ϕ)X, Z2) + g(Z1, (∇Z2ϕ)X). (2.4)

From this we have

(φϕg)(Z2, Z1, X) = −g((∇Z2ϕ)Z1, X) + g((∇Z1ϕ)Z2, X) + g(Z1 , (∇Xϕ)Z2). (2.5)

If we add (2.4) and (2.5), we find

(φϕg)(X, Z1 , Z2) + (φϕg)(Z2, Z1, X) = 2g(X, (∇Z1ϕ)Z2). (2.6)

Putting φϕg = 0 in (2.6), we find ∇ϕ = 0. Thus, the proof is complete. �

Corollary 2.2 Let (M, ϕ, g) be a Golden Riemannian manifold. The condition φϕg = 0 is equivalent to

∇ϕ = 0 , where ∇ is the Levi-Civita connection of g .

Let us recall almost product Riemannian manifolds. If an n-dimensional Riemannian manifold M ,
endowed with a positive definite Riemannian metric g , admits a non-trivial tensor field F of type (1.1) such
that

F 2 = I

and
g(FX, Y ) = g(X, FY )

for every vector field X, Y ∈ �1
0(M), then F is called an almost product structure and (M, F, g) is called an

almost product Riemannian manifold. It is well known (see [3]) that a polynomial structure on a differentiable

manifold M , defined by a tensor field of type (1, 1), induces an almost product structure on M .

Theorem 2.3 [1, 4, 5] If ϕ is a Golden structure on M , then

F =
1√
5
(2ϕ − I) (2.7)
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is an almost product structure on M . Conversely, every almost product structure F on M induces two Golden
Structures on M , given as follows:

ϕ1 =
1
2
(I +

√
5F ), ϕ2 =

1
2
(I −

√
5F ).

Proof Let F 2 = I , i.e. F is an almost product structure on a Riemannian manifold (M, g). Then each of

the structures ϕ1 = 1
2(I +

√
5F ) and ϕ2 = 1

2 (I −
√

5F ) obtained from the almost product structure F is a

Golden structure. In fact,

ϕ2
1 =

I + 2
√

5F + 5I

4
=

√
5F + 3I

2
=

1
2
(3I +

√
5
2ϕ1 − I√

5
)

=
1
2
(2I + 2ϕ1) = ϕ1 + I.

Similarly, one can easily prove that ϕ2
2 − ϕ2 − I = 0.

Conversely, let ϕ be a Golden structure on a Riemannian manifold (M, g). Then the structure F =
1√
5
(2ϕ − I) induced by the Golden structure ϕ is an almost product structure. In fact,

F 2 =
4ϕ2 − 4ϕ + I

5
=

4(ϕ2 − ϕ) + I

5
=

5I

5
= I.

�

If a Riemannian metric g is pure with respect to a Golden structure ϕ , then the Riemannian metric g is
pure with respect to the corresponding almost product structure F . A simple computation using the expression
of the corresponding almost product structure via (2.7) gives

φF g =
2√
5
φϕg. (2.8)

In [11], Salimov et al. proved that for an almost product Riemannian manifold with a pure metric g , if φF g = 0,

then the almost product structure F is integrable. Hence, by Theorem 2.1 and (2.8) we have

Proposition 2.4 Let (M, ϕ, g) be a Golden Riemannian manifold and F its corresponding almost product
structure. The golden structure ϕ is integrable if φF g = 0 .

A Golden Riemannian manifold (M, ϕ, g) with an integrable Golden structure ϕ is called a locally Golden
Riemannian manifold. If the metric g of the locally Golden Riemannian manifold has the form

ds2 = gab(xc)dxadxb + gā b̄(x
c̄)dxādxb̄, a, b, c = 1, ..., m, ā, b̄, c̄ = m + 1, ..., n

that is gab are functions of xc only, ga b̄ = 0 and gā b̄ are functions of xc̄ only, then we call the manifold
M a locally decomposable Golden Riemannian manifold. On the other hand, we say that the locally product
Riemannian manifold with the corresponding product F is locally decomposable if and only if F is covariantly
constant with respect to the Levi-Civita connection of g [26, p. 219–222], [28, p.418–420].

Since φF g = 0 is equivalent to ∇F = 0 [11], we have the following proposition.

Proposition 2.5 Let (M, ϕ, g) be a Golden Riemannian manifold. The manifold M is a locally decomposable
Golden Riemannian manifold if and only if φF g = 0 , where F is the corresponding almost product structure.
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3. Twin Golden Riemannian metrics

Let (M, ϕ, g) be a Golden Riemannian manifold. The twin Golden Riemannian metric is defined by

G(X, Y ) = (g ◦ ϕ)(X, Y ) = g(ϕX, Y ) = g(X, ϕY )

for all vector fields X and Y on M . One can easily prove that G is a new pure Riemannian metric:

G(ϕX, Y ) = (g ◦ ϕ)(ϕX, Y ) = g(ϕ(ϕX), Y ) = g(ϕ2X, Y )

= g(ϕX, Y ) + g(X, Y ) = g(X, ϕY ) + g(X, Y )

= g(X, (ϕ + I)Y ) = g(X, ϕ2Y )

= (g ◦ ϕ)(X, ϕY ) = G(X, ϕY ),

which is called the twin metric of g . We shall now apply the φϕ -operator to the metric G :

(φϕG)(X, Y, Z) = (ϕX) (G (Y, Z)) − X (G (ϕY, Z))

+ G ((LY ϕ) X, Z) + G (Y, (LZϕ) X)

= (LϕXG − LX(G ◦ ϕ))(Y, Z) + G(Y, ϕLXZ) − G(ϕY, LXZ)

= (φϕg)(X, ϕY, Z) + g(Nϕ(X, Y ), Z). (3.9)

Thus (3.9) implies the following.

Theorem 3.1 In a Golden Riemannian manifold (M, ϕ, g) , we have

φϕG = (φϕg) ◦ ϕ + g ◦ (Nϕ).

Corollary 3.2 In a locally Golden Riemannian manifold (M, ϕ, g) , the following conditions are equivalent:

a) φϕg = 0 ,

b) φϕG = 0 .

We denote by g∇ the covariant differentiation of the Levi-Civita connection of the Golden Riemannian
metric g . Then, we have

g∇G = (g∇g) ◦ ϕ + g ◦ (g∇ϕ) = g ◦ (g∇ϕ),

which implies g∇G = 0 by virtue of Proposition 2.5 (g∇F = 0). Hence we have the following theorem.

Theorem 3.3 Let (M, ϕ, g) be a locally decomposable Golden Riemannian manifold. Then the Levi-Civita
connection of the Golden Riemannian metric g and the Levi-Civita connection of the twin Golden Riemannian
metric G coincide to each other.

4. Curvature properties of locally decomposable Golden Riemannian manifolds

If a pure tensor t satisfies φψt = 0, then it is called a φ -tensor. If the (1, 1)-tensor ψ is a complex structure,

then a φ -tensor is an analytic tensor. If ψ is a product structure, i.e. an almost product structure such that
its Nijenhuis tensor vanishes, then a φ -tensor is a decomposable tensor [19].
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Let R and S be the curvature tensors formed by the Golden Riemannian metric g and twin Golden
Riemannian metric G , respectively; then for the locally decomposable Golden Riemannian manifold we have
R = S by means of Theorem 3.3.

Since the Riemannian curvature tensor R is pure with respect to both the Golden structure ϕ and the
corresponding almost product structure F , we can apply the φ -operator to R . By similar devices (see proof

of Theorem 2.1), we can prove that

(φϕR)(X, Y1, Y2, Y3, Y4) = (∇ϕXR)(Y1, Y2, Y3, Y4) − (∇XR)(ϕY1, Y2, Y3, Y4). (4.10)

Taking account of the purity of R and applying Bianchi’s 2nd identity to (4.10), we get

(φϕR)(X, Y1, Y2, Y3, Y4) = g((∇ϕXR)(Y1, Y2, Y3) − (∇XR)(ϕY1, Y2, Y3), Y4)

= g((∇ϕXR)(Y1, Y2, Y3) − ϕ((∇XR)(Y1, Y2, Y3)), Y4)

= g(−(∇Y1R)(Y2, ϕX, Y3) − (∇Y2R)(ϕX, Y1, Y3)

− ϕ((∇XR)(Y1, Y2, Y3)), Y4). (4.11)

On the other hand, using ∇ϕ = 0, we find

(∇Y2R)(ϕX, Y1, Y3) = ∇Y2(R(ϕX, Y1, Y3)) − R(∇Y2(ϕX), Y1 , Y3)

− R(ϕX,∇Y2Y1, Y3) − R(ϕX, Y1,∇Y2Y3)

= (∇Y2ϕ)(R(X, Y1, Y3)) + ϕ(∇Y2R(X, Y1, Y3))

− R((∇Y2ϕ)X + ϕ(∇Y2X), Y1, Y3)

− R(ϕX,∇Y2Y1, Y3) − R(ϕX, Y1,∇Y2Y3)

= ϕ(∇Y2R(X, Y1, Y3)) − ϕ(R(∇Y2X, Y1, Y3))

− ϕ(R(X,∇Y2Y1, Y3)) − ϕ(R(X, Y1,∇Y2Y3))

= ϕ((∇Y2R)(X, Y1, Y3)). (4.12)

Similarly

(∇Y1R)(Y2, ϕX, Y3) = ϕ((∇Y1R)(Y2, X, Y3)). (4.13)

Substituting (4.11) and (4.12) in (4.13) and using again Bianchi’s 2nd identity, we obtain

(φϕR)(X, Y1, Y2, Y3, Y4) = g(−ϕ((∇Y1R)(Y2, X, Y3)) − ϕ((∇Y2R)(X, Y1, Y3))

− ϕ((∇XR)(Y1, Y2, Y3)), Y4)

= −g(ϕ(σ {( ∇XR)(Y1, Y2} , Y3)), Y4)

= 0,

where σ denotes the cyclic sum with respect to X , Y1 and Y2 . Therefore we have

Theorem 4.1 In a locally decomposable Golden Riemannian manifold, the Riemannian curvature tensor field
is a φ-tensor field.

698



GEZER et al./Turk J Math

By (1.2) and (2.7), we can find, in a similar way like (2.8),

φF R =
2√
5
φϕR, (4.14)

where ϕ is the Golden structure and F is its corresponding almost product structure. From (4.14), we have
this next proposition.

Proposition 4.2 In a locally decomposable Golden Riemannian manifold, the Riemannian curvature tensor
field is a decomposable tensor field.

5. Examples

Example 1. Let (M, g) be an n-dimensional Riemannian manifold and T (M) be its tangent bundle. Let ∇
be the Levi-Civita connection of g . Then the tangent space of T (M) at any point (x, u) ∈ T (M) splits into
the horizontal and vertical subspaces with respect to ∇ :

(T (M))(x, u) = H(x,u) ⊕ V(x, u).

If (x, u) ∈ T (M) is given, then for any vector X ∈ �1
0(M), there exists a unique vector XH ∈ H(x,u) such

that π∗XH = X , where π : T (M) → M is the natural projection. We call XH the horizontal lift of X to the

point (x, u) ∈ T (M). The vertical lift of a vector X ∈ �1
0(M) to (x, u) ∈ T (M) is a vector XV ∈ V(x,u) such

that XV (df) = Xf , for all functions f on M . Here we consider 1-forms df on M as functions on T (M) (i.e.

(df) (x, u) = uf ).

The Sasaki metric on the tangent bundle T (M) is defined by

Sg(HX, HY ) = V (g(X, Y )), (5.15)

Sg(V X, HY ) = Sg(HX, V Y ) = 0, (5.16)

Sg(V X, V Y ) = V (g(X, Y )), (5.17)

for all X, Y ∈ �1
0(M)(see [29, p.155–175]. It is obvious that the Sasaki metric Sg is contained in the class of

the so-called g -natural metrics on the tangent bundle (recall that by a g -natural metric on tangent bundles we

shall mean a metric which satisfies conditions (5.15) and (5.16)).

Now, let us introduce a Golden structure J̃ on T (M), which implies J̃2 − J̃ − I = 0, defined by

{
J̃(HX) = 1

2
(HX +

√
5V X)

J̃(V X) = 1
2
(V X +

√
5HX)

(5.18)

for all X, Y ∈ �1
0(M).

We put

A
(
X̃, Ỹ

)
= Sg

(
J̃X̃, Ỹ

)
− Sg

(
X̃, J̃Ỹ

)

for any X̃, Ỹ ∈ �1
0 (T (M)). For all vector fields X̃ and Ỹ which are of the form V X, V Y or HX, HY , from

(5.15)–(5.17) and (5.18), we have A
(
X̃, Ỹ

)
= 0, i.e. Sg is pure with respect to the Golden structure J̃ . Hence

we have the following theorem:
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Theorem 5.1 Let (M, g) be a Riemannian manifold and let T (M) be its tangent bundle equipped with the

Sasaki metric Sg and the Golden structure J̃ defined by (5.18). The triple
(
T (M), J̃, Sg

)
is a Golden

Riemannian manifold.

Having determined both the Sasaki metric Sg and the Golden structure J̃ and by using the fact that
V XV (g(Y, Z)) = 0 and HXV (g(Y, Z)) = V (Xg(Y, Z)), we calculate

(φJ̃
Sg)(X̃, Ỹ , Z̃) = (J̃X̃)(Sg(Ỹ , Z̃)) − X̃(g(J̃ Ỹ , Z̃)) + Sg((LỸ J̃)X̃, Z̃) + Sg(Ỹ , (LZ̃ J̃)X̃)

for all X̃, Ỹ , Z̃ ∈ �1
0(T (M)). Then we get

(φJ̃
Sg)(V X, V Y, HZ) =

√
5

2
Sg(H(R(u, Y )X), HZ),

(φJ̃
Sg)(V X, V Y, V Z) = 0,

(φJ̃
Sg)(V X, HY, V Z) =

√
5

2
Sg(V (R(X, Y )u), V Z),

(φJ̃
Sg)(V X, HY, HZ) = 0,

(φJ̃
Sg)(HX, V Y, HZ) = 0,

(φJ̃
Sg)(HX, V Y, V Z) = 0,

(φJ̃
Sg)(HX, HY, HZ) =

√
5

2
Sg(H(R(Y, X)u − R(u, Y )X), HZ),

(φJ̃
Sg)(HX, HY, V Z) = 0.

Therefore, from Proposition 2.5 and (2.8), we have this theorem.

Theorem 5.2 Let (M, g) be a Riemannian manifold and let T (M) be its tangent bundle equipped with the

Sasaki metric Sg and the Golden structure J̃ defined by (5.18). The triple
(
T (M), J̃ , Sg

)
is a locally decom-

posable Golden Riemannian manifold if and only if M is locally flat.

Example 2. Let M be an n-dimensional differentiable Riemannian manifold of class C∞ and with a

Riemannian metric g , CT (M) its cotangent bundle, and π the natural projection CT (M) → M . If ω is

a differentiable 1-form and X a vector field on M , V ω denotes the vertical lift of ω and HX the horizontal

lift of X to CT (M).
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A Sasakian metric Sg is defined on CT (M) by the three equations

Sg
(
V ω, V θ

)
= V

(
g−1 (ω, θ)

)
= g−1 (ω, θ) ◦ π, (5.19)

Sg
(
V ω, HY

)
= 0, (5.20)

Sg
(
HX, HY

)
= V (g (X, Y )) = g (X, Y ) ◦ π, (5.21)

for any X, Y ∈ �1
0 (M) and ω, θ ∈ �0

1 (M). Since any tensor field of type (0,2) on CT (M) is completely

determined by its action on vector fields of type HX and V ω (see [29, p.280]), it follows that Sg is completely

determined by the equations (5.19), (5.20) and (5.21). The Levi-Civita connection S∇ of Sg satisfies the
following relations:

(i) S∇V ω
V θ = 0,

(ii) S∇V ω
HY =

1
2

H
(
p

(
g−1 ◦ R ( , Y ) ω̃

))
,

(iii) S∇HX
V θ = V (∇Xθ) +

1
2

H
(
p

(
g−1 ◦ R ( , X) θ̃

))
, (5.22)

(iv) S∇HX
HY = H (∇XY ) +

1
2

V (pR (X, Y ))

for all X, Y ∈ �1
0 (M) and ω, θ ∈ �0

1 (M), where ω̃ = g−1◦ω ∈ �1
0 (M) , R ( , X) ω̃ ∈ �1

1 (M) , g−1◦R ( , X) ω̃ ∈
�2

0 (M)[14].

We define a Golden structure ϕ̃ on CT (M) by

{
ϕ̃HX = 1

2
(HX +

√
5V X̃),

ϕ̃V ω = 1
2 (V ω +

√
5H ω̃)

(5.23)

for any X ∈ �1
0 (M) and ω ∈ �0

1 (M), where X̃ = g ◦ X ∈ �0
1 (M), ω̃ = g−1 ◦ ω ∈ �1

0 (M). Also note that Sg

is pure with respect to ϕ̃ . Then we have the next theorem.

Theorem 5.3 Let (M, g) be a Riemannian manifold and let CT (M) be its cotangent bundle equipped with the

Sasakian metric Sg and the Golden structure ϕ̃ defined by (5.23). The triple
(
CT (M) , ϕ̃, Sg

)
is a Golden

Riemannian manifold.

We now consider the covariant derivative of ϕ . Taking into account (i)-(iv) of (5.22) and (5.23), we
obtain

(
S∇HXϕ̃

) (
HY

)
=

√
5

4
H

(
pg−1 ◦ (R ( , X) Y − R (X, Y ))

)

(
S∇V ωϕ̃

) (
HY

)
= −

√
5

4
V (pR ( , Y ) ω̃)

(
S∇HX ϕ̃

) (
V θ

)
=

√
5

4
V

(
pR

(
X, θ̃

)
− pR ( , X) θ̃

)
(5.24)

(
S∇V ωϕ̃

) (
V θ

)
=

√
5

4
H

(
p

(
g−1 ◦ R

(
, θ̃

)
ω̃

))
.

From (5.24) we have
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Theorem 5.4 The cotangent bundle of a Riemannian manifold, equipped with the Sasakian metric Sg and the
Golden structure ϕ̃ defined by (5.23), is a locally decomposable Golden Riemannian manifold if and only if the
Riemannian manifold is flat.
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