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Abstract: We define and study the extended centroid of a prime semiring. We show that the extended centroid is a

semifield and give some properties of the centroid of a right multiplicatively cancellable prime semiring.
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1. Introduction

Semirings abound in the mathematical world around us. Indeed, the first mathematical structure we encounter—
the set of natural numbers—is a semiring. Historically, semirings first appear implicitly in [3] and later in [8],

[6], [10] and [7], in connection with the study of ideals of a ring. They also appear in [4] and [5] in connection
with the axiomatization of the natural numbers and nonnegative rational numbers. Over the years, semirings
have been studied by various researchers either in their own right, in an attempt to broaden techniques coming
from semigroup theory or ring theory, or in connection with applications. In [9] Martindale first constructed

for any prime ring R a “ring of quotients” Q . After, Öztürk and Jun introduced the extended centroid of a
prime Γ-ring and obtained some results in Γ-ring M with derivation which was related to Q , and the quotient
Γ-ring of M [11, 12]. In this paper, we define and study the extended centroid of a prime semiring.

2. Preliminaries

A semiring is a nonempty set R on which operations of addition and multiplication have been defined such that
the following conditions are satisfied:

(1) (R, +) is a commutative monoid with identity element 0R ;

(2) (R, .) is a monoid with identity element 1R ;

(3) Multiplication distributes over addition from either side;

(4) 0Rr = 0R = r0R for all r ∈ R;

(5) 1R �= 0R.

An element a of semiring R is right multiplicatively cancellable if and only if ba = ca only when b = c .
Left multiplicatively cancellable elements are similarly defined. An element of R is multiplicatively cancellable
if and only if it is both left and right multiplicatively cancellable.
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An element of semiring R is a unit if and only if there exists element r1 of R satisfying rr1 = 1R = r1r .
The set of all units of R is denoted by U (R) . U (R) is submonoid of (R, .) which is in fact a group. If

U (R) = R\ {0R} then R is division semiring. A commutative division semiring is semifield.

A nonzero element a of semiring R is a left zero divisor if and only if there exists nonzero element b of
R satisfying ab = 0R . It is a right zero divisor if and only if there exists a nonzero element b of R satisfying
ba = 0R. It is a zero divisor if and only if it is both a left and right zero divisor. A semiring R having no zero
divisors is entire.

Let a be an element of semiring R . An element b of R is additive inverse of a if and only if a + b = 0R .

A left ideal U of a semiring R is a nonempty subset of R satisfying the following conditions:

(1) If a, b ∈ U then a + b ∈ U ;

(2) If a ∈ U and r ∈ R then ra ∈ U ;

(3) U �= R (1R /∈ U).

Note that ideals are proper, namely R is not an ideal of itself.

As in the case of rings, an ideal U of a semiring R is prime if and only if whenever HK ⊆ U , for ideals
H and K of R , we must have either H ⊆ U or K ⊆ U . R is a prime semiring if and only if ideal {0R} of
semiring R is prime.

Proposition 1 [2, Proposition 7.4] The following conditions on ideal U of a semiring R are equivalent:

(1) U is prime;

(2) {arb| r ∈ R} ⊆ U if and only if a ∈ U or b ∈ U ;

(3) If a and b are elements of R satisfying (a) (b) ⊆ U then either a ∈ U or b ∈ U .

If R and S are semirings then function γ : R → S is a morphism of semirings if and only if

(1) γ (0R) = 0S ,

(2) γ (1R) = 1S ,

(3) γ (r1 + r2) = γ (r1) + γ (r2) and γ (r1r2) = γ (r1) γ (r2) for all r1 ,r2 ∈ R .

A morphism of semirings which is both injective and surjective is called isomorphism. If there exists
isomorphism between semirings R and S we write R ∼= S . If γ : R → S is a morphism of semirings then
Im (γ) = {γ (r)| r ∈ R} is a subsemiring of S .

Let R be a semiring. A left R semimodule is a commutative monoid (M, +) with additive identity 0M

for which we have function R × M → M , denoted by (r, m) �→ rm and called scalar multiplication, which
satisfy the following conditions for all elements r1 and r2 of R and all elements m1 and m2 of M :

(1) (r1r2)m = r1 (r2m) ,

(2) r (m1 + m2) = rm1 + rm2 ,

(3) 1Rm = m ,

(4) r0M = 0M = 0Rm .

If R is a semiring and M and N are left R semimodules then a function α from M to N is an R

homomorphism if and only if the following conditions are satisfied:

(1) (m1 + m2)α = m1α + m2α for all m1 ,m2 ∈ M ;

(2) (rm)α = r (mα) for all m ∈ M and r ∈ R.
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3. Extended centroid
Let R be a prime semiring. Let us denote set of all nonzero ideals of R and R by N = N (R). That is,

N = N (R) = {U | {0R} �= U is ideal of R} ∪ {R}

U and R are regarded as right R semimodules.

Define relation ≡N on M = {f : U → R | U ∈ N , f is right R homomorphism} as follows: Let f, g ∈
M .

f ≡N g ⇔ there exists K ∈ N and K ⊆ U ∩ V such that f = g on K

where U ∈ N and V ∈ N are domains of f and g respectively... (∗)

For any U ∈ N and V ∈ N it is possible to find a nonzero K ∈ N, since R is a prime semiring. For all
U ∈ N which is domain of f , f ≡N f , since U ⊆ U ∩U and f = f on U . Thus ≡N is reflexive. Let f , g ∈ M

where U ∈ N and V ∈ N are domains of f and g respectively. Suppose f ≡N g . Then there exists K ∈ N

and K ⊆ U ∩ V such that f = g on K . Thus, K ∈ N and K ⊆ V ∩ U such that g = f on K , i.e., g ≡N f .
Hence ≡N is symmetric. Let f , g, h ∈ M where U ∈ N , V ∈ N and H ∈ N are domains of f , g and h

respectively. Suppose f ≡N g and g ≡N h . Then there exist K1, K2 ∈ N and K1 ⊆ U ∩ V and K2 ⊆ V ∩ H

such that f = g on K1 and g = h on K2 . Thus, {0R} �= K = K1 ∩ K2 ⊆ (U ∩ V ) ∩ (V ∩ H) ⊆ U ∩ H and
f = h on K . This implies then f ≡N h . Hence ≡N is transitive. Consequently, ≡N is an equivalence relation

on M . This gives a chance for us to get partition of M . We then denote the equivalence class by f̂ = [U, f ] ,

where f̂ := {g : V → R| f ≡N g} and denote by Qr set of all equivalence classes. That is,

Qr =
{

f̂
∣∣∣ f : U → R right R homomorphism and U ∈ N

}
.

Now we define an addition ′′+′′ on Qr as

f̂ + ĝ = ̂f + g,

for all f̂ , ĝ ∈ Qr. Let f̂ , ĝ ∈ Qr , where U ∈ N and V ∈ N are domains of f and g , respectively. Therefore
f + g : U ∩ V → R is a right R homomorphism. Assume that f1 ≡N f2 and g1 ≡N g2 , where U1, U2, V1

and V2 are domains of f1, f2, g1 and g2 , respectively. Then ∃K1 ⊆ U1 ∩ U2 , such that f1 = f2 on K1 and
∃K2 ⊆ V1 ∩ V2 such that g1 = g2 on K2. Taking K = K1 ∩ K2 . Then K �= {0R} and

K = K1 ∩ K2 ⊆ (U1 ∩ U2) ∩ (V1 ∩ V2)

= (U1 ∩ V1) ∩ (U2 ∩ V2) .

For any x ∈ K , we have (f1 + g1) (x) = f1 (x)+g1 (x) = f2 (x)+g2 (x) = (f2 + g2) (x), and so f1 +g1 = f2 +g2

on K . Therefore f1 + g1 ≡N f2 + g2 where f1 + g1 : U1 ∩ V1 → R and f2 + g2 : U2 ∩ V2 → R are right
R homomorphisms. That is, addition “+” is well-defined. Now we prove that Qr is a commutative monoid.

Let f̂ , ĝ, ĥ ∈ Qr where U ∈ N , V ∈ N and H ∈ N are domains of f , g and h respectively. Since
U ∩ (V ∩ H) = (U ∩ V ) ∩ H , we get for all x ∈ U ∩ (V ∩H) ,

[f + (g + h)] (x) = f (x) + (g + h) (x) = f (x) + [g (x) + h (x)]

= [f (x) + g (x)] + h (x) = (f + g) (x) + h (x)

= [(f + g) + h] (x) .
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Hence f + (g + h) = (f + g) + h on U ∩ (V ∩ H). That is, f̂ +
(
ĝ + ĥ

)
=

(
f̂ + ĝ

)
+ ĥ .

Taking θ̂ ∈ Qr , where θ : R → R , x �→ 0R for all x ∈ R.Let f̂ ∈ Qr, where U ∈ N is domain of f .
Since U ⊆ U ∩ R , we get for all x ∈ U ,

(f + θ) (x) = f (x) + θ (x) = f (x) + 0R = f (x)

and
(θ + f) (x) = θ (x) + f (x) = 0R + f (x) = f (x) .

Thus, f̂ + θ̂ = θ̂ + f̂ = f̂ . Hence θ̂ is the additive identity in Qr.

Finally, for any elements f̂ , ĝ ∈ Qr where U ∈ N and V ∈ N are domains of f and g respectively, we
have for all x ∈ U ∩ V = V ∩ U ,

(f + g) (x) = f (x) + g (x) = g (x) + f (x) = (g + f) (x) .

That is, f̂ + ĝ = ĝ + f̂ . Therefore (Qr, +) commutative monoid.

Now we define a multiplication “ .” on Qr as

f̂ ĝ = f̂g,

for all f̂ , ĝ ∈ Qr . Let f̂ , ĝ ∈ Qr where U ∈ N and V ∈ N are domains of f and g , respectively. Therefore
fg : V U → R is a right R homomorphism. Assume that f1 ≡N f2 and g1 ≡N g2 where U1, U2, V1 and V2 are
domains of f1, f2, g1 and g2 respectively. Then ∃K1 ⊆ U1 ∩ U2 such that f1 = f2 on K1 and ∃K2 ⊆ V1 ∩ V2

such that g1 = g2 on K2. Also V1U1 ∩ V2U2 ⊆ (U1 ∩ U2) ∩ (V1 ∩ V2) = (U1 ∩ V1) ∩ (U2 ∩ V2) and there exists

{0R} �= K ∈ N such that K ⊆ V1U1 ∩ V2U2 . For any x ∈ K , x ∈ V1U1 ∩ V2U2 . So that x ∈ V1U1 and

x ∈ V2U2 . Then, x =
∑
finite

aibi , ai ∈ V1 ∩ V2 and bi ∈ U1 ∩ U2 . Therefore

(f1g1) (x) = f1 (g1 (x)) = f1

(
g1

( ∑
finite

aibi

))

= f1

( ∑
finite

g1 (ai) bi

)
= f1

( ∑
finite

g2 (ai) bi

)

= f2

( ∑
finite

g2 (ai) bi

)
= f2

(
g2

( ∑
finite

aibi

))
= f2 (g2 (x)) = (f2g2) (x) ,

and so f1g1 = f2g2 on K. Hence, f1g1 ≡N f2g2 . That is, ” .” is well-defined. Now we will prove that (Qr, .)

is a monoid. Let f̂ , ĝ, ĥ ∈ Qr where U ∈ N , V ∈ N and H ∈ N are domains of f , g and h , respectively.
Since H (V U) = (HV )U , we get for all x ∈ H (V U),

[(fg) h] (x) = (fg) (h (x)) = f (g (h (x)))

= f ((gh) (x)) = (f (gh)) (x)

580
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Hence (fg) h = f (gh) on H (V U) . That is,
(
f̂ ĝ

)
ĥ = f̂

(
ĝĥ

)
.

Taking 1̂ ∈ Qr where 1 : R → R , x �→ x for all x ∈ R . Let f̂ ∈ Qr, where U ∈ N is domain of f .
Since RU ⊆ U, we get for all x ∈ RU , (f1) (x) = f (1 (x)) = f (x) and (1f) (x) = 1 (f (x)) = f (x). Thus,

f̂ 1̂ = 1̂f̂ = f̂ . Hence 1̂ is the multiplicative identity in Qr . Therefore (Qr, .) is a monoid.

Let f̂ , ĝ, ĥ ∈ Qr where U ∈ N , V ∈ N and H ∈ N are domains of f , g and h respectively. Since
(V ∩ H)U ⊆ V U ∩ HU , we get for all x ∈ (V ∩ H)U ,

[f (g + h)] (x) = f ((g + h) (x)) = f (g (x) + h (x))

= f (g (x)) + f (h (x)) = (fg + fh) (x) .

Hence f (g + h) = fg+fh on (V ∩ H)U. That is, f̂
(
ĝ + ĥ

)
= f̂ ĝ+ f̂ ĥ . Similarly,

(
f̂ + ĝ

)
ĥ = f̂ ĥ+ ĝĥ .

Suppose that θ̂ = 1̂. Then, θ ≡N 1. That is, there exist K ∈ N and K ⊆ R ∩R such that θ = 1 on K .

Therefore, θ (x) = 1 (x) for all x ∈ K . This is a contradiction with {0R} �= K . Thus, θ̂ �= 1̂.

Now we prove that f̂ θ̂ = θ̂ = θ̂f̂ for all f̂ ∈ Qr . Since RU ⊆ RU ∩R and fθ = θ on RU where U ∈ N

is domain of f , we get f̂ θ̂ = θ̂ . Similarly θ̂f̂ = θ̂ . Thus, (Qr , +, .) is a semiring.

Theorem 1 Let R be prime semiring and the relation ≡N on M defined by (∗) . If R is a right multiplicatively
cancellable semiring, then R may be embedded in Qr as a subsemiring.

Proof Let a ∈ R . Define λa : R → R by λa (r) = ar for all r ∈ R. It is clear that λa is a right

R homomorphism. Since R ∈ N , then λa ∈ M . So λa defines element λ̂a of Qr . Hence we may define

λ : R → Qr by λ (a) = λ̂a for a ∈ R . Clearly λ is well-defined. Let λ (a) = λ (b) for any a, b ∈ R . Then,

λ̂a = λ̂b, i.e., λa ≡N λb . Hence there exists K ∈ N and K ⊆ R ∩ R such that λa = λb on K . Therefore,
λa (x) = λb (x) for all x ∈ K . So, ax = bx for all x ∈ K . Since R is right multiplicatively cancellable semiring,
we get a = b . That is, λ is injective. In order to prove λ is a homomorphism, let a , b ∈ R . Then

λa+b (x) = (a + b)x = ax + bx = λa (x) + λb (x)

= (λa + λb) (x)

and

λab (x) = (ab)x = a (bx) = λa (bx)

= λa (λb (x)) = (λaλb) (x) ,

for all x ∈ R . It follows that λa+b = λa + λb and λab = λaλb . Hence

λ (a + b) = λ̂a+b = ̂λa + λb = λ̂a + λ̂b = λ (a) + λ (b)

and

λ (ab) = λ̂ab = ̂λaλb = λ̂aλ̂b = λ (a)λ (b) .

Also, λ (0R) = θ̂ and λ (1R) = 1̂. Therefore R is a subsemiring of Qr . �

Therefore R is a subsemiring of Qr , we call Qr the right quotient semiring of R . For purposes of
convenience, we use q instead of q̂ ∈ Qr .
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Lemma 1 Let R be a right multiplicatively cancellable prime semiring. For each nonzero q ∈ Qr , there is
nonzero ideal U of R such that q (U) ⊆ R .

Proof Clear. �

Lemma 2 Let R be a right multiplicatively cancellable prime semiring. Then the quotient semiring Qr of R

is a prime semiring.

Proof Let p , q ∈ Qr be such that pQrq = θ . If p �= θ �= q , then there exist nonzero ideals U and V of R

such that p (U) ⊆ R and q (V ) ⊆ R . Since p �= θ �= q , there exist nonzero elements x ∈ U and y ∈ V such

that p (x) �= 0R �= q (y) . Noticing that R is a subsemiring of Qr , we have

p (x)Rq (y) ⊆ p (x)Qrq (y) = {0R}

and so p (x)Rq (y) = {0R} . This is a contradiction. Hence p = θ or q = θ , ending the proof. �

Definition 1 The set
C := {g ∈ Qr | gf = fg for all f ∈ Qr}

is called the extended centroid of a semiring R .

It is clear that C is a subsemiring of Qr . Let θ �= c ∈ C . Assume that cf = θ for any f ∈ C . Then,
gcf = θ for any g ∈ Qr . Hence, cgf = θ , i.e., cQrf = θ . Since θ �= c , we get f = θ . Thus, C is an entire
semiring.

Theorem 2 The center C of Qr is a semifield.

Proof We prove that C is a semifield such that every θ �= c ∈ C is inverse. Let θ �= c ∈ C . Since c ∈ Qr , there
exists {0R} �= U ∈ N such that cU ⊆ R . Since R is a prime semiring, cU �= {0R} . Taking {0R} �= V = cU

ideal of R . Moreover, d : V → R , ca �→ a is a R homomorphism .Then, d = [d, V ] ∈ Qr . Also, dc = 1 since

dc (a) = a = 1 (a) for all a ∈ U . Thus, θ �= c ∈ C is inverse. That is, C is a semifield. �

We now let S = RC , a subsemiring of Qr containing R . We shall call S the central closure of R . The
same proof used in showing that Qr was prime may be employed to show that S is prime.

Proposition 2 Let R be right multiplicatively cancellable prime semiring and S be the central closure of
R.Then S is a right multiplicatively cancellable prime semiring.

Proof Since S =

{ ∑
finite

rici| for all ri ∈ R, ci ∈ C

}
, the proof of proposition is sufficient for the finite sums

with i = 1 to 2. Now, let ad = bd , a = r1c1 + r2c2 , b = r′1c
′
1 + r′2c

′
2 , 0 �= d = r′′1 c′′1 + r′′2 c′′2 ∈ S, for all

r1, r2, r′1, r
′
2, r

′′
1 , r′′2 ∈ R , c1, c2, c′1, c

′
2, c

′′
1 , c′′2 ∈ C and c1 = [f1, U1] , c2 = [f2, U2] , c′1 = [g1, V1] , c′2 = [g2, V2] ,

c′′1 = [h1, W1] , c′′2 = [h2, W2] . We have that

([λr1 , R] [f1, U1] + [λr2 , R] [f2, U2])([λr′′
1
, R] [h1, W1] + [λr′′

2
, R] [h2, W2] )

= ([λr′
1
, R][g1, V1] + [λr′

2
, R] [g2, V2])([λr′′

1
, R] [h1, W1] + [λr′′

2
, R] [h2, W2] ).
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Then,
([λr1f1, U1] + [λr2f2, U2])([λr′′

1
h1, W1] + [λr′′

2
h2, W2] )

= ([λr′
1
g1, V1] + [λr′

2
g2, V2])([λr′′

1
h1, W1] + [λr′′

2
h2, W2])

([λr1f1 + λr2f2, U1 ∩ U2])([λr′′
1
h1 + λr′′

2
h2, W1 ∩ W2] )

= ([λr′
1
g1 + λr′

2
g2, V1 ∩ V2])([λr′′

1
h1 + λr′′

2
h2, W1 ∩ W2])

[(λr1f1 + λr2f2)(λr′′
1
h1 + λr′′

2
h2), (W1 ∩ W2)(U1 ∩ U2)]

= [(λr′
1
g1 + λr′

2
g2)(λr′′

1
h1 + λr′′

2
h2), (W1 ∩ W2)(V1 ∩ V2)].

Thus, there exist K ∈ N and K ⊆ (W1∩W2)(U1∩U2)∩ (W1∩W2)(V1∩V2) such that (λr1f1 +λr2f2)(λr′′
1
h1 +

λr′′
2
h2) = (λr′

1
g1 + λr′

2
g2)(λr′′

1
h1 + λr′′

2
h2) on K . ∀x ∈ K ,

((λr1f1 + λr2f2)(λr′′
1
h1 + λr′′

2
h2))(x) = ((λr′

1
g1 + λr′

2
g2)(λr′′

1
h1 + λr′′

2
h2))(x)

(λr1f1 + λr2f2)((λr′′
1
h1 + λr′′

2
h2)(x)) = (λr′

1
g1 + λr′

2
g2)((λr′′

1
h1 + λr′′

2
h2)(x))

and so λr1f1+λr2f2 = λr′
1
g1+λr′

2
g2 on (λr′′

1
h1+λr′′

2
h2) (K). Since h1 and h2 are right R homomorphisms, and

K ⊆ (W1∩W2)(U1∩U2)∩ (W1∩W2)(V1∩V2), we get h1 (K) ⊆ h1(W1∩W2)(U1∩U2)∩h1(W1∩W2)(V1∩V2) ⊆
(U1 ∩ U2) ∩ (V1 ∩ V2) and h2 (K) ⊆ h2(W1 ∩ W2)(U1 ∩ U2) ∩ h2(W1 ∩ W2)(V1 ∩ V2) ⊆ (U1 ∩ U2) ∩ (V1 ∩ V2).

So that Rh1 (K) + Rh2 (K) ⊆ (U1 ∩ U2) ∩ (V1 ∩ V2). If we use that h1 (K) and h2 (K) are right ideals,

then Rh1 (K) + Rh2 (K) is an ideal of R . We assume that Rh1 (K) + Rh2 (K) = {0R} . Therefore we

get Rh1 (K) ∩ Rh2 (K) ⊆ Rh1 (K) + Rh2 (K) = {0R} . Since R is a prime semiring, Rh1 (K) = {0R} or

Rh2 (K) = {0R} . Hence we obtain that
(
λr′′

1
h1 + λr′′

2
h2

)
(K) = {0R} for all r′′1 , r′′2 ∈ R from

(
λr′′

1
h1

)
(K) =

{0R} and
(
λr′′

2
h2

)
(K) = {0R} , this contradicts with d �= 0. So Rh1 (K) + Rh2 (K) must be nonzero.

Therefore λr1f1 + λr2f2 = λr′
1
g1 + λr′

2
g2 on Rh1 (K) + Rh2 (K). Hence [λr1 , R] [f1, U1] + [λr2 , R] [f2, U2] =

[λr′
1
, R][g1, V1] + [λr′

2
, R] [g2, V2] . That is, r1c1 + r2c2 = r′1c

′
1 + r′2c

′
2 and so a = b , ending the proof. �

Theorem 3 Let R be a right multiplicatively cancellable prime semiring. If a and b are nonzero elements in
S such that axb = bxa for all x ∈ R and S is left cancellable then there exists q ∈ C such that qa = b .

Proof We may assume that a �= θ and b �= θ . Let U be a nonzero ideal of R such that aU ⊆ R and

bU ⊆ R , and V = UaU . We define a mapping f : V → R , f

(∑
i

xiayi

)
=

∑
i

xibyi , xi , yi ∈ U . Let

∑
i

xiayi =
∑

i

x′
iay′i , xi , yi , x′

i , y′i ∈ U . Then,

(∑
i

xiayi

)
b =

(∑
i

x′
iay′i

)
b

∑
i

xi (ayib) =
∑

i

x′
i (ay′ib)
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∑
i

xi (byia) =
∑

i

x′
i (by′ia)

(∑
i

xibyi

)
a =

(∑
i

x′
iby

′
i

)
a.

Since S is a right multiplicatively cancellable semiring by Proposition 2, we get
∑

i

xibyi =
∑

i

x′
iby

′
i . That is, f

is well-defined. f is a right R homomorphism. Because f ((xay) r) = f (xa (yr)) = xb (yr) = (xby) r = f (xay) r

for all x, y ∈ U and r ∈ R . Let q denote the element of Qr determined by f and let p be any el-
ement of Qr , with pK ⊆ R for some nonzero ideal K of R . For x, y ∈ U and z ∈ K we have
(qp) (zxay) = q ((pz)xay) = (pz)xby = p (zxby) = pq (zxay) . Since KU ⊆ K ∩ U and pq = qp on KU ,
we get qp = pq for all p ∈ Qr , and so q ∈ C . Since S is multiplicatively cancellable, xqay = xby, for all
x, y ∈ U implies qa = b . �
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