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Abstract: In the analysis of the count data, the Poisson model becomes overtly restrictive in the case of over-dispersed

or under-dispersed data. When count data are under-dispersed, specific models such as generalized linear models (GLM)

are proposed. Other examples are the zero-inflated Poisson model (ZIP) and zero-truncated Poisson model (ZTP), which

have been used in literature to deal with an excess or absence of zeros in count data. Thus having a knowledge of the

probability of zeros and its estimation in Poisson distribution can be significant and useful.

Some estimation problems with unknown parameter cannot attain minimum risk where the sample size is fixed. To

resolve this captivity, working with a sequential sampling procedure can be useful. In this paper, we consider sequential

point estimation of the probability of zero in Poisson distribution. Second order approximations to the expected sample

size and the risk of the sequential procedure are derived as the cost per observations tends to zero. Finally, a simulation

study is given.
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1. Introduction

The Poisson distribution with the probability density function

f(x; θ) =
e−θθx

x!
, x = 0, 1, 2, . . . , θ > 0, (1)

was first studied by Poisson [13] as a limiting case of the binomial distribution. This distribution is very

important among the discrete distributions. Johnson et al. [10] have discussed the genesis of Poisson distribution
in detail. The Poisson distribution has wide applications in many fields. It is used as an approximation to the
binomial and other distributions; used to describe when events occur randomly in time or space; used in certain
models for the analysis of contingency tables; for the empirical treatment of count data; in quality control to
characterize the number of defective items per batch (see, e.g., Walsh [22]; van der Waerden [20]; and Chatfield

[4]); as a limiting form for the hypergeometric distribution and hence an approximation for sampling without

replacement; in quantum statistics; and in the theory of photographic plates (see Feller [6], p. 59); and on
the analysis of quadrant data which have been collected extensively in ecology, geology, geography, and urban
studies (e.g., Greig-Smith [8]).
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In spite of the wide applications of Poisson distribution, it becomes restrictive in analysis of some count
data. Count data distributions are characterized by exhibiting a concentration of values on a few small discrete
values, skewness to the right, and intrinsic heteroscedasticity with variance increasing or decreasing with the
mean [3]. However, count data are often over-dispersed or under-dispersed relative to the Poisson distribution.
That is, the variance is larger or smaller than mean for the data, so the Poisson model becomes overtly restrictive.

Under-dispersions have qualitatively similar consequences to heteroscedasticity in the linear regression
models. When count data are under-dispersed specific models such as generalized linear models (GLM)are

proposed. For example, the zero-inflated Poisson model (ZIP) and the zero-truncated Poisson model (ZTP)

have been used in literature to deal with an excess or absence of zeros in count data [11, 24].

Poisson regression models provide a standard framework for the analysis of count data. In practice,
however, count data are often over-dispersed relative to the Poisson distribution. One frequent manifestation
of over-dispersion is that the incidence of zero counts is greater than expected for the Poisson distribution; this
is of interest because zero counts frequently have special status. For example, in counting disease lesions on
plants, a plant may have no lesions either because it is resistant to the disease, or simply because no disease
spores have landed on it. This is the distinction between structural zeros, which are inevitable, and sampling
zeros, which occur by chance. In recent years there has been considerable interest in models for count data that
allow for excess zeros, particularly in the econometric literature. These models complement more conventional
models for over-dispersion that concentrate on modeling the variance-mean relationship correctly.

According to what was mentioned above, having knowledge about the probability of zero i.e. γ(θ) =

P (X = 0) = e−θ and its estimation in Poisson distribution can be significant and useful.

The problem of sequential estimation refers to any estimation technique for which the total number of
observations used is not a degenerate random variable. In some estimation problems with unknown parameter
the sequential estimation must be used because no procedure using a preassigned non-random sample size can
achieve the desired objective.

Wald [21] was the first person to introduce the concept of sequential probability ratio test (SPRT).

Other authors such as Handle [9] and Stein [15] used the sequential methods to tackle some unsolved problems
in point and interval estimation. Sequential estimation of the scale parameter of exponential and gamma
distributions has been considered by Starr and Woodroofe [14], Woodroofe [23], Ghosh and Mukhopadhyay [7],

Mukhopadhyay et al. [12], Takada [16, 17] and Uno and Isogai [18]. Ali and Isogai [1] derived the sequential

point estimation of the powers of an exponential scale parameter. Also, Uno et al. [19] obtained the sequential
point estimation of a function of the scale parameter of an exponential distribution subject to the loss function
given as a sum of the squared error and a linear cost. In estimating the mean, their results coincided with that
of Woodroofe [23].

Consider the weighted squared error loss function of the form

Ln = L(γ(θ̂), γ(θ)) = Aw(θ)(e−X̄n − e−θ)2 + cn, (2)

where A(> 0) and w(θ)(> 0) are known to the experimenter and c(> 0) is the cost per unit sample for
measured the accuracy of the estimate. This loss function is suitable in estimation problems for which the
overestimation is more serious than the underestimation orvice versa. In this paper we consider sequential point
estimation of the probability of zero in Poisson distribution under the above loss function.

The remainder of this paper is organized as follows. The stopping rule N is introduced and some
properties are given in Section 2. In Section 3, we give second-order approximations of the E(N) and asymptotic
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expansions of the risk RN of the purely sequential procedure as c → 0. Section 4 is devoted to sequential point
estimation of the probability of zero in Poisson distribution, where w(θ) = 1/θ in (2). A simulation study is
given in Section 5.

2. The stopping rule and its properties

Suppose that X1, X2, . . . is a sequence of independent and identically distributed random variables having

Poisson distribution (1). It is interesting to estimate the probability of x = 0: γ(θ) = P (X = 0) = e−θ .

Prevalently, we will estimate the function γ(θ) by γ(θ̂) = e−X̄n , where X̄n is the sample mean of a random
sample of size n from the Poisson distribution with mean θ and variance θ . The risk function of the estimator

γ(θ̂) = e−X̄n in estimating γ(θ) = e−θ , under the loss function (2) is given by the relation

Rn = E[L(γ(θ̂), γ(θ))] = Aw(θ)E(e−X̄n − e−θ)2 + cn. (3)

Taylor expansion of e−X̄n around e−θ gives

Rn � A

n
w(θ)θe−2θ + cn, (4)

for sufficiently large n . The risk function in (4) is approximately minimized at

n0 �
(

A

c

)1/2 √
θw(θ)e−θ = n∗ (say). (5)

If θ is known, then n∗ can be found to minimize the risk function Rn . But since θ is unknown, we cannot
use the best fixed sample size procedure n0 to achieve the minimum risk of Rn0 . Thus it is necessary to
find a sequential sampling procedure. First, take a sample of size m = 1 from the Poisson distribution.

If m <
√

AX̄m

c w(X̄m)e−X̄m , then we take one more observation, Xm+1 ; otherwise sampling is terminated.

Therefore we introduce the stopping rule

N = Nc = inf

{
n ≥ m : n ≥

√
AX̄n

c
w(X̄n)e−X̄n

}
, (6)

where m ≥ 1 is the pilot sample size. In estimating the parameter γ(θ) = e−θ by γ(θ̂) = e−X̄N , the risk is
given by the relation

RN = Aw(θ)E(e−X̄N − e−θ)2 + cE(N). (7)

The performance of the procedure is measured by the regret RN − 2cn∗ . In the succeeding section, we will give
second-order approximations of the E(N) and asymptotic expansions of the risk RN of the purely sequential
procedure as c → 0.

Proposition 1 The stopping rule N in (6) has the following properties:

(i) P (N < ∞) = 1,

(ii) limc→0 N/n∗ = 1 a.s.,
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(iii) limc→0 E[(N/n∗)2] = 1,

Proof See Propositions 1 and 2 of Aras and Woodroofe [2]. �

3. Second-order approximations of E(N)

According to the stopping rule (6) we define the function h(x) by

h(x) =
ex√

xw(x)
, x > 0.

The stopping rule N in (6) can be written as

N = inf {n ≥ m : Zn ≥ n∗} ,

where Zn = nh( X̄n )
h(θ) .

Let Yi = (Xi − θ), for i = 1, 2, . . ., Sn =
n∑

i=1

Yi and Ȳn = n−1Sn , respectively. Taylor’s theorem gives

h(X̄n) = h(θ) + h′(θ)(X̄n − θ) +
h′′(ηn)

2
(X̄n − θ)2,

where ηn is a random variable lying between θ and X̄n . Using the above expression for h(X̄n) we have

Zn = n + αSn + ξn,

where

α = 1 − 1
2θ

− w′(θ)
2w(θ)

, and ξn = n(X̄n − θ)2
h′′(ηn)
2h(θ)

, (8)

with

h′′(x) =
ex√

xw(x)

{
1 − 1

x
+

3
4x2

+
w′(x)

2xw(x)
− w′(x)

w(x)
+

3
4
[
w′(x)
w(x)

]2 − w′′(x)
2w(x)

}
.

Define

t = inf {n ≥ 1 : n + αSn > 0} and ρ =
E(t + αSt)2

2E(t + αSt)
. (9)

Consider the following assumptions:

(A1 )

{[(
Zn − n

ε0

)+
]3

, n ≥ m

}
is uniformly integrable for some 0 < ε0 < 1.

(A2 )
∞∑

n=m
nP {ξn < −nε1} < ∞ for some 0 < ε1 < 1.

722



MAHMOUDI and HATAMI KAMIN/Turk J Math

The following theorem gives the expression of E(N) as the cost per observation tends to zero.

Theorem 1 If (A1 ) and (A2 ) hold, then

E(N) = n∗ + ρ − θ	 + o(1), as c → 0,

where

	 =
1
2

{
1 − 1

θ
+

3
4θ2

+
w′(θ)

2θw(θ)
− w′(θ)

w(θ)
+

3
4
[
w′(θ)
w(θ)

]2 − w′′(θ)
2w(θ)

}
. (10)

Proof Let Wn =
√

n(X̄n −θ). Then the random variable Wn tends to the random variable W having normal

distribution with mean 0 and variance θ as n → ∞ . Note that h′′(ηn) → h′′(θ), since ηn is a random variable

lying between θ and X̄n . Combining these two facts gives

ξn =
h′′(ηn)
2h(θ)

n(X̄n − θ)2 d→ h′′(θ)
2h(θ)

W 2 = ξ as n → ∞,

where ξ = h′′(θ)
2h(θ)

W 2 = 	W 2 and 	 is given in (10). We shall check conditions (C1) to (C6) of Aras and

Woodroofe [2]. Clearly, (C1) holds since E(Yi) = 0 and E(Y 2
i ) < ∞ for i = 1, 2, · · · . (C2) with p = 3

is identical with (A1 ). (C3) coincides with (A2). Taking g(x) = h(x+θ)
h(θ) , (C4), (C5) and (C6) follow from

Proposition 4 of Aras and Woodroofe [2] since Zn = ng(Ȳn) = n
h(X̄n)
h(θ) , g(x) is twice continuously differentiable

on some neighborhood of 0, α = g′(0) = h′(θ)
h(θ) and E|Y1|3 < ∞. Hence, from Theorem 1 of Aras and Woodroofe

[2],

E(N) = n∗ + ρ− E(ξ) + o(1) = n∗ + ρ − θ	 + o(1), as c → 0,

which concludes the theorem. �

The following proposition gives sufficient conditions for (A2 ) which are useful in actual estimation prob-
lems.

Proposition 2

(i) If h′′(ηn) ≥ 0 for all n ≥ m , then (A2 ) holds.

(ii) If sup
n≥m

E|h′′(ηn)|s < ∞ for some s > 2, then (A2 ) holds.

Proof See Proposition 1 of Uno et al. [19] for more details. �

We shall now assess the regret RN − 2cn∗ . Using Taylor’s theorem we obtain,

e−X̄N = e−θ − e−θ(X̄N − θ) +
1
2
e−θ(X̄N − θ)2 − 1

6
e−ϕc(X̄N − θ)3, (11)

where ϕc is a random variable lying between X̄N and θ . Consider the following condition:

(A3 ) For some a > 1, u > 1 and c0 > 0,

sup
0<c≤c0

{
c−auE

∣∣X̄N − θ
∣∣4au

}
< ∞, sup

0<c≤c0

E
∣∣e−ϕc

∣∣ 2au
u−1 < ∞,

where ϕc is the random variable lying between X̄N and θ .
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Remark 1 The second part of (A3 ) is satisfied here, since |e−x| ≤ 1 for each x > 0 .

Theorem 2 If (A1 ), (A2 ) and (A3 ) hold, then

RN − 2cn∗ =
{

3
4θ + 5

4θ − 1 + 9
4θ[w′(θ)

w(θ) ]2 − 2θw′(θ)
w(θ) + 3

2
w′(θ)
w(θ) − θw′′(θ)

w(θ)

}
c

+o(c). (12)

Proof Using the expressions (7) and (11), we have

RN − 2cn∗ = Aw(θ)E(e−X̄N − e−θ)2 + cE(N) − 2cn∗

= Aw(θ)e−2θE(X̄N − θ)2 + cE(N) − 2cn∗ + Aw(θ) e−2θ

4 E(X̄N − θ)4

+ A
36w(θ)E[e−2ϕc(X̄N − θ)6] − Aw(θ)e−2θE(X̄N − θ)3

+A
3 w(θ)e−θE[e−ϕc(X̄N − θ)4 ] − A

6 w(θ)e−θE[e−ϕc(X̄N − θ)5]. (13)

Using Theorems 2 and 3 of Aras and Woodroofe [2], we obtain (14)–(19) below, as c → 0:

Aw(θ)e−2θE(X̄N − θ)2 + cE(N) − 2cn∗

= c

{
n∗2

E
[√

1
θ ȲN

]2

+ E(N) − 2n∗
}

= c
{
2E

(
1
θ ξW 2 − ξ

)
+ 3θα2 + 2

θαE(Y1)3
}

=
{

5
4θ

+ 5θ − 3 + 9
4
θ[w′(θ)

w(θ)
]2 − 5θw′(θ)

w(θ)
+ 3

2
w′(θ)
w(θ)

− θw′′(θ)
w(θ)

}
c + o(c). (14)

Here, ξ = 	W 2 , W ∼ N(0, θ) and α and 	 are given in (8) and (10). Also,

Aw(θ)e−2θE(X̄N − θ)3 =
√

θc
{

n∗2
E(

√
1
θ
ȲN)3

}
=

√
θc

{√
1
θ
6θ(1 − 1

2θ
) +

√
1
θ

1
θ
θ
}

=
{

6θ − 2 − 3θw′(θ)
w(θ)

}
c + o(c). (15)

Aw(θ) e−2θ

4 E(X̄N − θ)4 = 1
4θc

{
n∗2

E(
√

1
θ ȲN )4

}
=

{
3
4θ

}
c + o(c). (16)

For r > 1, s > 1, k = s
s−1

and v = u
u−1

, we have

E

∣∣∣∣{(n∗)
1
2 ȲN

}4

e−2ϕc
(
ȲN

)2
∣∣∣∣
r

≤
{

E
∣∣∣(n∗)

1
2 ȲN

∣∣∣4rus
} 1

us {
E |e−ϕc |2rvs

} 1
vs

{
E

∣∣ȲN

∣∣2rk
} 1

k

.

Doob’s maximal inequality gives

E(ȲN )2rk ≤ E

{
sup
n≥1

(Ȳn)2rk

}
≤ (

2rk

2rk − 1
)2rkE(Y1)2rk < ∞.
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Choosing r and s such that a = rs, then (A3) yields the uniform integrability of

{{
(n∗)

1
2 ȲN

}4

e−2ϕc
(
ȲN

)2
, 0 < c ≤ c0

}
.

Since {
(n∗)

1
2 ȲN

}4

e−2ϕc
d→ e−2θW 4,

and (
ȲN

)2 → 0, as c → 0,

we get
A
36w(θ)E[e−2ϕc(X̄N − θ)6 ]

= c
36θe2θE

{{
(n∗)

1
2 ȲN

}4

e−2ϕc
(
ȲN

)2
}

= o(c). (17)

By arguments similar to (17), we obtain

A
3 w(θ)e−θE[e−ϕc(X̄N − θ)4]

= c
3θeθE

{{
(n∗)

1
2 ȲN

}4

e−ϕc

}
= {θ}c + o(c), (18)

and
A
6 w(θ)e−θE[e−ϕc(X̄N − θ)5]

= c
6eθE

{{
(n∗)

1
2 ȲN

}4

e−ϕc
{
ȲN

}}
= o(c). (19)

Substituting (14)–(19) into (13), we get

RN − 2cn∗ =
{

3
4θ + 5

4θ − 1 + 9
4θ[w′(θ)

w(θ) ]2 − 2θ
w′(θ)
w(θ) + 3

2
w′(θ)
w(θ) − θ

w′′(θ)
w(θ)

}
c

+o(c).

The proof is completed. �

4. Sequential point estimation of the probability of zero where w(θ) = 1/θ

In this section we consider sequential point estimation of the probability of zero in Poisson distribution, i.e.

γ(θ) = e−θ under the weighted squared error loss function (2) with w(θ) = 1/θ . The main idea of choosing this

weight is that the sample mean X̄n is admissible and a minimax estimator for θ under the weighted squared

error loss function L(θ̂, θ) = 1
θ
(X̄n − θ)2 .

In estimating γ(θ) = e−θ by γ(θ̂) = e−X̄n under the loss function

L(γ(θ̂), γ(θ)) =
A

θ
(e−X̄n − e−θ)2 + cn, (20)
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the risk is approximately given by

Rn � A

n
e−2θ + cn, (21)

which is finite for n ≥ 1. Then the optimal fixed-sample size is

n∗ = (
A

c
)1/2e−θ. (22)

The stopping rule N in (6) is given by

N = inf
{

n ≥ m; n ≥ (
A

c
)1/2e−X̄n

}
. (23)

Since w′(θ) = −1/θ2 and w′′(θ) = 2/θ3 , we have

α = 1 and 	 = 1/2. (24)

The stopping rule t in (9) becomes t = inf{n ≥ 1; n + αSn > 0} = 1 and

ρ =
E(1 + Y1)2

2E(1 + Y1)
=

θ + 1
2

. (25)

Second-order approximations of the expected sample size are given in the following theorem.

Theorem 3 Suppose that m ≥ 1 . Consider the sequential point estimation of a function γ(θ) = e−θ under the

weighted squared error loss function (20). Then as c → 0

E(N) = n∗ +
1
2

+ o(1). (26)

Proof The stopping rule N in (23) can be written as

N = inf {n ≥ m; Zn ≥ n∗} ,

where Zn = n
h(X̄n)
h(θ) = ng(Ȳn), in which g(x) = ex. Note that the function g(x) is convex and

E[{g(Y1)}+]3 = E{eY1}3 = e−3θMX(3) = e16.08θ < ∞,

where MX(t) denotes the moment generating function of the Poisson distribution. Thus from Proposition 5 of

Aras and Woodroofe [2] (A1) and (A2) hold. Substituting α and 	 from (24) and ρ from (25) in Theorem 1
gives

E(N) = n∗ +
1
2

+ o(1),

as c → 0. �

We need the following two lemmas to obtain the regret RN − 2cn∗ of the sequential point estimation of

the probability of zero in Poisson distribution i.e., γ(θ) = e−θ . Let M stand for a generic positive constant not
depending on c and let c0 > 0 be a constant such that n∗ ≥ 1.

Lemma 1 Let q ≥ 1 . Consider sequential point estimation of the function γ(θ) = e−θ with corresponding

stopping rule N in (23). The following results are satisfied:
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(i)
{(

N
n∗

)−q
, c > 0

}
is uniformly integrable.

(ii) If m > q , then
{(

N
n∗

)q
, 0 < c ≤ c0

}
is uniformly integrable.

Proof Part(i): It’s enough to show E[sup
c>0

( N
n∗ )−q ] < ∞ . In sequential point estimation of the function

γ(θ) = e−θ , the optimal fixed-sample size is given by n∗ = (A/c)1/2e−θ . According to (23) the stopping rule
N is given by

N = inf
{
n ≥ m; n ≥ (A/c)1/2e−X̄n

}
.

For q ≥ 1 we have (n∗

N
)q ≤ ( eX̄N

eθ )q . On the other hand, sup
c>0

eX̄N ≤ sup
n≥1

eX̄n , since q ≥ 1 and N ≤ n on the

set {n ≥ 1}.
Finally, we have

E[sup
c>0

(
N

n∗ )−q] ≤ e−qθE[sup
c>0

eqX̄N ] ≤ e−qθE[sup
n≥1

eqX̄n ] < ∞,

and the proof of Part (i) is completed.

Part(ii): To show (ii), observe that n∗

N−1 > eX̄N−1

eθ which gives n∗ > (N − 1) eX̄N−1

eθ , on the set {N ≥ m}.
Now we can write

N

n∗ =
N

n∗ I{N>m} +
N

n∗ I{N=m} ≤ N

n∗ I{N>m} +
m

n∗ .

On the other hand,

N
n∗ I{N>m} = {N−1

n∗ + 1
n∗ }I{N>m} ≤ eθe−X̄N−1 + 1

n∗ }I{N>m}

≤ eθe−X̄N−1I{N>m} + 1
n∗ . (27)

Thus we have
N

n∗ ≤ eθe−X̄N−1 I{N>m} +
m + 1

n∗ ≤ eθe−X̄N−1 I{N>m} + m + 1. (28)

According to expression (28) for 0 < c ≤ c0 we have

(
N

n∗ )q ≤ M{(eθe−X̄N−1 )qI{N>m} + (m + 1)q}.

Hence

sup
0<c≤c0

{
( N

n∗ )q
}

≤ M

{
eqθ sup

0<c≤c0

{e−qX̄N−1}I{N>m} + (m + 1)q

}

≤ M
{
eqθ + (m + 1)q

}
< ∞,

since |e−x| ≤ 1, ∀ x > 0. Thus the second assertion holds. �

The next lemma follows from Theorem 2 of Chow et al. [5].
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Lemma 2 Let q ≥ 1 . If
{(

N
n∗

)q
, 0 < c ≤ c0

}
is uniformly integrable, then

{∣∣∣∣∣(n∗)−
1
2

N∑
i=1

(Xi − θ)

∣∣∣∣∣
q

, 0 < c ≤ c0

}

is uniformly integrable.

The following theorem gives the regret RN − 2cn∗ of sequential point estimation of the probability of zero in a
Poisson distribution.

Theorem 4 Consider sequential point estimation of the function γ(θ) = e−θ under weighted squared error loss

function (20). If m > 12, then we have

RN − 2cn∗ = {3
4
θ + 1}c + o(c),

as c → 0.

Proof According to Theorem 2 we must show that conditions (A1), (A2) and (A3) are satisfied. Obviously,

conditions (A1) and (A2) are satisfied using Theorem 3. Thus we must show condition (A3). The second part

of condition (A3) is also satisfied using Remark 1. We shall show the first part of (A3) with u = 3. Choose

a > 1, p > 1 and q = p
p−1 , such that m > 12a . Hölder inequality gives

c−3a
{

E
∣∣X̄N − θ

∣∣12a
}

= E
{∣∣c−1/4(X̄N − θ)

∣∣12a
}

= E

{∣∣∣ eθ/2

A1/4 n∗1/2
(X̄N − θ)

∣∣∣12a
}

≤ ME

{∣∣∣∣n∗

N n∗−1/2 N∑
i=1

(Xi − θ)
∣∣∣∣
12a

}

≤ ME
{
(n∗

N )12aq
}1/q

E

{∣∣∣∣n∗−1/2 N∑
i=1

(Xi − θ)
∣∣∣∣
12ap

}1/p

,

which together with Lemmas 1 and 2 implies

sup
0<c≤c0

{
c−3aE

∣∣X̄N − θ
∣∣12a

}
< ∞.

Thus the first part of condition (A3) is satisfied. Therefore, Theorem 2 with

RN − 2cn∗ = {3
4
θ + 1}c + o(c)

proves Theorem 4. �

5. Simulation study

In order to justify the results of Theorems 3 and 4 in the previous section we shall give brief simulation results.
Monte Carlo simulation is performed to illustrate the behavior and performance of the stopping rule in the
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proposed sequential procedure as c → 0. The results of the Monte Carlo simulation, based on the sequential
rule are summarized in Tables 1, 2 and 3 which show several choices of the parameter θ , namely θ = 0.5, 2

and 5 with corresponding values 0.6065, 0.1353 and 0.0067 for the probability of zero, i.e., γ(θ) = e−θ . Since
the cost c is sufficiently small in our theorems, the values of c are chosen such that n∗ = 50, 75, 100 and 200.
The pilot sample size is set at m = 13 and the values of A are 2, 5 and 10.

The simulation results in Tables 1, 2 and 3 are based on 1,000,000 repetitions by means of the stopping
rule N defined by (23). Each table contains the selected value of c , the optimal fixed sample size n∗ , the

estimate of θ̂ = X̄N and γ(θ̂) = e−X̄N , the average of the stopping time, E(N), the average risk associated

with the stopping time N , RN , the regret RN − 2cn∗ and the values (RN − 2cn∗)/c .

Tables 1, 2 and 3 show that the results of Theorems 3 and 4 are justified. Further, it appears that the

estimates E(θ̂) = E(X̄N ) for θ and E(γ(θ̂)) = E(e−X̄N ) for γ(θ) = e−θ in the three tables are very close to
the true values. Therefore, our sequential procedure seems to be effective and useful. From Tables 1, 2 and 3,
we see that the expected stopping time E(N) is very close to the optimal fixed sample size n∗ and is uniformly
larger than the optimal stopping time n∗ . That is, the suggested procedure requires larger sample sizes than the
fixed-sample procedure. We also observe that as the optimal fixed sample size n∗ becomes larger, the average
risk RN and the regret RN − 2cn∗ tend to zero. Also, the average risk under stopping time N decrease as

c → 0. As c → 0, the quantity RN−2cn∗

c become close to 3
4θ + 1, according to Theorem 4.

Table 1. Simulation results for sequential point estimation of the probability of zero in a Poisson distribution, with

A = 2 and m = 13.

θ = 0.5
n∗ c θ̂ exp(θ̂) E[N ] RN RN − 2cn∗ RN−2cn∗

c

50 2.94×10−4 0.509946 0.603712 50.398 0.029796 3.66×10−4 1.24349
75 1.31×10−4 0.506830 0.604499 75.392 0.019784 1.65×10−4 1.25795
100 7.35×10−5 0.504701 0.605238 100.419 0.014809 9.41×10−5 1.27829
200 1.84×10−5 0.502743 0.605636 200.337 0.007382 2.43×10−5 1.30479

θ = 2
50 1.46×10−5 2.64650 0.132386 49.976 1.51×10−3 4.38×10−5 2.9938
75 6.51×10−6 2.02870 0.133510 75.044 9.96×10−4 1.89×10−5 2.9083
100 3.66×10−6 2.02160 0.133904 100.048 7.42×10−4 9.34×10−6 2.5522
200 9.16×10−7 2.01080 0.134581 199.949 3.68×10−4 2.27×10−6 2.4868

θ = 5
50 3.63×10−8 5.13570 0.006354 48.702 3.81×10−6 1.84×10−7 5.0726
75 1.61×10−8 5.09410 0.006454 73.385 2.51×10−6 7.98×10−8 4.9421
100 9.08×10−9 5.06230 0.006550 98.775 1.85×10−6 4.35×10−8 4.7912
200 2.27×10−9 5.02890 0.006639 198.651 9.18×10−7 1.08×10−8 4.7423
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Table 2. Simulation results for sequential point estimation of the probability of zero in a Poisson distribution, with

A = 5 and m = 13.

θ = 0.5
n∗ c θ̂ exp(θ̂) E[N ] RN RN − 2cn∗ RN−2cn∗

c

50 7.36×10−4 0.510370 0.603455 50.3738 0.074440 8.66×10−4 1.17775
75 3.27×10−4 0.506368 0.604753 75.424 0.049454 4.04×10−4 1.23420
100 1.84×10−4 0.505274 0.604887 100.367 0.037026 2.39×10−4 1.29821
200 4.59×10−5 0.502572 0.605741 200.369 0.018454 6.18×10−5 1.34410

θ = 2
50 3.66×10−5 2.04610 0.132440 49.972 3.77×10−3 1.11×10−4 3.0396
75 1.63×10−5 2.02930 0.133418 74.9944 2.49×10−3 4.46×10−5 2.7401
100 9.16×10−6 2.02211 0.133820 99.937 1.85×10−3 2.40×10−5 2.6212
200 2.29×10−6 2.01047 0.134619 199.990 9.22×10−4 5.79×10−6 2.5301

θ = 5
50 9.08×10−8 5.13750 0.006342 48.617 9.49×10−6 4.11×10−7 4.5269
75 4.04×10−8 5.09150 0.006467 73.528 6.24×10−6 1.85×10−7 4.5921
100 2.27×10−8 5.06475 0.006538 98.581 4.65×10−6 1.06×10−7 4.6513
200 5.68×10−9 5.02780 0.006647 198.866 2.30×10−6 2.68×10−8 4.7212

Table 3. Simulation results for sequential point estimation of the probability of zero in a Poisson distribution, with

A = 10 and m = 13.

θ = 0.5
n∗ c θ̂ exp(θ̂) E[N ] RN RN − 2cn∗ RN−2cn∗

c

50 1.47×10−3 0.510120 0.603611 50.391 0.149218 0.062067 1.40510
75 6.54×10−4 0.507307 0.604204 75.353 0.098921 8.20×10−4 1.25352
100 3.68×10−4 0.504720 0.605229 100.419 0.074109 5.09×10−4 1.38190
200 9.19×10−5 0.502538 0.605758 200.377 0.036885 1.25×10−4 1.36218

θ = 2
50 7.33×10−5 2.04660 0.132394 49.957 0.007553 2.27×10−4 3.1005
75 3.26×10−5 2.02919 0.133445 75.011 0.004977 9.31×10−5 2.8606
100 1.83×10−5 2.02108 0.133952 100.020 0.003711 5.09×10−5 2.7832
200 4.58×10−6 2.01062 0.134603 199.972 0.001844 1.18×10−6 2.5802

θ = 5
50 1.82×10−7 5.13620 0.006349 48.671 1.91×10−5 9.26×10−7 5.1012
75 8.08×10−8 5.09389 0.006450 73.335 1.25×10−5 4.03×10−7 4.9912
100 4.54×10−8 5.06430 0.006540 98.633 9.30×10−6 2.20×10−7 4.8502
200 1.14×10−8 5.02597 0.006658 199.197 4.59×10−6 5.35×10−8 4.7112
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