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Abstract: In this paper we study the existence and uniqueness theorem for L? (1 < p < 2) solutions for a class of infinite
time interval backward stochastic differential equations (BSDEs). Furthermore, we introduce generalized g-expectations

and generalized g-martingales via the LP solutions and prove the stability theorem of generalized g-expectations.
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1. Introduction
The theory of backward stochastic differential equations (BSDEs) was developed by Pardoux and Peng [24],

from which we know that there exists a unique adapted and square integrable solution to a BSDE of the type

T T
yt=f+/ g(s,ys,zs>ds—/ dW,,  te0,T], (1)
t t

provided the function g (also called the generator) is Lipschitz in both variables y and z, and ¢ and
(9(t,0,0))o<t<r are square integrable. Later, many researchers developed the theory of BSDEs and their
applications in a series of papers (for example, see Briand et al. [3], Hu and Peng [16], Lepeltier and San Martin
[19], Pardoux [22, 23], El Karoui et al. [13] and the references therein) under some other assumptions on the
coefficients but for a fixed terminal time 7" > 0. Let us mention the contribution of Lepeltier and San Martin
[19], which dealt with the quadratic of growth generator g in z and got the existence and uniqueness result in
L?. Let us mention also that when the generator g is Lipschitz continuous, a result of El Karoui et al. [13]
provides for a solution when the data & and {(g(t, 0, O)te[O,T]} are in LP even for p € (1,2). In 2003, Briand
et al. [3] was devoted to the generalization of this result to the case of a monotone generator for BSDEs on a
fixed time interval.

In 1997, Peng [27] introduced the notions of g-expectation and g-martingale via the L? solution of BSDE
(1). Peng’s g-expectation is a kind of nonlinear expectation, which can be considered as a nonlinear extension
of the well-known Girsanov transformations. The original motivation for studying Peng’s g-expectation comes
from the theory of expected utility. Since the notion of Peng’s g-expectation was introduced, many properties

of Peng’s g-expectation have been studied by Briand et al. [2], Chen [4], Chen and Wang [5], Chen and Epstein
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[6], Chen, Kulperger and Jiang [7, 8], Chen et al. [9], Coquet et al. [10], Hu [15], Jiang [20, 21|, Rosazza Gianin
[28] and in the references therein. In 2010, Hu and Chen [14] gave the extensions of Peng’s g-expectations
which are called generalized Peng’s g-expectations, and investigated their related properties.

In this paper, we investigate generalized g-expectations and generalized g-martingalesvia LP (1 < p < 2)
solutions of infinite time interval BSDEs. One difficulty of this problem is how to study the existence and
uniqueness of BSDE (1) when T = oo in L?. In fact, such a problem in L? (1 < p < 2) has been investigated
by Briand et al. [3], Peng [26], Pardoux [22], Darling and Pardoux [11], Pardoux and Zhang [25] and other
researchers under the assumption that terminal value ¢ = 0 or E[e??T|¢[P] < oo for some constant p and
random terminal time T (i.e. T is a stopping time).

Let us mention the contribution of Briand et al. [3] which dealt with a monotone generator g in y and
got the existence and uniqueness result in L? (1 < p < 2) on a random time interval. Furthermore, Briand et
al. [3] strongly pointed out that their existence and uniqueness result covered the case of T'= co (see the first
paragraph of Section 5 and Remark 5.3 in [3]).

Let us mention also the contribution of Hu and Tessitore [17]. In 2007, Hu and Tessitore [17] studied
the existence and uniqueness of mild solutions to a possibly degenerate elliptic partial differential equation
Lu(z) + (z,u(z), Vu(z)G(x)) — Au(x) = 0 in Hilbert spaces. The main tool was existence, uniqueness and
regular dependence on parameters of a bounded solution to a suitable BSDE with a random terminal time 7.

In 2000, Chen and Wang [5] obtained the existence and uniqueness theorem for L? solutions of infinite
time interval BSDEs when T' = oo, by the martingale representation theorem and fixed point theorem. But in
L? (1 < p < 2), there is no martingale representation theorem. In order to get rid of this difficulty, we give
a new a priori estimate (Lemma 3.1). The main idea of this a priori estimate comes from Proposition 3.2 in
Briand et al. [3]. Using this a priori estimate, we study the existence and uniqueness of L? solutions to infinite
time interval BSDEs. In fact, the difference between [3] and this paper is not the time horizon over which the
problem is formulated but the assumptions on the function that appear in BSDE (1) (this paper’s g and [3]’s
f), in which A and p appearing in (H2) of [3] are constant, while our « and 3 are integrable Lipschitz functions
on time t. These integrability conditions are introduced in [5]. In this paper, we also introduce generalized
g-expectations and generalized g-martingales via LP solutions of infinite time interval BSDEs. Furthermore,
we give the stability theorem of generalized g-expectations.

This paper is organized as follows. In Section 2, we introduce some notations, assumptions and lemmas.
In Section 3, we prove the existence and uniqueness theorem for LP solutions of infinite time interval BSDEs.
In Section 4, we introduce generalized g-expectations and generalized g-martingales via LP solutions of infinite

time interval BSDEs and prove the stability theorem of generalized g-expectations.

2. Preliminaries
In this section, we shall present some notations, assumptions and lemmas that are used in this paper.
Let (Q,F, P) be a completed probability space, (W;);>0 be a d-dimensional standard Brownian motion

defined on this space and (F;);>0 be the natural filtration generated by Brownian motion (W;)¢>o, that is,

Fi:=0{Ws;s <t} VN,

where N is the set of all P-null subsets. Furthermore, we assume F := o (U .7-}) .
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For simplicity, we just consider the case that d = 1, but our method can be easily extended to the other
cases.

We consider the following spaces:

LP(Q, F, P):={¢: ¢ is F-measurable random variable such that E[|{[P] < oo, p > 1};
LOF,P):=U LP(Q,F,P);

p>1
SP(R) :={V : V; is F;-adapted process such that E[sup,~|Vi|’] < oo,p > 1};
S(R):= U S"(R);

p>1
LP(R) := {V : V; is F;-adapted process such that E[(f;~ |V [2ds) 2] < oo,p > 1};
L(R):= J LP(R).

p>1

In the sequel, we assume that 1 <p < 2.
Consider the following infinite time interval BSDE:

Y;:f—{—/ g(svyt‘sts)dS'i_Voo_‘/t_/ stWs- (2)
t t

Let
g:OAxRE xRxR—R

such that for any (y,z) € RxR, g(-,y, 2) is Fi-progressively measurable. We make the following assumptions:
e 2
(A1) E [(fo |9(t,0,0)|dt) } < 00}

(A.2) There exists two positive non-random functions «(t) and 3(t), such that for all y1,y2 € R,
21,29 € R,

lg(t, y1, 21) — g(t, y2, 22)| < a(t)|yr — ye| + B(t)]21 — 22,

where a(t) and B(t) satisfy that [~ a(t)dt < oo, [;° A(t)dt < oo, [;° B2(t)dt < oo;
(A.3) There exists some constant 7' € [0, 00) such that

P

T
E (/0 |g(t,0,0)|dt> < 00,

£ (

0o 27
/ |g(t,0,0)|dt> < 00.

T

(A.4) (Vi)i>0 is an RCLL process (i.e. (V;)i>0 has sample paths which are right continuous with left
1imits) with (‘/;5),520 S 82(R)

The following lemmas are very useful in this paper.

Lemma 2.1 Let {K;}1>0 and {H }1>0 be two progressively measurable processes with values in R such that
P-a.s.,

/ (| K¢ + |Ht|2)dt < +00.
0
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We consider the R-valued semi-martingale {X;}i>0 defined by
t t
thXo—i—/ sts—i—/Hdes, 0<t< 0.
0 0

Then, for any p > 1, we have

| Xool? | XelP +p [ | Xl 1|X |1(X 20 Kods +p [ | X[~ |X e Loxaz0) Hsd W

>
+ clp) [ 1 X P72 x, 20) | H|ds,

where c(p) = w, IA(p—1):=min{l,(p—1)}.
The proof of Lemma 2.1 is very similar to that of Lemma 2.2 in [3]. It is almost verbatim adapted from
[8]. Now we briefly give the idea of the proof of Lemma 2.1. Since the function x — |z|P is not smooth enough

(for p € [1,2)) to apply Ité’s formula, we use an approximation. Let ¢ > 0 and let us consider the function

ue(x) := (2|2 +€2)2. Obviously, it is a smooth function. Ité’s formula leads to the following equality:

uf(Xoo) = uf(Xy) +pft°°up‘ (X)X, Kods + p [ ul=2(X,) X, HodW, @
+ 5 7 [ (X) + (p = 2)u2H(X)X?] H2ds

Letting € — 0 in (4) and applying convergence, we can obtain (3).

Lemma 2.2 If (Y,Z) is a solution of the following BSDE:
Yt=§+/ g(s,Ys,Zs>ds—/ ZdW., 0<it<oo, (5)
t t

then we have

|Y;5|p + P(Z;g:l) ftoo P/;s/lp_21(Ys7é0)|Zs|2d5
< el +p [ VAP e Ly 0y (s, Y, Zo)ds ©)
- pftoo |YS|p_1|¥—i|1(YS¢0)ZSdWS.

A

Proof Noting that

t t
Y't:YVO_/ g(S,Y;,Zs)dS-i—/ stW57 0<1t< o0,
0 0

then, together with (3), we obtain (6). O

3. Existence and uniqueness

In this section, we prove the existence and uniqueness theorem for LP solutions of infinite time interval BSDEs

which generalizes the result of [5] and give the corresponding comparison theorem.

Theorem 3.1 Under assumptions (A.2)-(A.4), if & € LP(Q, F,P), then BSDE (2) has a unique solution
(Y, Z) € SP(R) x LP(R).

In order to prove Theorem 3.1, we give an a priori estimate.
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Lemma 3.1 Suppose that (A.2) holds for g. Furthermore, each ¢; satisfies that

o[ ([ o] <=

Let & € LP(Q, F, P), (Y, Z) € SP(R) x LP(R) satisfy the following BSDEs:

Yy =§i+/ [9 (s, Y, ZE) + ¢i(s)] ds—/ Zidw,, i=1,2.
t t
Then
E [sup |Ys1 - Ys2|p + (fooo |Zs1 - Zs2|2ds)§]
s>0
< GE[|& = &P+ (Jo 161(s) — da(s)[ds)"]

where C,, is a positive constant depending only on p.

Proof It is easy to check that
[ (19 6v222) = g (Y2, 2) 4 61(5) = 6a(0)| + |21 = 227 s < .
0

so applying Itd’s formula to (Ysl — Ys2)2, we have

R Zfds
= ezl 2 [ (V- Y2) (0 (.2 20) ~ 0 (5Y2.2) + 01(5) = n(s) s
— 2 (V- v?) (20 2w,

From the Lipschitz assumption (A.2) on g, we have

2(Y) =Y7) (g (S»Y;,Z;) g(s.Y2,22))
as)|Y1 Y2| +28(s |Y1 Y2||Z1 |
as)|Y1 Y2| +2/32%(s |Y1 y2| +2|Z1

|2
2 (a(s) + B%(s)) sup |V} — Y2| + 1|zt - |2
s>0

VANRVANVAN

It follows that

L o7 |2t - 22 as

[1+2(f;° als)ds + [;° B2(s)ds)] sup v} —
2 [ = Y2 ¢a(s) — (s)|ds+2|f0 (Vi —Y2) (2} - z2)aw|.

IN

2|2

Since 2 [7 |V} = Y2||¢1(s) — p2(s)|ds < sup v} — Ys2|2 + (J5" 1on(s) — ¢2(s)|ds)2, we have

22t - 22| ds
< 4([1+(f0°o ds—i—fo B2 (s ds)]sup|Y1 |2>

(57 Nor(s) = da(s)lds)” + | f5~ (v = ¥2) (21 - 22) aw])
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Using the fact that if b, a; > 0 and b < )" a;, then b” < ) af for any p € (0,1) (see, e.g., Kuang [18, page
i=1 i=1

132]), we have

(12 - 227 )" < g (sup V2 = Y27+ (5 6a(9) - dn(olas)”
e (|5t = v2)zt - zaw[F),

S

(7)

where ¢, is a positive constant depending only on p. By the Burkholder-Davis-Gundy inequality (see, e.g.,
Barlow et al. [1, Table 4.1 page 162]), we get

b
QB [|f57 (= v2) (21 - 22)aw[F] < (fooo|Y51—Y52|2|Zsl—Z§|2ds)4]
b
< 4B sup|Ysl—Ys2|%(fOOO|Z51—ZS2|2ds)4]
s>0
and thus
z oo 2 %
ok (L5 (2 =v2) (2 -z awT] < s (5712 - 2P as)|

P ) (®)
+ FE [Sup|Ysl — V2| ] :
s>0

where d,, is a positive constant depending only on p. From (7) and (8), we have

00 P
(/ |Z51—Zs2|2ds>2
0

where C is a positive constant depending only on p.

E <o sy - v2+ ([Tl - oatolas) ] )

Now, we prove that
, e’} p
Blsw v —v2r| <8 fle e+ ([ 1016 - atsilas) . (10)
5>0 0

where C' is a positive constant depending only on p. The proof of (10) is similar to that of Proposition

3.2 of Briand et al. [3]. Let us fix 0(¢t) := a(t) + iz_(tl) and define € := efo 0(3)dsg Yi = efo 0()dsyi

7i = elo e(s)dst, i =1,2, which solve the following BSDEs, respectively:
Vo6t [ [p(sTuZ) +eli %o as— [ Zaw., =12
t t

where §(t,y, z) := elo 0(s)ds g (t, e Jo 0(9)dsy o= Jo e(s)dsz) —0(t)y.

By Lemma 2.2, we can get the inequality

+ p(p 1) ftoo ‘Y Y? 21(72_?§¢0) ‘72 _73 2ds
< |§1_§2| +pft ‘Y 2 1%1(# ¥ 20) (g(s,?i,?i) —§(s,7§,7§))d5 I
R R ST 9‘”‘”|¢> (5) = da(s)lds )
- T B e (77
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From the Lipschitz assumption (A.2) on g and with the help of

—i

Y, = o 000y 7y elo 00 zi =12

and

g(ty, 2) = efo )y (t, e Jo 0y o= Ju 9(5)‘”2) —0(t)y,

we have

—1 _o|p—1 1 32 =1 =1 —2 52
p[To-T| e (@ (70 Z,) -7 (272 20))
Y, °0(r)dr
| R el O (9 (5, 2) = g (5,72, 22)
_ —1 =2
1(1/1 Y 750)9(5) (Ys - Ys)

Pt efo Q(T)dr |g (S,Y;l, Z;) - 9 (87}/;27 Z§)|

IN
S
=
|
)~<

1 27l yy?

TV 0 (T2 V) 12

s 71 — 7? efo 0(r)dr |Y1 |

I
]
Q

— — —92|P
vy ek 9<T)dT|Z1— s|—p9(s)‘Yi—Y§‘
s_Yf +p68

-1,_ —
2|P Zl_Z2

— p(s)

I
=
Q

—2|P
s

vyl _

S

_ pB(s)
p—1

I
s}
)

»

S S

Noting that

—2 P11 —2
s ‘Zs_Zs

215 |1 =251 -

T -7 e |7 -2

1 =2|P _1) =1 =2|P2
-Y, -

-Y

1 -2
s

S

7 v ) |

(where the inequality comes from the fact that if a, b > 0, then ab < a® + b4—2 ), we have

—1  —2p-l yi_v 1 — o
b ‘yl -y %1(71_737&0) (g (s,Yi,Zi) - (syzz2)) ds
p(p 1) oo 72 p=2 1 =22 (13)
< =T e ) 207 s
Thus from (11) and (13), we obtain the following inequality:
p(p 1) oo 72 -2 -1 _ 72
v -7+ f ‘Y L 520 |20~ 22 s
1 s s
-Gl +p )" efo P $1(s) = ¢a(s)lds (14)
00 2 Y.V’ 1 =2
- e o) (70 Z0) A
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Denote

—1
p—1Y

S

Y 2

S

M, ._/ ‘Y -y

By the Burkholder-Davis-Gundy inequality (for example, see Sect. 3 of Chap. VII of Dellacherie and Meyer

(717 p0) (72 -7 ) aw,.

‘ S

[12]) and Young’s inequality (i.e. ab < %p + %, a>0,b>0,p>1and 11—7 + % =1, see, e.g., Kuang [18, page
136]), we have

0o 22p— %
slongl < E|(fF[Fi-7 77| as)

4 - oo | =1 —2 2 %

< E|supl|Y, — (fo ‘ZS—Zs ds)

s>0
1 —1 =2 1 oo |51 2|2 5

< BESElsup Y, -Y,| | +,;E Jo ‘ZS—Zs ds
s>0

< ©o0Q.

It then follows that {M;},., is a martingale. For notational simplification, let

X._/OO‘YI—_ 1 ‘71—722@
A s (V.-7220) |“s s .
Coming back to inequality (14), we get both
pp—1) AL Ft 2P e erar
EXSE|[6 -G | +pE| [ |To-Ta e H061(s) — ga(s)lds (15)
0

and

E [sup Y,

s>0

—92 P:|

- - oo |[—=1 —2P~1
< E[|sl—s2|p+pfo v.-72 efo“”d%(s)—¢>z<s>|ds]
+ D,E[Mx],

(16)

where D,, is a positive constant depending only on p. Applying the Burkholder-Davis-Gundy inequality (for
example, see Sect. 3 of Chap. VII of Dellacherie and Meyer [12]) again, we have

50 2 2p—2 %
E[M.| < (fo ‘Y ds)
=1 2|5 [ o 7 1 92 \?
< Dy [sup |V, (fo ‘Y L5 0) ‘ZS—ZS ds) 1
< iE [sup Y, —_f p] + %E[X].
s>0

It then follows from (15) and (16) that

E [sup Y, —

s>0

| < mo |-l en [TV O )~ atolas]
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where K, is a positive constant depending only on p. Applying once again Young’s inequality, we get

1 i
P[5 (7L Fo T el 00 o (s) — galoas|
1 i
< o sup [V =T el 0 01 (5) = on(o) s
S %E |:S11p ?; —?f p:| + MpE [(fooo ef(; 0<T)dT|¢1(S) _ ¢2(8)|d8)p:|
s>0
< %E [Sl;}g ?l —?f P] + M, (efooo O(S)ds) [(fooo 161(5) — ¢2(S)|d8)p] 7

where M), is a positive constant depending only on p. From this, we deduce that

_v? p] <C'E [|§1 -6+ (/OOO |#1(s) — ¢2(8>|d5>p] ’

where C is a positive constant depending only on p.

E [sup _i

s>0

Combining (9) with (18), we get

[sup |Y1 Ys2|p + (fooo |Zs1 - Zs2|2ds) %]
< CE 6 — &l + (J57 |61(s) — ¢a(s)lds)"]

where C), is a positive constant depending only on p. The proof of Lemma 3.1 is complete.

Lemma 3.2 ([5]) Let € € L?(Q, F, P) be given. Suppose that (A.1) and (A.2) hold for g, then BSDE

:§+/ g(S,Y;,Zs)dS—/ stWs
¢ ¢
has a unique solution (Y,Z) € S?(R) x L3(R).

Proof of Theorem 3.1. We prove this theorem in two steps.

(18)

(19)

Step 1. We prove the existence and uniqueness to BSDE (19). Let " := ((An)V (—n) and g, (¢, y, 2) :=
0,0)n .
g(tvyvZ)_g(t7070)+fn(g(t7070))7Where fn( (t 0 0)) Wv ftSTv fn(g(t,0,0)):g(t,0,0),lft>T

It is easy to check that for each n, the function g, satisfies (A.1) and (A.2). Then by Lemma 3.2, BSDE

Y, =" +/ gn (8, Y, Z7)ds — / Z3dWs
t t
has a unique solution (Y, Z") € S%(R) x £L?(R). Using Lemma 3.1, we have

b
v [S“p eyl (g 12— 2o ds) ]

t>0

< CpE [lgn—i—m - gnlp + (fOOO |fn+m(g(87070)) - fn(g(87070))| ds)p] !
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The right-hand side of the above inequality clearly tends to 0, as n — oo, uniformly in m, so we have a Cauchy
sequence and the limit is a solution to BSDE (19). Let us consider (Y, Z) and (Y,, Z,) to be two solutions to
BSDE (19). Using Lemma 3.1 again, we get immediately (Y, Z2) = (Y, Z').

Step 2. Let é =&+ Vo and Y, =Y, + Vi, then BSDE (2) can be rewritten as

Y, =é+/ g (s %0 2,) ds—/ Z,dW,, (20)
t t

where §(t,y,2) := g (t,y — Vi, 2). It is easy to check that §(t,y, z) satisfies (A.2), (A.3) and € € LP(Q, F, P).
By Step 1, there exists a unique pair (}A/, Z) of adapted processes in SP(R) x £P(R) solving BSDE (20). Using

the fact |Y;|P < 2°(|V3|P + |Vi|P), we have (Y, Z) € SP(R) x LP(R). The proof of Theorem 3.1 is complete.

Remark 3.1 If g(¢,0,0) = 0, then by Theorem 3.1, we have: Under assumptions (A.2) and (A.4), for each
given & € L(Q, F, P), BSDE (2) has a unique solution (Y, Z) € S(R) x L(R).

Example 3.1 Suppose that 1 < p < 2. Consider the BSDE:

For notational simplification, let & := exp (v;/_pf - Wl) Low,>p)s 9(ty, 2) = ﬁ(y +2), at) = ﬁ,

Bt) = (1_;15)2 . Obviously, g satisfies (A.2) and (A.3). On the other hand,
> £L'2 1 1.2 1 2
E p:/ e (——x) e 2 da = e P < oo,
P = [~ e (5 o) 7= =
and
E[l¢]?] = oo.

Hence, £ € LP(Q, F,P), £ ¢ L*(Q,F,P). But by Theorem 3.1, we have: BSDE (21) has a unique solution
(Y, Z) € SP(R) x LP(R).

The following comparison theorem is very useful. Since the proof is very similar to that of Theorem 2.2
in [18], we omit it.

Theorem 3.2 (Comparison Theorem) We make the same assumptions as in Theorem 3.1. Let (7,@ be the
solution of the BSDE

7t:g"i_/ g(svvsvjs)ds""voo_vt_/ 7de57
¢ ¢
where G(t,y, z) satisfies (A.2) and (A.3), Vi satisfies (A.4) and € € LP(Q), F, P). If we suppose that

6:26_32_07 gt Z:g(t,?t,jt) _g(tvvtvjt) 207 a.S.,
Vi =V, =V is an RCLL increasing process,
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then
Y; > Y, as., Vte[0,00).

Moreover, if P (é > 0) >0, then P (Y} > 7,5) >0, for all t > 0. In particular, Yo > Y.

4. Generalized g-expectation and generalized g-martingale

In this section, we make an additional assumption on the function g:

(A5) g(-,y,0) =0, Vy € R.

For any given g, the solution (Y, Z) of BSDE (19) depends on terminal value £. Referring to Definition
36.1 in [27] or Definition 3.1 in [14], now we introduce the definitions of generalized g-expectation and generalized

conditional g-expectation via the solution of BSDE (19).

Definition 4.1 (Generalized g-expectation) Suppose g satisfies (A.2) and (A.5). For any £ € L(Q, F, P), let
(Y, Z) be the solution of BSDE (19). Consider the mapping E,4[-] : L(Q, F, P) — R denoted by £,[€] :=Y,. We
call £,€] generalized g-expectation of &.

Definition 4.2 (Generalized conditional g-expectation) Suppose g satisfies (A.2) and (A.5). Generalized
conditional g-expectation of & with respect to Fy is defined by

Egl€|Fi) := Vi

Generalized g-expectation has the following property.

Proposition 4.1 &,[¢|F] is the unique random variable n in L(QY, Fy, P) such that
Eg1ag]l =&[1an], VAe F.

By Theorem 3.2 and (A.5), we can prove Proposition 4.1 by using the same method as that of Proposition
36.4 in [27], so we omit the proof.

The following proposition will tell us that generalized conditional g-expectations that we introduced meet
some basic properties of Peng’s conditional g-expectations.

Proposition 4.2 Suppose &, &1, & € L(Q,F, P), then
(1) If € is Fi-measurable, then E,[E|F] = &;
(ii) For all stopping times T and o, E,(Eq[E|F+||Fo) = Egl&|Fracl;
(iii) If & > & a.s., then E4[&1|Fi) > Eg[&2|Fi] ; if, moreover, P(& > &) > 0, then

P (&g[&|F] > &4l2]F)) > 05

(iv) For each B € Fy, E,(1BE|Fi] = 18E,[€|F1 5
(v) If g does not depend on y, then for any (§,m) € L(Q, F, P) x L(Q, F, P),

gq[f +77|~7:t] = 5g[f|~7:t] +1.

By Theorem 3.2 and using the similar arguments as that of Lemma 36.6 in [27] and Lemma 4.2 in [2],
we can prove Proposition 4.2.

Now we shall prove the stability theorem of generalized g-expectations.
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Theorem 4.1 (Stability Theorem) Suppose g satisfies (A.2) and (A.5). For & n, € L(Q,F,P), where
n=12---,if E[l€=nu|P|F] — 0, a.s., t€]0,00), then

nlLIrgogg[nn|ft] =&4¢|F], as., te€]0,00).
Proof From Theorem 3.1, we know that

gg[nnlft] =Tn —i—ooftoog(s,gg[nn|fs],Z;l) ds(; ftoo Z¢dWs, n=1,2,---,
g‘][ﬂft] = f +ft g(s,f,’q[ﬂfs],Zs) ds — ft stWs-

Then
EqlelF) — Eglml Fi]) = € —mn+ [ as (E5[€F) = Eglim| Fu)) +bs (Z: — 27)] ds (22)
— Tz 7w,
where
o g(8,E5€1F),Z2)—g(s,E g Nn | Fs), Zs)
= e [5|f31—gg[mé; T TS i)
bs — 9(s,Eg[nn ]:s],ZZ?:‘]Z(;v g[nnlstZS)1(Z3—Z§‘750)7

which imply |a:| < a(t), |b:] < B(2).

Relation (22) can be rewritten as follows:

EJEIF] — Eqlnal Fi) = € — 1o+ / T (€T — Eylnal F) ds — / (2. - z0ya WL, (23)

t
where W, = W, — fg bsds. By the Girsanov theorem, we know that (Wt) 150 is Qb-Brownian motion, where
% — o 5 7 bsPds [0 bod W,

Solving (23), we obtain
EglE1F2] — Eglnnl|F2] = (€ — nn)eftoo el - / (Zs = 27) el rdr qW. (24)
t
By the Burkholder-Davis-Gundy inequality (for example, see Sect. 3 of Chap. VII of Dellacherie and Meyer
[12]), Holder’s inequality and noting the fact that

E [e—% J52 bePds+ 5 bsdws} —1

and

)

E [e_% I |qb3|2ds+f0°° qbde&} =1

we have
Eqr Hfé (Zs = 2Z2) el ‘“‘”dWsH

< eliTamdp, [(fow 12, - 7% ds) ]

< ol (E [(fow Z, — Z;’|2ds)%]>% (E [(%)q )%
< elBla1) [ B (att[se at)at] (E [(fg” Zs -z dS) %D '
< oo,
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Q

where le + 1 = 1. It then follows that (fg (Zs — Z™)elo “TdeWs) is a martingale with respect to Q.
>0

Hence Egp [fg (Zs — Z™)elo “TdeWs} = 0. Taking conditional expectation Egs[-|F;] on both sides of (24),
we have

gg [§|~7:t] - 59[77n|~7:t] = EQb [(f - 77n)€f’50o asds|«7'—t} .

Note that |a:| < «(t) and hence

|EG[E1F) — Eglnnl Fe]| < elo” 2 DN B, [|€ — || FY).

By Holder’s inequality, we obtain

Q=

Elle-mllm] _ Ele—mplE) (5 |gr1R))

Equ[l€ —ml| 7] = |:de|‘7:75:| B E[db| }

. 1t 2 t 1t 2 t . .
Since (e 3 Jo 1bs]"ds+ bSdWS) and (e 3 Jo labsIds+ [, qbdeﬁ) are both martingales with respect to (F:)¢>0,
>0 =

t>0
hence

Q

< obla=1) [ B (e,

1
b q 1 t 2 t
E | (42q D" ( —L [t |gbs|2ds+] qudWS)
( (7)1 Fe 1q1)fooﬁ2(t)dtezo 0
B dQ?b |«7:t:| e_%fot |ba|2ds+ [ badW,

Thus for all ¢ € [0, 00),

EG[€1Fe] — Eglnn| Fi]| < e[Bam DI BT o] (ppie g 12 F))5 (25)
Noting that E[|€ —n,|P|F:] — 0, as n — oo, t € [0,00), then
IEGLEIFL] — Eglnn| Fi]l — 0, as n — oo.

The proof of Theorem 4.1 is complete. O

Remark 4.1 (i) In Theorem 4.1, if we replace (A.5) by (A.3), the following result lim Y;* = Y;, a.s.,

€ [0,00) holds.
(ii) For any £ € LN, F,P), let " :=(EAn)V (—n), n=1,2,---, then by Theorem 4.1, we have:

lim &G F] = &G F], a.s., Vit € |0,00).
(iii) By the proof of Theorem 4.1, we have: if £ € LP(Q, F, P), then there exists a constant C' > 0 such
that &l|&|1F) < C(EIEI"1F])7 , Vi € [0,00).

At the end of the paper, we introduce the definition of generalized g-martingale (resp. generalized g-

supermartingale, generalized g-submartingale).
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Definition 4.3 Suppose g satisfies (A.2) and (A.5). A process (Xi)i>0 satisfying that for each t, X, €
L(Q, Fi, P) is called a generalized g-martingale (resp. generalized g-supermartingale, generalized g-submartingale),

if for any t and s satisfying t < s,

E [ Xs|F) = Xy (resp. < Xy, > Xy), a.s.

Example 4.1 Suppose that & € L(Q, F, P) and (A¢)t>o is an RCLL increasing process with (A¢)i>o € S?(R).
Consider the BSDE:

o0 1 o0
Y, = +/ 7sts+Aoo—A—/ ZsdWs. 26
t=¢& \ (1 + 8)2 | | t \ ( )
Let g(t,y, z) := ﬁ|z| Obviously, g satisfies (A.2) and (A.5). By Theorem 3.2, for any t and s satisfying
t<s, Y| F] <Yi, a.s.. Thus (Yi)i>0 is a generalized g-supermartingale.
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