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Abstract: The IP-graph of a naturally valenced association scheme and some of its properties have been studied recently.

In this paper we introduce the bipartite version of this graph for a naturally valenced association scheme (X, S) , denoted

by BIP(S) . We also investigate some of its properties.
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1. Introduction

Let G be a group acting transitively on a set X such that all subdegrees are finite. Isaacs and Praeger introduced
the concept of the common divisor graph of (G, X) in order to study the relations among all subdegrees of

(G, X). They investigated the connectivity of this graph. The main result in [5] deals with the number of
connected components of the graph, and the diameter of each connected component. They proved that the
common divisor graph of (G, X) has at most two nontrivial components. If (G, X) has only one nontrivial
component, then the diameter of that component is at most four, otherwise one of these components is a
complete graph and the other has diameter at most two. The common divisor graph of (G, X) is called an

IP -graph of (G, X) due to Neumann [7]. The common divisor graph of (G, X) is also studied by Kaplan [6].

Other related research can be found in [1].

Let G be a group acting transitively on a set X such that all subdegrees are finite. Actually this action
of G on X induces a naturally valenced association scheme S on X . By the motivation of the common divisor
graph of (G, X), Camina [2] introduced the IP-graph of a naturally valenced association scheme. The common

divisor graph of (G, X) is the IP-graph of the naturally valenced association scheme (X, S) arising from the

action of G on X . Under a very strong assumption that all paired valencies are equal R. Camina [2] proved

that the main results in [5] are also true for the IP-graph of a naturally valenced association scheme whose

paired valencies are equal. However, the common divisor graph of (G, X) defined in [5] does not satisfy this
assumption.

Later, Xu [8] studied the IP-graph of a general naturally valenced association scheme. He proved similar
results for the IP-graph of any naturally valenced association scheme, without the assumption that all paired
valencies are equal, generalized results in [2, 5, 6]. Since an arbitrary naturally valenced association scheme

may not arise from a transitive action of a group on a set (for example direct products and wreath products can
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be used to construct new association schemes that do not arise from groups), then we should note that most

results in [5] are not true for naturally valenced association schemes.

Let G = (X, E) be a graph, where X is a non-empty set of positive integers. The bipartite version of G ,

BG , is a bipartite graph with vertex set the disjoint union of ρ(X) and X , where ρ(X) is the set of all primes

dividing the elements of X and two distinct vertices p ∈ ρ(X) and x ∈ X are joined by an edge whenever p

divides x .
In this paper we introduce the bipartite version of IP(S) for a naturally valenced association scheme

(X, S). We also prove similar results to the results in [2, 5, 6] for the BIP-graph of a naturally valenced
association scheme. Theorem 5 and Theorem 6 are the main theorems of this paper so that we talk about
invariants such as the number of connected components, the diameter of each component, and also the girth of
the IP-graph of a naturally valenced association scheme.

2. Preliminaries
In this section we give some required notations and definitions. For this section the fundamental reference
is [10]. First let us begin with the definition of an association scheme.

Definition 1.[Association Scheme] Let X be a set and S be a partition of X × X . Then S is called an
association scheme on X if the following properties hold.

(i) 1X ∈ S , where 1X = {(x, x)| x ∈ X} . We simply denote it by 1 .

(ii) For any s ∈ S , s∗ = {(y, z)|(z, y) ∈ s} is also in S .

(iii) For any p, q, r ∈ S , there exists a cardinal number apqr such that for any (y, z) ∈ r , we have |{x ∈
X| (y, x) ∈ p and (x, z) ∈ q}| = apqr , where the numbers apqr are called structure constants of S .

From [2] we have the following definition.

Definition 2. Let (X, S) be an association scheme. For any x ∈ X and s ∈ S , define xs as the set

xs = {y ∈ X| (x, y) ∈ s}.

Then we note that the equation in the last property in Definition 1 can be written as |yp ∩ zq∗| = apqr .

Definition 3. For any s ∈ S , valency of s is defined as ns = ass∗1 .

Recall that for each x ∈ X , ns = |xs| , the cardinality of the set xs . If for any s ∈ S, ns is finite, then (X, S)
is called a naturally valenced association scheme.

Note that there may exist s ∈ S such that ns �= ns∗ .

If for all s ∈ S, ns = ns∗ , then we say that paired valencies are equal. Also an element s ∈ S is called a
thin element of S if ns = 1.

Since n1 = 1, then 1X is a thin element of S . There may also exist s ∈ S such that s is a thin element
but s∗ is not thin. Examples of these types of elements can be found in [5]. However, if X is a finite set, then
for any s ∈ S, ns = ns∗ ; hence s is thin if and only if s∗ is also thin.

Let G be a group acting transitively on X . Then G acts on X×X by g(x, y) := (gx, gy), for any g ∈ G

and any x, y ∈ X . Let S be the set of all orbits of G on X ×X . Then (X, S) is an association scheme arising
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from the action of G on X . Let Gx denote the stabilizer of x ∈ G . Then {xs : s ∈ S} is the set of all orbits

of Gx on X . From [5] we can give the definition of subdegree.

Definition 4. Let G be a group acting transitively on X , and (X, S) be the related association scheme. For

any s ∈ S , valency ns = |xs| is called a subdegree of (G, X) .

So the set of valencies of elements in S and the set of subdegrees of (G, X) are exactly the same. Note that 1

is always a subdegree of (G, X).

Now we introduce the definition of the IP-graph of a naturally valenced association scheme from [2].

Definition 5. Let (X, S) be a naturally valenced association scheme. The IP-graph of S , denoted by IP(S) ,

is an undirected graph with vertex set {ns : s ∈ S} such that two distinct vertices nr and ns are joined by an
edge if they are not coprime.

The concept of the IP-graph of a naturally valenced association scheme is a generalization of the notion of
common divisor graph of a group acting transitively on a set with all subdegrees finite. In the case where
all subdegrees of (G, X) are finite we have the following definition. The common divisor graph related to

subdegrees of a group action is defined in [5] as follows.

Definition 6. Let G be a group acting transitively on a set X such that all subdegrees of (G, X) are finite.

Let D be the set of all subdegrees of (G, X) . Common divisor graph of (G, X) is an undirected graph with
vertex set D such that two distinct subdegrees m and n are joined by an edge if and only if m and n are not
coprime.

Let (X, S) be the naturally valenced association scheme arising from the action of G on X . Then the

common divisor graph of (G, X) is the IP-graph of S . For any p ∈ S , the component of IP(S) that has the

vertex np is denoted by C(np). If the component C(np) has infinitely many vertices, then we say that C(np)

is infinite. Since n1 = 1, the component C(n1) is a trivial component.

For any p ∈ S such that np = 1, the vertex np of IP(S) is called a trivial vertex.

Isaacs and Praeger [5] (Theorem A) proved that the common divisor graph of (G, X) has at most

two nontrivial connected components. R. Camina [2] generalized this result to a class of naturally valenced

association schemes and proved that, for a naturally valenced association scheme (X, S) with paired valencies

equal, IP(S) has at most two connected components (not including the trivial component C(n1)). Then Xu [8]

generalized results of both Isaacs and Praeger [5] and Camina [2].

Definition 7. [10] Let (X, S) be an association scheme. For any subset P ⊆ S , define P ∗ = {s∗|s ∈ P } . For
any P, Q ⊆ S , define

PQ = {r ∈ S| there exists p ∈ P and there exists q ∈ Q such that apqr �= 0}.

A nonempty subset T ⊆ S is called closed if T ∗T ⊆ T . The thin radical of S is defined as the set

Oυ(S) = {s ∈ S|ns = 1}.

If the thin radical is a closed subset of S , then we say that (X, S) is an association scheme with closed thin
radical.
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We should note that there are some examples of thin radicals which are not closed [5] (Section 5). If the thin
radical is not a closed subset of S , then there exists p ∈ S such that np > 1 but np∗ = 1.

Let G be a group acting transitively on a set X such that all subdegrees are finite, and let (X, S) be
the naturally valenced association scheme arising from the action of G on X . Then we have the following fact.
The thin radical Oυ(S) is not a closed subset of S if and only if the subdegree 1 is paired with some subdegree

m > 1. Isaacs and Praeger [5] proved that if the subdegree 1 is paired with some subdegree m > 1, then the

common divisor graph of (G, X) has just one nontrivial component, and the diameter of that component is at

most three. Xu in [8] (Theorem 1.2) generalized this result and proved the following.

Theorem 1. If (X, S) is a naturally valenced association scheme whose thin radical Oυ(S) is not a closed

subset of S , then the graph IP(S) has just one nontrivial component C(np) such that np > 1 but np∗ = 1 .

Furthermore, the nontrivial component C(np) is infinite, and the diameter of C(np) is at most three.

Also Isaacs and Praeger [5] proved the following results.

(i) If the common divisor graph of (G, X) has just one nontrivial component, the component has diameter
at most 4.

(ii) If the common divisor graph of (G, X) has two nontrivial components, one of these is a complete graph
and the other has diameter at most 2.

The statement of the first part of the above theorem, however, would allow the nontrivial component
of the common divisor graph of (G, X) to have diameter 4, but the authors have been unable to determine
whether an example with diameter 4 actually exists or not.

Let G be a group acting transitively on a set X such that all subdegrees are finite. The common divisor
graph of (G, X) is called stable if any two paired subdegrees m and m∗ lie in the same component [6].

Definition 8. The graph IP(S) is called stable if for any p ∈ S , np and np∗ lie in the same component.

Note that if the graph IP(S) is stable, then the thin radical Oυ(S) is a closed subset of S .

Theorem 2. [8] (Theorem 5.2) Let (X, S) be a naturally valenced association scheme such that the graph IP(S)
has two nontrivial components. Assume that there exists p ∈ S , such that np > 1 and np∗ is not a vertex of

the component C(np) . Then the following hold.

(i) Both components of C(np) and C(np∗) of IP(S) are infinite.

(ii) For any s ∈ S such that ns �= ns∗ , one of the vertices ns and ns∗ lies in the component C(np) , and the

other vertex lies in the component C(np∗) .

(iii) If there exists s ∈ S such that ns = ns∗ > 1 , then only one of the components C(np) and C(np∗) contains

such vertices.

(iv) If ns �= ns∗ for any s ∈ S with ns > 1 , then both components C(np) and C(np∗) are complete graphs. If

there exists s ∈ S such that ns = ns∗ > 1 , then one of the components C(np) and C(np∗) that contains

such vertices has diameter at most two, and the other component is a complete graph.
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Definition 9. Let (X, S) be a naturally valenced association scheme, and p ∈ S . If np > 1 and np ≤ ns for

any s ∈ S such that ns �= 1 , then np is called a minimal vertex of the graph IP(S) .

Xu proved the following theorem in [8] (Theorem 5.3).

Theorem 3. Let (X, S) be a naturally valenced association scheme such that the graph IP(S) is stable and

has two nontrivial components. Let p ∈ S such that np is the minimal vertex of the graph IP(S) , and let q ∈ S

such that nq > 1 is not a vertex of the component C(np) . Then the following hold.

(i) The component C(nq) is a complete graph.

(ii) For any r ∈ S such that nr is a vertex of the component C(np) , we have that nr = nr∗ , and nr is less

than the greatest common divisor of the vertices (integers) in the component C(nq) .

(iii) The component C(np) has a maximal vertex nt , i.e. nt > ns for any other vertex ns of C(np) .

Furthermore, the maximal vertex nt is adjacent to any other vertex of C(np) . In particular, the component

C(np) has diameter at most two.

By using Theorem 2 and Theorem 3, Xu [8] (Theorem 1.3) proved the second part of the following theorem.

Theorem 4. Let (X, S) be a naturally valenced association scheme such that the thin radical Oυ(S) is a closed
subset of S . Then we have

(i) If IP(S) has only one nontrivial component, then the diameter of that component is at most 5 ;

(ii) If IP(S) has two nontrivial components. One of them has diameter at most two and the other one is a
complete graph.

For this case, some examples can be found in [5, 6]. Throughout this paper, when the graph IP(S) has the

properties of the second part of Theorem 4, we denote the complete component by C(nq) and the component

which has diameter at most two with C(np).

By d(np, nq) we denote the distance between vertices np and nq . Thus,

d(np, nq) =

{
0 ifnp = nq,

∞ ifnp and nq do not lie in the same component.

Furthermore, the greatest common divisor of the two integers np and nq is denoted by (np, nq). So for any

two distinct vertices np and nq , d(np, nq) ≥ 2 if and only if (np, nq) = 1.

Remark 1. Suppose that X is a set of positive integers. By X∗ we mean X \ {1} . Let G be a finite group
acting transitively on a set X . By Gx we mean the stabilizer of the element x ∈ X in G . The concept of the
prime vertex graph Δ(Z) , the common divisor graph Γ(Z) and the bipartite divisor graph B(Z) for a set Z ,

which is a set of integers, has been defined in [4]. So throughout this paper by Δ , Γ and B we mean graphs

related to a set. Also by [8] we know that IP(S) has a trivial component, but throughout this paper we do not
consider this trivial component. By Pn , Cn and Kn we mean a path of length n , a cycle of length n and
a complete graph on n vertices, respectively. Suppose that T is a graph. By n(T ) we mean the number of
connected components of T . By girth of the graph T , we mean the length of the shortest cycle in T and we
denote it by g(T ) . If the graph does not have any cycle, then we write g(T ) = ∞ .
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3. Some results about the girth of IP-graph

In this section we discuss the girth of an IP-graph.

Theorem 5. Let (X, S) be a naturally valenced association scheme. If IP(S) has a cycle and if Oυ(S) is not

closed or IP(S) has at least two nontrivial components, then we have g(IP(S)) ≤ 5 .

Proof First suppose that Oυ(S) is not closed. By Theorem 1, we know that IP(S) has only one nontrivial

component C(np) which is infinite. If C(np) is complete then g(IP(S)) = 3. Since IP(S) has a cycle, it can

not be a star graph. So we may find a path of length three in the graph IP(S) in the following form

ns − nt − nr − nq (I).

Here we have two distinct cases. First suppose that np is not a vertex of the path (I). By [8] (Lemma 4.2),

we know that d(np, ns) ≤ 2 and d(np, nt) ≤ 2. So there exist two elements nk, nl ∈ S such that np − nk − ns

and np − nl − nt are two paths of length two. Now np − nk − ns − nt − nl − np is a cycle of length five. Now

suppose that np is a vertex of the path (I). We have the following cases.

(i) np = ns . By [8] (Lemma 4.2) we have d(np, nq) ≤ 2, so there exists a vertex nj which is adjacent to

both np and nq . It is easy to see that np − nj − nq − nr − nt − np is a cycle of length five.

(ii) np = nt . First suppose that the degree of nq is at least two. Then there exists l ∈ S , such that

d(nq, nl) = 1. By [8] (Lemma 4.2) we have d(np, nl) ≤ 2, so there exists k ∈ S such that np − nk − nl is

a path in C(np). Now we can see that there is a cycle of length five in C(np).

Now suppose that nq is a vertex of degree one. We have two cases here:

First suppose that ns is a vertex of degree at least two. Suppose that ns is adjacent to a vertex say
nu �= np and u ∈ S . Since by Theorem 1 diam(C(np)) ≤ 3 , there must be a path of length three between

nq and nu . As nq is a vertex of degree one, so there must be a path of length two say

nu − nh − nr

such that h ∈ S . Now we can find a cycle of length five.

So suppose that ns is also a vertex of degree one. Remember that since C(np) is infinite and connected,

there are always infinitely many vertices which have paths to np or nr . Now if np and nr are only

adjacent to vertices of degree one, then C(np) is acyclic, which contradicts our assumption, so at least
one of them is adjacent to a vertex of degree more than one. In each case, as previously, we can find a
cycle of length five in C(np).

Now suppose that Oυ(S) is closed and IP(S) has two nontrivial components. If IP(S) is not stable, then by

Theorem 2, both components of IP(S) are infinite. By Theorem 4 one of these components is a complete

graph, so we conclude that g(IP(S)) = 3. Now suppose that IP(S) is stable. By Theorem 3 we know that
one of these components is a complete graph Km and the other one has diameter at most two. If m ≥ 3, then
g(IP(S)) ≤ 3, otherwise by the assumption we have a cycle of the following form in the other component

nt1 − nt2 − nt3 − nt4 − ...− ntm − nt1 .
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We claim that m ≤ 5. Since the diameter of this component is at most two, so d(nt1 , nt4) ≤ 2. Hence there
exists an element i ∈ S such that nt1 − ni − nt4 is a path of length two. Then we can see that we have a cycle

of length five, so g(IP(S)) ≤ 5. �

Suppose that Oυ(S) is a closed subset of S and IP(S) has just one nontrivial component. By Theorem

4, the diameter of that component is at most five. If the graph IP(S) has a cycle, we can be sure that the
length of this cycle is at most ten, so here we may ask the following question.

Question 1. Suppose that Oυ(S) is a closed subset of S and IP(S) has just one nontrivial component. If

IP(S) has a cycle, then what can we say about the girth of this graph?

4. BIP-graph and some of its properties

Throughout this section we suppose that (X, S) is a naturally valenced association scheme. First we introduce
the bipartite version of the IP-graph and investigate connectivity of this graph. The main result deals with
some invariants such as the number of connected components, the diameter and also the girth of each one.

Definition 10. Let (X, S) be a naturally valenced association scheme. The bipartite version of IP(S) , denoted

by BIP(S) , is an undirected bipartite graph with vertex set ρ(Y )∪̇Y , where Y = {ns|s ∈ S, ns �= 1} and ρ(Y )

is the set of all primes dividing the elements of Y such that two distinct vertices p ∈ ρ(Y ) , ns ∈ Y are joined
by an edge whenever p divides ns .

Example 1. Let X = {x1, x2, x3, x4} , and G =< (x1x2x3x4) > be a cyclic group of order four, in which

G acts on X , transitively. Let δ, γ, φ be the orbitals of G on X × X containing (x1, x2) , (x1, x3) , (x1, x4) ,
respectively. Then we have

δ = {(x1, x2), (x2, x3), (x3, x4), (x4, x1)};
γ = {(x1, x3), (x2, x4), (x3, x1), (x4, x2)};
φ = {(x1, x4), (x2, x1), (x3, x2), (x4, x3)};

and I is the diagonal orbital of G . Now we have

nδ = |x1δ| = |{x2}| = 1;

nγ = |x1γ| = |{x3}| = 1;

nφ = |x1φ| = |{x4}| = 1.

So in this case BIP(S) has only a trivial component.

Example 2. Let X be the set of all ordered pairs of m elements, m ≥ 2 , and let G be the wreath product
Sm 
 S2 of the symmetric groups of degree m and two. Then G acts on X as a permutation group with rank
three. We may easily see the set of the valencies of the association scheme arising from this action and it is

{k = 2(m − 1), l = (m − 1)2} . So in this case BIP(S) is a connected graph with diameter at most three. Now

let m = 16 , then BIP(S) has the following form

2 − 30 − 3 − 225 − 5 − 30.

Clearly diam(BIP(S)) = 3 , and g(BIP(S)) = 4 .
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Theorem 6. We have the following cases for BIP(S) .

(i) BIP(S) is a connected graph with diameter at most 12 ;

(ii) BIP(S) is a disconnected graph with two components. One of them has diameter at most four and the
other one has diameter at most six.

Proof First suppose that Oυ(S) is not a closed subset of S . By Theorem 1 IP(S) has only one non-trivial

component with diameter at most three. By [4] we have n(BIP(S)) and n(IP(S)) have equal size one, so

BIP(S) is connected. Let Y = {ns|s ∈ S, ns �= 1} . By [4] we have the following two cases.

1. diam(BIP(S)) = 2 max{diam(IP(S)), diam(Δ(Y ))} ;

2. diam(BIP(S)) = 2 diam(IP(S)) + 1.

Now let p, q be two distinct elements of ρ(Y ), so there exist elements ns, nt of Y such that p divides ns and

q divides nt . Since diam(IP(S)) ≤ 3, so dIP(S)(ns, nt) ≤ 3. Therefore there exists a path of length at most

three between these elements in IP(S). By [4] (Lemma 1(d)) we can see that diam(Δ(Y )) ≤ 4 and we have
the following cases

1. diam(BIP(S)) ≤ 2 max{3, 4}, so diam(BIP(S)) ≤ 8;

2. diam(BIP(S)) ≤ 7.

Suppose that Oυ(S) is a closed subset of S . By [8] (Theorem 1.1), we have two different cases. First suppose

that IP(S) has just one nontrivial component. By Theorem 4 the diameter of this component is at most five.

By [4] we have n(BIP(S)) = n(IP(S)) = 1, so BIP(S) is connected. Similar to the previous argument we

conclude that diam(BIP(S)) ≤ 12.

Now suppose that IP(S) has two nontrivial components. By Theorem 4 one of them is a complete graph

and the other has diameter at most two. We denote them by C(nq), C(np), such that C(nq) is a complete

graph and C(np) has diameter at most two. As before, by [4] n(BIP(S)) = n(IP(S)) = 2, so BIP(S) is

disconnected with two components say Tq , Tp . Tq is a bipartite graph with vertex set ρ(V (C(nq)))∪̇V (C(nq))

and Tp is a bipartite graph with vertex set ρ(V (C(np)))∪̇V (C(np)). Now we check the diameter of Tq, Tp . Let

V1 = V (C(nq)), and V2 = V (C(np)). Let p ∈ ρ(V1), nl ∈ V1 . Then there exists nk ∈ V1 such that p divides

nk . Since C(nq) is complete, then nl, nk is an edge in IP(S). So there exists q ∈ ρ(V1) that q divides (nl, nk).

Now p − nk − q − nl is a path in Tq , and d(p, nl) ≤ 3. Let p, q ∈ ρ(V1). Then there are nl, nk ∈ V1 that

p divides nl , q divides nk . Since C(nq) is complete, by the above argument, we conclude that d(p, q) ≤ 4.

Also for each two elements of V1 there is a path of length two between them, so diam(Tq) ≤ 4. Let p ∈ ρ(V2),

nl ∈ V2 , so there is nk ∈ V2 that p divides nk . Since dIP(S)(nl, nk) ≤ 2, so d(p, nl) ≤ 5. For each two elements

of V2 say ns, nt , we may find a path of length four between them. Also for p, q ∈ ρ(V2) we have d(p, q) ≤ 6.

Hence diam(Tp) ≤ 6. �

Let (X, S) be an association scheme, and T a closed subset of S . By [10] (Lemma 2.1.4(b)), we conclude

that {xT |x ∈ X} is a partition of X . Let X/T = {xT |x ∈ X}. For any s ∈ S , let us define

sT = {(yT, zT )|z ∈ yTsT}, and S//T = {sT |s ∈ S}.
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Thus, for any s ∈ S and any y, z ∈ X , (yT, zT ) ∈ sT if and only if (y, z) ∈ TsT . If S is a naturally valenced

association scheme and T is a finite closed subset of S , then by [10] (Theorem 4.1.3), S//T is an association

scheme on X/T , and for any p, r ∈ S , we have npT = nT pT

nT
. The association scheme (X/T, S//T ) is called

quotient scheme of S over T .

By [9] (Lemma 3.6), we have the following hypothesis.

Hypothesis 1. Assume that the graph IP(S) is stable and has two non-trivial components. If T = {s ∈ S|ns =

1}⋃{s ∈ S|ns ∈ V (C(np))}, where p ∈ S such that np is the minimal vertex of the graph IP(S) , then T is a
closed subset of S .

Theorem 7. Suppose that IP(S) and T are given as in Hypothesis 1, nT < ∞ and for each s ∈ S \ T , nT

divides |TsT | . Then BIP(S//T ) has only one non-trivial component which has diameter at most four.
Proof It is clear that for any s ∈ T , nsT = 1. Now suppose that r, s ∈ S \T such that nsT �= 1 and nrT �= 1.

Since s ∈ S \ T , by [9] (Corollary 3.9), for any r ∈ TsT , nr = ns . Now we have

nTsT =
∑

p∈TsT

np =
∑

p∈TsT

ns = ns|TsT |.

In a similar way we conclude that nTrT = nr|TrT | . If nr, ns are not coprime, by the hypothesis we conclude

that nsT and nrT are not coprime. So these two vertices are adjacent in the graph IP(S//T ). By the definition

of T we conclude that IP(S//T ) has only one non-trivial component which is a complete graph, so BIP(S//T )
has only one non-trivial component which has diameter at most four. �

Remark 2. From [4] we know that

(i) If B contains a cycle C which has length more than four, then Γ has a cycle and we have g(Γ) = 3

or g(Γ) = 1
2
g∗(B) , where g∗(B) denotes the length of a cycle with minimum length and more than four

vertices;

(ii) At least one of Δ or Γ has a triangle if and only if B has C6 or K1,3 ;

(iii) Both Γ, Δ are acyclic if and only if each component of B is a path or a cycle of length four;

(iv) Both Γ, Δ are trees if and only if B is a path.

So the following hold;

(i) If BIP(S) has a cycle of length more than 4 , then IP(S) has a cycle and g(IP(S)) = 3 or g(IP(S)) =
1
2g

∗(BIP(S)) ;

(ii) If IP(S) has a triangle then BIP(S) has C6 or K1,3 (the inverse does not necessarily hold);

(iii) If each component of BIP(S) is a path or C4 , then IP(S) is acyclic;

(iv) If BIP(S) is a path, then IP(S) is a tree.
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Example 3.(Johnson Scheme)

Let X be the set of all two-element subsets of {1, 2, 3, . . . , m}, m ≥ 4 . The symmetric group G = Sm acts

on X as a transitive permutation group. If x = (a, b) ∈ X , then Gx has precisely two orbits on X \ {(a, b)} ,
namely

λ(x) = {(a, c) : c �= a, b} ∪ {(b, c) : c �= a, b} and η(x) = {(c, d) : c, d �= a, b}.

Let m = 5 ,and x = (1, 2) . In this case BIP(S) is isomorphic to P3 , so by the last part of Remark 2, we

conclude that IP(S) is a tree.

Corollary 1. Let (X, S) be the naturally valenced association scheme. Then BIP(S) contains C6 , or K1,3 if

one of the following cases holds:

(i) Oυ(S) is a closed subset of S , IP(S) is not stable, and contains two nontrivial components;

(ii) Oυ(S) is a closed subset of S , IP(S) is stable, and contains two nontrivial components, such that the
complete component is Km , m ≥ 3 ;

(iii) Oυ(S) is not a closed subset of S , IP(S) contains just one nontrivial component say C(np) , such that

ns is the only neighbor of np , and there exist two vertices other than np, ns in C(np) , such that they are
adjacent.

Proof By Remark 2, we know that if IP(S) has a triangle, then BIP(S) contains C6 or K1,3 . So it is enough

to find a triangle in IP(S) in each case. In the first case, since IP(S) is not stable, so there exists p ∈ S , such

that np∗ is not a vertex of the component C(np). Since IP(S) has two nontrivial components, by Theorem

2, both components of IP(S) are infinite. Since one of them is a complete graph, we have a triangle. In the

second case since m ≥ 3, it is trivial. Finally in the last case, by using the assumption and also [8] (Lemma

4.2), we can see there exists a triangle in IP(S). �

Let G1 and G2 be two groups that act transitively on sets X1 , and X2 , respectively. Suppose that D1 ,
D2 and D are the sets of subdegrees related to G1 , G2 and G1 × G2 , respectively. Let S1 , S2 and S be the
sets of valencies of G1 , G2 and G1 × G2 , respectively. Since D = D1D2 = {uv|u ∈ D1, v ∈ D2} , so D is the

product of two sets of positive integers, now by [3] we have the following properties:

(i) BIP(S) is always connected and diam(BIP(S)) ≤ 6;

(ii) IP(S) is connected and diam(IP(S)) ≤ 3;

(iii) g(BIP(S)) = 4 if one of the following conditions holds:

(a) BIP(S1) has a cycle and |D∗
2 = D2 \ {1}| ≥ 1;

(b) BIP(S) is connected , |D∗
1 = D1 \ {1}| ≥ 2, and there exists q ∈ ρ(D2) \ ρ(D1);

(c) Both BIP(S1), BIP(S2) are acyclic and disconnected, such that there is a component of BIP(S1),

which has at least three vertices (or on the other hand contains P2 which is a path of length two).

Example 4. Let H be a nonabelian group of order pq , where p and q are primes, and p �= q . This group
has conjugacy class sizes 1, p, q . By the discussion in [5] (Section 1), it follows that D = {1, p, q} occurs as a

subdegree set (for the semidirect product H � H with conjugation action). Now let r be a different prime from

p, q . The set {1, r} occurs as a subdegree set in any group having a non-normal subgroup of order r . It follows
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that the product set {1, p, q}.{1, r} = {1, p, q, r, pr, qr} occurs as a subdegree set. This provides an example of
BIP -graph, which is acyclic and has diameter 6 .
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