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Abstract: In this paper we consider the product of all elements in the group of units in a finite ring and we generalize

Wilson’s theorem to finite rings. As an application, we study some generalizations of Wilson’s theorem on residually

finite Dedekind domains. And we also give some examples for such rings. Moreover we study some generalizations of

Wilson’s theorem on rings of matrices over a finite commutative ring.
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1. Introduction

Wilson’s theorem asserts that (p− 1)! ≡ −1 (mod p) for any prime p . C. F. Gauss generalized this theorem as

follows: the product of the positive integers < n and prime to n is congruent modulo n to −1 if n = 4, pk or 2pk ,
where p is an odd prime and k is a positive integer, but to +1 if n is not of one of these three forms (see [2,

p. 65]).

Generalizations of Wilson’s theorem have been extensively studied over several years (cf [1], [5], [8]). In
this paper, we consider the product of all elements in the group of units in a finite ring and we generalize
Wilson’s theorem to finite rings.

We first restate Wilson’s theorem and Gauss’ generalization of Wilson’s theorem in terms of rings and
groups. In fact, these theorems mentioned the product of all invertible elements in some factor ring of the
ring of integers. We classify finite commutative rings in which the product of all invertible elements is not 1
(Theorem 1). As an application, we apply this result to some special class of Dedekind domains and we also

give some examples (Theorem 2). Finally we establish Wilson’s theorem on rings of matrices over a finite ring

(Theorem 3).

2. Some generalizations of Wilson’s theorem

First we restate Wilson’s theorem and Gauss’ generalization of Wilson’s theorem in terms of rings and groups.
Those theorems are considered as results on some factor rings of the ring of integers. To state those, we introduce
some notations. For a ring R , R∗ denotes the group of units in R and J(R) denotes the Jacobson radical
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of R . If G is a finite abelian group, then we denote the product of all elements in G by G! . Then Wilson’s
theorem and Gauss’ generalization can be stated as follows:

Wilson’s Theorem. Let Z denote the ring of integers and p denote a prime number. Then (Z/(p))∗! = −1 .

Gauss’ generalization of Wilson’s Theorem (cf. [2, p.65]). Let Z denote the ring of integers and n denote
a positive integer. Then:

(Z/(n))∗! =

{
−1 if n = 4, pk or 2pk

1 otherwise,

where p is an odd prime, and k is a positive integer.
We first generalize the latter theorem to finite rings. For fundamental results on finite rings, we refer the

reader to McDonald [4].

Proposition 1 Let G be a finite abelian group with identity e. If there is precisely one element a of order 2
in G , then G! = a . Otherwise, G! = e.

Proof Set H = {x ∈ G | x2 = e} . If b ∈ G − H , then b−1 �= b . Hence there are elements a1, . . . , an such

that G is the disjoint union of {a1, a
−1
1 }, . . . , {an, a−1

n } and H . Then we have G! = a1a
−1
1 · · ·ana−1

n H ! = H ! .

If there is precisely one element a of order 2 in G , then H = {e, a} . In this case, we have G! = H ! = a .

Next, suppose that there is no element of order 2 in G . Then there are elements a1, . . . , an such that G

is the disjoint union of {a1, a
−1
1 }, . . . , {an, a−1

n }, {e} . Then we have G! = a1a
−1
1 · · ·ana−1

n e = e .

Finally, suppose that the number of elements of order 2 in G is greater than one. By fundamental theo-
rem of finite abelian groups, G is a finite direct sum of cyclic groups. Hence we can find two abelian subgroups
G1, G2 of G such that G = G1 × G2 and the orders of G1 and G2 are even. Then we can easily see that

G! = G1!|G2| ·G2!|G1| = e . This completes the proof. �

Corollary 1 Let G = {a1, . . . , an} be a finite group with identity e. Let D(G) denote the commutator subgroup

of G . If there is precisely one element aD(G) of order 2 in G/D(G) , then a1 · · ·an ∈ a|D(G)|D(G) . Otherwise,

a1 · · ·an ∈ D(G) .

Lemma 1 Let R be a finite commutative local ring with 1. If R∗ is of odd order, then R is isomorphic to

GF (2k) for some positive integer k .

Proof Since (−1)2 = 1 and since R∗ is of odd order, we conclude −1 = 1, that is 2 = 0. Since R is finite,

J(R) is nilpotent. If the Jacobson radical J(R) of R is nonzero, then there is a nonzero element a ∈ J(R) such

that a2 = 0. Then 1 + a(�= 1) is an invertible element of order 2. This is a contradiction. Hence J(R) = 0,
and so R is a finite field of characteristic 2. �

Theorem 1 Let R be a finite commutative ring. Then R∗! = 1 except cases where R is a direct sum of finitely
many (possibly zero) finite fields of characteristic 2 and one of the following rings:

(A) a finite commutative local ring of characteristic pk , where p is an odd prime and k is a positive
integer;
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(B) Z/(4) ;

(C) Z[x]/(4, 2x, x2− 2) ;

(D) GF(2)[x]/(x2) ;

(E) GF(2)[x]/(x3) .

Proof By fundamental theorem of finite abelian groups, R∗ is a finite direct product of cyclic groups. Assume
that R∗ �= {1} . Hence there are invertible elements a1, . . . , an ∈ R−{1} such that R∗ =< a1 > × · · ·× < an > .
By Proposition 1, R∗! �= 1 if and only if only one < ai > is of even order. Since R is a finite commutative
ring, R is a direct sum of local rings.

So assume that R∗! �= 1 and that R = R1 ⊕ · · · ⊕ Rm , where each Ri is a local ring. Then only one of
the Ri ’s, say R1 , is of even order. By Lemma 1, all R2, . . . , Rm are finite fields of characteristic 2. Since R1

is a finite commutative local ring, characteristic of R1 is pk for some prime p and some positive integer k . If
p is an odd prime, then R1 is of type (A).

Next assume that p = 2. Then R1/J(R1) ∼= GF (2s) for some positive integer s . Since R∗! �= 1, J(R1) �=
0. Suppose k = 1. If J(R1)h �= 0 and J(R1)h+1 = 0. Then J(R1)h = J(R1)h/J(R1)h+1 is a vector space

over GF (2s)(∼= R1/J(R1)), each |J(R1)h| is a power of 2s . More generally, since |J(R1)| = |J(R1)/J(R1)2| ×
· · · × |J(R1)h/J(R1)h+1| and since J(R1)i/J(R1)i+1 is a vector space over GF (2s)(∼= R1/J(R1)) for each

positive integer i , each |J(R1)i/J(R1)i+1| is a power of 2s , and so |J(R1)| = (2s)d for some non-negative

integer d . If s > 1, then J(R1)h contains at least two nonzero elements a and b . In this case, 1 + a and
1 + b are two distinct invertible elements of order 2, a contradiction. Hence we conclude that s = 1 and
so R1/J(R1) ∼= GF (2). Therefore R∗

1
∼= 1 + J(R1) by [6, Theorem XVIII.2]. By the observation above,

|R∗
1| = |1 + J(R1)| = |J(R1)| is a power of 2. R∗

1 has precisely one element of order 2, R∗
1 must be a cyclic

group. In this case, R1 is of type (D) or (E) by [1]. Next suppose that k > 1. Then 1 �= −1, and so −1 is an
invertible element of order 2. Assume that R1 contains a nonzero element a of square zero. Then there is a

positive integer q such that 2q−1a �= 0 and 2qa = 0. Then 1 + 2q−1a is an invertible element of order 2, and

hence 1+2q−1a = −1. Then 2+2q−1a = 0, and hence 2a = −2q−1a2 = 0. Then 1+a is an invertible element

of order 2, and hence 1 + a = −1. Therefore a = −2 and so 4 = a2 = 0. Consequently 4 = 0 and 2 is the

unique nonzero element of square zero. Since (2R1)2 = 0 and 2 ∈ 2R1 , 2R1 = {0, 2} . Since J(R1) is nilpotent,

2R1J(R1) �= 2R1 and so 2R1J(R1) = 0. Hence 2R1(= {0, 2}) is a vector space over GF (2s)(∼= R1/J(R1)).

Then 2 ≥ 2s , and we conclude that s = 1. Thus R1/J(R1) ∼= GF (2), and therefore R∗
1
∼= 1 + J(R1) by [6,

Theorem XVIII.2]. Since |R∗
1| = |1 + J(R1)| = |J(R1)| is a power of 2 and since R∗

1 has precisely one element

of order 2, R∗
1 must be a cyclic group. In this case, R1 is of type (B) or (C) by Gilmer’s result [3, P. 447].

Conversely we shall show that if R = R1 ⊕ · · · ⊕ Rm , where all R2, . . . , Rm are finite fields of char-
acteristic 2 and R1 is of one of types (A)-(E), then R∗! �= 1. First suppose that R1 is of type (A). Then

R1/J(R1) ∼= GF (pt) for some positive integer t . Since J(R1) is nilpotent, by [6, Theorem XXI.5] we have

the exact sequence of groups: 1 → 1 + J(R1) → R∗
1 → (R1/J(R1))∗ → 1. Assume that J(R1)h �= 0 and

J(R1)h+1 = 0. Then |J(R1)| = |J(R1)/J(R1)2| × · · ·× |J(R1)h/J(R1)h+1 | . Since J(R1)i/J(R1)i+1 is a vector

space over GF (pt)(∼= R1/J(R1)) for each positive integer i , each |J(R1)i/J(R1)i+1| is a power of p , and so

|J(R1)| = pd for some non-negative integer d . Since R1/J(R1) ∼= GF (pt), (R1/J(R1))∗ is a cyclic group of

order pt − 1 and |1 + J(R1)| = pd , R∗
1 has precisely one element of order 2, and so R∗

1 �= {1} Next assume

that R1 is of one of types (B)-(E). Then R∗
1 is a cyclic group by Gilmer’s result [3, P. 447], and so R∗

1 �= {1} .
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Hence in any case, we may assume that R∗
1! = a for some unit a of order 2. Since (R2 ⊕ · · ·⊕Rm)∗ is a group

of odd order, we have R∗! = a|(R2⊕···⊕Rm)∗| = a �= 1. �

Remark 1 In (C) of Theorem 1, we have (4, 2x, x2 − 2) = (2x, x2 − 2) , because 4 = −2(x2 − 2) + (2x)x ∈
(2x, x2 − 2) .

3. Application to residually finite Dedekind domains

Gauss’ generalization of Wilson’s theorem is originally a result on the ring of integers. Toward the application
of Theorem 1, we restate the assertion in Theorem 1 on some special class of Dedekind domains. A ring R is
said to be residually finite if R/I is a finite ring for any nonzero ideal I of R . Clearly a ring of polynomials in
one variable over a finite field is residually finite. The ring of algebraic integers in an algebraic number field is
also residually finite by [3, Proposition 12.2.3].

First we state the following lemma without proof.

Lemma 2 Let R be a residually finite Dedekind domain and suppose P is a prime ideal of R such that
R/P ∼= GF (2) . Then the following hold.

(1) R/P 2 is isomorphic to either Z/(4) or GF (2)[x]/(x2) .

(2) R/P 3 is isomorphic to one of the following:

(A) Z/(8) ;

(B) Z[x]/(4, 2x, x2 − 2) ;

(C) GF (2)[x]/(x3) .

By Lemma 2 and Theorem 1, we obtain the following theorem.

Theorem 2 Let R be a residually finite Dedekind domain and let I be a nonzero ideal of R . Then (R/I)∗! �= 1

if and only if I is a finite product of distinct prime ideals P1, P2, . . . , Pn and an ideal S such that each R/Pi

is a finite field of characteristic 2 , Pi + S = R and S satisfies one of the following:

(i) S = Qk for some positive integer k , where Q is a prime ideal such that R/Q is a finite field of
characteristic p �= 2 ;

(ii) S = P 2 where P is a prime ideal of R such that R/P ∼= Z/(4) ;

(iii) S = P 2 where P is a prime ideal of R such that R/P 2 ∼= GF (2)[x]/(x2) ;

(iv) S = P 3 where P is a prime ideal of R such that R/P 3 ∼= GF (2)[x]/(x3) ;

(v) S = P 3 where P is a prime ideal of R such that R/P 3 ∼= Z[x]/(4, 2x, x2 − 2) .

We now give examples for some residually finite Dedekind domains.

Example 1 Consider the polynomial ring R = GF (2)[x] over GF (2) . Then R is a residually finite Dedekind

domain of characteristic 2. Let I be a nonzero ideal of R . Then (R/I)∗! �= 1 if and only if I = (f1(x)f2(x) · · · fn(x)xk)

where f1(x), f2(x), . . . , fn(x) are distinct irreducible polynomials with nonzero constants and k is 2 or 3.
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Example 2 Consider R = Z[ 3
√

2] . Then (R/I)∗! �= 1 if and only if I is one of the following:

(i) I = ( 3
√

2)αP β where α = 0 or 1 , β is a positive integer and P is a prime ideal of R such that

P �= ( 3
√

2) .

(ii) I = (2). In this case, Z[ 3
√

2]/(2) ∼= GF (2)[x]/(x3) and (Z[ 3
√

2]/(2))∗! = 1 + 3
√

2.

4. Wilson’s theorem on rings of matrices over a finite commutative ring

Suppose that n > 1 and consider the ring Matn(GF (q)) of n × n matrices over GF (q). We know that

Matn(GF (q))∗ = GL(n, q). It is well known that the commutator subgroup of GL(n, q) is SL(n, q) unless

n = 2 and q = 2 (see [7, Theorem 8.20]). Since GL(n, q)/SL(n, q) ∼= GF (q)∗ , GL(n, q)/SL(n, q) has

precisely one element of order 2 if and only if q is odd. Let us set m = |GL(n, q)| . It is well known that

m = (qn − 1)(qn − q) · · · (qn − qn−1). Hence |SL(n, q)| = m/(q − 1) = (qn − 1)(qn − q) · · · (qn − qn−2)qn−1

is even, because n > 1. Hence by Corollary 1, if q is odd and if GL(n, q) = {a1, . . . , am} then a1 · · ·am ∈
(−1)|SL(n,q)|SL(n, q) = SL(n, q). If n = 2 and q = 2, then GL(2, 2) = SL(2, 2). Summarizing the above
consideration, we obtain the following:

Proposition 2 Let n be a positive integer greater than 1 and R = Matn(GF (q)) and let R∗ = {a1, . . . , am} .

Then we have det(a1 · · ·am) = 1 in GF (q) .

Remark 2 Let R = Mat2(GF (2)) . Then R∗ = GL(2, 2) = SL(2, 2) ∼= S3 and the commutator subgroup

D(R∗) of R∗ is isomorphic to A3 . Hence R∗/D(R∗) is a cyclic group of order 2. Let us consider concretely.

Let R∗ = {a1, a2, a3, a4, a5, a6} . Then a1 · · ·a6 ∈
{(

0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)}
.

Let us generalize Proposition 2. Let R be a commutative ring, n a positive integer greater than 1, and T

a subring of Matn(R). Consider the restriction of determinant det : Matn(R) → R . to T ∗ , det|T∗ : T ∗ → R∗ .

Then det(T ∗) ∼= T ∗/(Ker(det|T∗) = T ∗/(Ker(det) ∩ T ∗). Hence we have the following:

Lemma 3 Let R be a finite commutative ring, n a positive integer greater than 1, and T a subring of Matn(R) .

Let T ∗ = {a1, · · · , am} . Then det(a1 · · ·am) = (det(T ∗)!)|Ker(det)∩T∗| in R∗ .

Lemma 4 Let R be a finite commutative local ring, and n a positive integer greater than 1. Then |Ker(det)∩
Matn(R)∗| is an even number.

Proof Let J(R) denote the Jacobson radical of R . Then the Jacobson radical of Matn(R) is Matn(J(R)),

and this is nilpotent. Hence by [6, Theorem XXI.5] we have the following exact sequence of groups: 1 → 1 +

Matn(J(R)) → Matn(R)∗ → (Matn(R)/Matn(J(R)))∗ → 1. Since Matn(R)/Matn(J(R)) ∼= Matn(R/J(R)),

|Matn(R)∗| = |Matn(R/J(R))∗||J(R)|n2
. Also considering the exact sequence: 1 → 1 + J(R) → R∗ →

(R/J(R))∗ → 1, we have |R∗| = |(R/J(R))∗||J(R)|. Therefore we have |Ker(det)∩Matn(R)∗| = |Matn(R)∗|/|R∗|
= |Matn(R/J(R))∗||J(R)|n2−1/|(R/J(R))∗| . Now let R/J(R) = GF (q). Then this number equals to

(qn − 1)(qn − q) · · · (qn − qn−1)|J(R)|n2−1/(q − 1) = (qn − 1)(qn − q) · · · (qn − qn−2)qn−1|J(R)|n2−1 . Since
n is greater than 1, this number is even. �
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Theorem 3 Let R be a finite commutative ring, and n a positive integer greater than 1. Let Matn(R)∗ =

{a1, . . . , am} . Then det(a1 · · ·am) = 1 ∈ R∗ .

Proof We know that R is a direct sum of finite local rings, say R = R1 ⊕ · · · ⊕ Rk where each Ri is a local
ring. Let Matn(Ri) = {bi1, bi2, . . . , bim(i)} . Since the order of (det(Matn(Ri)∗))! ∈ R∗

i is less than or equal

to 2, by Lemmas 3 and 4 we obtain det(bi1bi2 · · · bim(i)) = (det(Matn(Ri)∗)!)|Ker(det)∩Matn(Ri)
∗| = 1 in R∗

i .

Therefore det(a1 · · ·am) =
∏

i det(bi1bi2 · · · bim(i))|Matn(R)|∗/|Matn(Ri)
∗| = 1 ∈ R∗ . �
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