Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $577-584$
(c) TÜBİTAK
doi:10.3906/mat-1105-8

On the centroid of prime semirings

Hasret YAZARLI, ${ }^{1, *}$ Mehmet Ali ÖZTÜRK ${ }^{2}$
Cumhuriyet University, Faculty of Arts and Sciences, Department of Mathematics, 58140 Sivas, Turkey
Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics, Adiyaman, Turkey

Received: 09.05.2011 • Accepted: $13.06 .2012 \quad \bullet \quad$ Published Online: 12.06.2013 $\quad \bullet \quad$ Printed: 08.07 .2013

Abstract

We define and study the extended centroid of a prime semiring. We show that the extended centroid is a semifield and give some properties of the centroid of a right multiplicatively cancellable prime semiring.

Key words: Semiring, prime ideal, prime semiring, quotient semiring

1. Introduction

Semirings abound in the mathematical world around us. Indeed, the first mathematical structure we encounterthe set of natural numbers-is a semiring. Historically, semirings first appear implicitly in [3] and later in [8], [6], [10] and [7], in connection with the study of ideals of a ring. They also appear in [4] and [5] in connection with the axiomatization of the natural numbers and nonnegative rational numbers. Over the years, semirings have been studied by various researchers either in their own right, in an attempt to broaden techniques coming from semigroup theory or ring theory, or in connection with applications. In [9] Martindale first constructed for any prime ring R a "ring of quotients" Q. After, Öztürk and Jun introduced the extended centroid of a prime Γ-ring and obtained some results in Γ-ring M with derivation which was related to Q, and the quotient Γ-ring of $M[11,12]$. In this paper, we define and study the extended centroid of a prime semiring.

2. Preliminaries

A semiring is a nonempty set R on which operations of addition and multiplication have been defined such that the following conditions are satisfied:
(1) $(R,+)$ is a commutative monoid with identity element 0_{R};
(2) $(R,$.$) is a monoid with identity element 1_{R}$;
(3) Multiplication distributes over addition from either side;
(4) $0_{R} r=0_{R}=r 0_{R}$ for all $r \in R$;
(5) $1_{R} \neq 0_{R}$.

An element a of semiring R is right multiplicatively cancellable if and only if $b a=c a$ only when $b=c$. Left multiplicatively cancellable elements are similarly defined. An element of R is multiplicatively cancellable if and only if it is both left and right multiplicatively cancellable.

[^0]An element of semiring R is a unit if and only if there exists element r_{1} of R satisfying $r r_{1}=1_{R}=r_{1} r$. The set of all units of R is denoted by $U(R) . U(R)$ is submonoid of $(R,$.$) which is in fact a group. If$ $U(R)=R \backslash\left\{0_{R}\right\}$ then R is division semiring. A commutative division semiring is semifield.

A nonzero element a of semiring R is a left zero divisor if and only if there exists nonzero element b of R satisfying $a b=0_{R}$. It is a right zero divisor if and only if there exists a nonzero element b of R satisfying $b a=0_{R}$. It is a zero divisor if and only if it is both a left and right zero divisor. A semiring R having no zero divisors is entire.

Let a be an element of semiring R. An element b of R is additive inverse of a if and only if $a+b=0_{R}$.
A left ideal U of a semiring R is a nonempty subset of R satisfying the following conditions:
(1) If $a, b \in U$ then $a+b \in U$;
(2) If $a \in U$ and $r \in R$ then $r a \in U$;
(3) $U \neq R\left(1_{R} \notin U\right)$.

Note that ideals are proper, namely R is not an ideal of itself.
As in the case of rings, an ideal U of a semiring R is prime if and only if whenever $H K \subseteq U$, for ideals H and K of R, we must have either $H \subseteq U$ or $K \subseteq U . R$ is a prime semiring if and only if ideal $\left\{0_{R}\right\}$ of semiring R is prime.

Proposition 1 [2, Proposition 7.4] The following conditions on ideal U of a semiring R are equivalent:
(1) U is prime;
(2) $\{$ arb $\mid r \in R\} \subseteq U$ if and only if $a \in U$ or $b \in U$;
(3) If a and b are elements of R satisfying $(a)(b) \subseteq U$ then either $a \in U$ or $b \in U$.

If R and S are semirings then function $\gamma: R \rightarrow S$ is a morphism of semirings if and only if
(1) $\gamma\left(0_{R}\right)=0_{S}$,
(2) $\gamma\left(1_{R}\right)=1_{S}$,
(3) $\gamma\left(r_{1}+r_{2}\right)=\gamma\left(r_{1}\right)+\gamma\left(r_{2}\right)$ and $\gamma\left(r_{1} r_{2}\right)=\gamma\left(r_{1}\right) \gamma\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$.

A morphism of semirings which is both injective and surjective is called isomorphism. If there exists isomorphism between semirings R and S we write $R \cong S$. If $\gamma: R \rightarrow S$ is a morphism of semirings then $\operatorname{Im}(\gamma)=\{\gamma(r) \mid r \in R\}$ is a subsemiring of S.

Let R be a semiring. A left R semimodule is a commutative monoid ($M,+$) with additive identity 0_{M} for which we have function $R \times M \rightarrow M$, denoted by $(r, m) \mapsto r m$ and called scalar multiplication, which satisfy the following conditions for all elements r_{1} and r_{2} of R and all elements m_{1} and m_{2} of M :
(1) $\left(r_{1} r_{2}\right) m=r_{1}\left(r_{2} m\right)$,
(2) $r\left(m_{1}+m_{2}\right)=r m_{1}+r m_{2}$,
(3) $1_{R} m=m$,
(4) $r 0_{M}=0_{M}=0_{R} m$.

If R is a semiring and M and N are left R semimodules then a function α from M to N is an R homomorphism if and only if the following conditions are satisfied:
(1) $\left(m_{1}+m_{2}\right) \alpha=m_{1} \alpha+m_{2} \alpha$ for all $m_{1}, m_{2} \in M$;
(2) $(r m) \alpha=r(m \alpha)$ for all $m \in M$ and $r \in R$.

3. Extended centroid

Let R be a prime semiring. Let us denote set of all nonzero ideals of R and R by $N=N(R)$. That is,

$$
N=N(R)=\left\{U \mid\left\{0_{R}\right\} \neq U \text { is ideal of } R\right\} \cup\{R\}
$$

U and R are regarded as right R semimodules.
Define relation \equiv_{N} on $M=\{f: U \rightarrow R \mid U \in N, f$ is right R homomorphism $\}$ as follows: Let $f, g \in$ M.

$$
f \equiv_{N} g \Leftrightarrow \text { there exists } K \in N \text { and } K \subseteq U \cap V \text { such that } f=g \text { on } K
$$

where $U \in N$ and $V \in N$ are domains of f and g respectively... (*)
For any $U \in N$ and $V \in N$ it is possible to find a nonzero $K \in N$, since R is a prime semiring. For all $U \in N$ which is domain of $f, f \equiv_{N} f$, since $U \subseteq U \cap U$ and $f=f$ on U. Thus \equiv_{N} is reflexive. Let $f, g \in M$ where $U \in N$ and $V \in N$ are domains of f and g respectively. Suppose $f \equiv_{N} g$. Then there exists $K \in N$ and $K \subseteq U \cap V$ such that $f=g$ on K. Thus, $K \in N$ and $K \subseteq V \cap U$ such that $g=f$ on K, i.e., $g \equiv_{N} f$. Hence \equiv_{N} is symmetric. Let $f, g, h \in M$ where $U \in N, V \in N$ and $H \in N$ are domains of f, g and h respectively. Suppose $f \equiv_{N} g$ and $g \equiv_{N} h$. Then there exist $K_{1}, K_{2} \in N$ and $K_{1} \subseteq U \cap V$ and $K_{2} \subseteq V \cap H$ such that $f=g$ on K_{1} and $g=h$ on K_{2}. Thus, $\left\{0_{R}\right\} \neq K=K_{1} \cap K_{2} \subseteq(U \cap V) \cap(V \cap H) \subseteq U \cap H$ and $f=h$ on K. This implies then $f \equiv_{N} h$. Hence \equiv_{N} is transitive. Consequently, \equiv_{N} is an equivalence relation on M. This gives a chance for us to get partition of M. We then denote the equivalence class by $\widehat{f}=[U, f]$, where $\widehat{f}:=\left\{g: V \rightarrow R \mid f \equiv_{N} g\right\}$ and denote by Q_{r} set of all equivalence classes. That is,

$$
Q_{r}=\{\widehat{f} \mid f: U \rightarrow R \text { right } R \text { homomorphism and } U \in N\}
$$

Now we define an addition " $+{ }^{\prime \prime}$ on Q_{r} as

$$
\widehat{f}+\widehat{g}=\widehat{f+g}
$$

for all $\widehat{f}, \widehat{g} \in Q_{r}$. Let $\widehat{f}, \widehat{g} \in Q_{r}$, where $U \in N$ and $V \in N$ are domains of f and g, respectively. Therefore $f+g: U \cap V \rightarrow R$ is a right R homomorphism. Assume that $f_{1} \equiv_{N} f_{2}$ and $g_{1} \equiv_{N} g_{2}$, where U_{1}, U_{2}, V_{1} and V_{2} are domains of f_{1}, f_{2}, g_{1} and g_{2}, respectively. Then $\exists K_{1} \subseteq U_{1} \cap U_{2}$, such that $f_{1}=f_{2}$ on K_{1} and $\exists K_{2} \subseteq V_{1} \cap V_{2}$ such that $g_{1}=g_{2}$ on K_{2}. Taking $K=K_{1} \cap K_{2}$. Then $K \neq\left\{0_{R}\right\}$ and

$$
\begin{aligned}
K & =K_{1} \cap K_{2} \subseteq\left(U_{1} \cap U_{2}\right) \cap\left(V_{1} \cap V_{2}\right) \\
& =\left(U_{1} \cap V_{1}\right) \cap\left(U_{2} \cap V_{2}\right) .
\end{aligned}
$$

For any $x \in K$, we have $\left(f_{1}+g_{1}\right)(x)=f_{1}(x)+g_{1}(x)=f_{2}(x)+g_{2}(x)=\left(f_{2}+g_{2}\right)(x)$, and so $f_{1}+g_{1}=f_{2}+g_{2}$ on K. Therefore $f_{1}+g_{1} \equiv_{N} f_{2}+g_{2}$ where $f_{1}+g_{1}: U_{1} \cap V_{1} \rightarrow R$ and $f_{2}+g_{2}: U_{2} \cap V_{2} \rightarrow R$ are right R homomorphisms. That is, addition "+" is well-defined. Now we prove that Q_{r} is a commutative monoid. Let $\widehat{f}, \widehat{g}, \widehat{h} \in Q_{r}$ where $U \in N, V \in N$ and $H \in N$ are domains of f, g and h respectively. Since $U \cap(V \cap H)=(U \cap V) \cap H$, we get for all $x \in U \cap(V \cap H)$,

$$
\begin{aligned}
{[f+(g+h)](x) } & =f(x)+(g+h)(x)=f(x)+[g(x)+h(x)] \\
& =[f(x)+g(x)]+h(x)=(f+g)(x)+h(x) \\
& =[(f+g)+h](x)
\end{aligned}
$$

Hence $f+(g+h)=(f+g)+h$ on $U \cap(V \cap H)$. That is, $\widehat{f}+(\widehat{g}+\widehat{h})=(\widehat{f}+\widehat{g})+\widehat{h}$.
Taking $\widehat{\theta} \in Q_{r}$, where $\theta: R \rightarrow R, x \mapsto 0_{R}$ for all $x \in R$. Let $\widehat{f} \in Q_{r}$, where $U \in N$ is domain of f. Since $U \subseteq U \cap R$, we get for all $x \in U$,

$$
(f+\theta)(x)=f(x)+\theta(x)=f(x)+0_{R}=f(x)
$$

and

$$
(\theta+f)(x)=\theta(x)+f(x)=0_{R}+f(x)=f(x)
$$

Thus, $\widehat{f}+\widehat{\theta}=\widehat{\theta}+\widehat{f}=\widehat{f}$. Hence $\widehat{\theta}$ is the additive identity in Q_{r}.
Finally, for any elements $\widehat{f}, \widehat{g} \in Q_{r}$ where $U \in N$ and $V \in N$ are domains of f and g respectively, we have for all $x \in U \cap V=V \cap U$,

$$
(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x)
$$

That is, $\widehat{f}+\widehat{g}=\widehat{g}+\widehat{f}$. Therefore $\left(Q_{r},+\right)$ commutative monoid.
Now we define a multiplication "." on Q_{r} as

$$
\widehat{f} \widehat{g}=\widehat{f g}
$$

for all $\widehat{f}, \widehat{g} \in Q_{r}$. Let $\widehat{f}, \widehat{g} \in Q_{r}$ where $U \in N$ and $V \in N$ are domains of f and g, respectively. Therefore $f g: V U \rightarrow R$ is a right R homomorphism. Assume that $f_{1} \equiv_{N} f_{2}$ and $g_{1} \equiv_{N} g_{2}$ where U_{1}, U_{2}, V_{1} and V_{2} are domains of f_{1}, f_{2}, g_{1} and g_{2} respectively. Then $\exists K_{1} \subseteq U_{1} \cap U_{2}$ such that $f_{1}=f_{2}$ on K_{1} and $\exists K_{2} \subseteq V_{1} \cap V_{2}$ such that $g_{1}=g_{2}$ on K_{2}. Also $V_{1} U_{1} \cap V_{2} U_{2} \subseteq\left(U_{1} \cap U_{2}\right) \cap\left(V_{1} \cap V_{2}\right)=\left(U_{1} \cap V_{1}\right) \cap\left(U_{2} \cap V_{2}\right)$ and there exists $\left\{0_{R}\right\} \neq K \in N$ such that $K \subseteq V_{1} U_{1} \cap V_{2} U_{2}$. For any $x \in K, x \in V_{1} U_{1} \cap V_{2} U_{2}$. So that $x \in V_{1} U_{1}$ and $x \in V_{2} U_{2}$. Then, $x=\sum_{\text {finite }} a_{i} b_{i}, a_{i} \in V_{1} \cap V_{2}$ and $b_{i} \in U_{1} \cap U_{2}$. Therefore

$$
\begin{aligned}
\left(f_{1} g_{1}\right)(x) & =f_{1}\left(g_{1}(x)\right)=f_{1}\left(g_{1}\left(\sum_{\text {finite }} a_{i} b_{i}\right)\right) \\
& =f_{1}\left(\sum_{\text {finite }} g_{1}\left(a_{i}\right) b_{i}\right)=f_{1}\left(\sum_{\text {finite }} g_{2}\left(a_{i}\right) b_{i}\right) \\
& =f_{2}\left(\sum_{\text {finite }} g_{2}\left(a_{i}\right) b_{i}\right)=f_{2}\left(g_{2}\left(\sum_{\text {finite }} a_{i} b_{i}\right)\right) \\
& =f_{2}\left(g_{2}(x)\right)=\left(f_{2} g_{2}\right)(x)
\end{aligned}
$$

and so $f_{1} g_{1}=f_{2} g_{2}$ on K. Hence, $f_{1} g_{1} \equiv_{N} f_{2} g_{2}$. That is, "." is well-defined. Now we will prove that $\left(Q_{r},.\right)$ is a monoid. Let $\widehat{f}, \widehat{g}, \widehat{h} \in Q_{r}$ where $U \in N, V \in N$ and $H \in N$ are domains of f, g and h, respectively. Since $H(V U)=(H V) U$, we get for all $x \in H(V U)$,

$$
\begin{aligned}
{[(f g) h](x) } & =(f g)(h(x))=f(g(h(x))) \\
& =f((g h)(x))=(f(g h))(x)
\end{aligned}
$$

Hence $(f g) h=f(g h)$ on $H(V U)$. That is, $(\widehat{f} \widehat{g}) \widehat{h}=\widehat{f}(\widehat{g} \widehat{h})$.
Taking $\widehat{1} \in Q_{r}$ where $1: R \rightarrow R, x \mapsto x$ for all $x \in R$. Let $\widehat{f} \in Q_{r}$, where $U \in N$ is domain of f. Since $R U \subseteq U$, we get for all $x \in R U,(f 1)(x)=f(1(x))=f(x)$ and $(1 f)(x)=1(f(x))=f(x)$. Thus, $\widehat{f} \widehat{1}=\widehat{1} \widehat{f}=\widehat{f}$. Hence $\widehat{1}$ is the multiplicative identity in Q_{r}. Therefore $\left(Q_{r},.\right)$ is a monoid.

Let $\widehat{f}, \widehat{g}, \widehat{h} \in Q_{r}$ where $U \in N, V \in N$ and $H \in N$ are domains of f, g and h respectively. Since $(V \cap H) U \subseteq V U \cap H U$, we get for all $x \in(V \cap H) U$,

$$
\begin{aligned}
{[f(g+h)](x) } & =f((g+h)(x))=f(g(x)+h(x)) \\
& =f(g(x))+f(h(x))=(f g+f h)(x)
\end{aligned}
$$

Hence $f(g+h)=f g+f h$ on $(V \cap H) U$. That is, $\widehat{f}(\widehat{g}+\widehat{h})=\widehat{f} \widehat{g}+\widehat{f h}$. Similarly, $(\widehat{f}+\widehat{g}) \widehat{h}=\widehat{f h}+\widehat{g} \widehat{h}$.
Suppose that $\widehat{\theta}=\widehat{1}$. Then, $\theta \equiv_{N} 1$. That is, there exist $K \in N$ and $K \subseteq R \cap R$ such that $\theta=1$ on K. Therefore, $\theta(x)=1(x)$ for all $x \in K$. This is a contradiction with $\left\{0_{R}\right\} \neq K$. Thus, $\widehat{\theta} \neq \widehat{1}$.

Now we prove that $\widehat{f} \widehat{\theta}=\widehat{\theta}=\widehat{\theta} \widehat{f}$ for all $\widehat{f} \in Q_{r}$. Since $R U \subseteq R U \cap R$ and $f \theta=\theta$ on $R U$ where $U \in N$ is domain of f, we get $\widehat{f} \widehat{\theta}=\widehat{\theta}$. Similarly $\widehat{\theta} \widehat{f}=\widehat{\theta}$. Thus, $\left(Q_{r},+,.\right)$ is a semiring.

Theorem 1 Let R be prime semiring and the relation \equiv_{N} on M defined by $(*)$. If R is a right multiplicatively cancellable semiring, then R may be embedded in Q_{r} as a subsemiring.
Proof Let $a \in R$. Define $\lambda_{a}: R \rightarrow R$ by $\lambda_{a}(r)=a r$ for all $r \in R$. It is clear that λ_{a} is a right R homomorphism. Since $R \in N$, then $\lambda_{a} \in M$. So λ_{a} defines element $\hat{\lambda}_{a}$ of Q_{r}. Hence we may define $\lambda: R \rightarrow Q_{r}$ by $\lambda(a)=\widehat{\lambda}_{a}$ for $a \in R$. Clearly λ is well-defined. Let $\lambda(a)=\lambda(b)$ for any $a, b \in R$. Then, $\widehat{\lambda}_{a}=\widehat{\lambda}_{b}$, i.e., $\lambda_{a} \equiv_{N} \lambda_{b}$. Hence there exists $K \in N$ and $K \subseteq R \cap R$ such that $\lambda_{a}=\lambda_{b}$ on K. Therefore, $\lambda_{a}(x)=\lambda_{b}(x)$ for all $x \in K$. So, $a x=b x$ for all $x \in K$. Since R is right multiplicatively cancellable semiring, we get $a=b$. That is, λ is injective. In order to prove λ is a homomorphism, let $a, b \in R$. Then

$$
\begin{aligned}
\lambda_{a+b}(x) & =(a+b) x=a x+b x=\lambda_{a}(x)+\lambda_{b}(x) \\
& =\left(\lambda_{a}+\lambda_{b}\right)(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{a b}(x) & =(a b) x=a(b x)=\lambda_{a}(b x) \\
& =\lambda_{a}\left(\lambda_{b}(x)\right)=\left(\lambda_{a} \lambda_{b}\right)(x)
\end{aligned}
$$

for all $x \in R$. It follows that $\lambda_{a+b}=\lambda_{a}+\lambda_{b}$ and $\lambda_{a b}=\lambda_{a} \lambda_{b}$. Hence

$$
\lambda(a+b)=\widehat{\lambda}_{a+b}=\widehat{\lambda_{a}+\lambda_{b}}=\widehat{\lambda}_{a}+\widehat{\lambda}_{b}=\lambda(a)+\lambda(b)
$$

and

$$
\lambda(a b)=\widehat{\lambda}_{a b}=\widehat{\lambda_{a} \lambda_{b}}=\widehat{\lambda}_{a} \widehat{\lambda}_{b}=\lambda(a) \lambda(b) .
$$

Also, $\lambda\left(0_{R}\right)=\widehat{\theta}$ and $\lambda\left(1_{R}\right)=\widehat{1}$. Therefore R is a subsemiring of Q_{r}.
Therefore R is a subsemiring of Q_{r}, we call Q_{r} the right quotient semiring of R. For purposes of convenience, we use q instead of $\hat{q} \in Q_{r}$.

Lemma 1 Let R be a right multiplicatively cancellable prime semiring. For each nonzero $q \in Q_{r}$, there is nonzero ideal U of R such that $q(U) \subseteq R$.
Proof Clear.

Lemma 2 Let R be a right multiplicatively cancellable prime semiring. Then the quotient semiring Q_{r} of R is a prime semiring.
Proof Let $p, q \in Q_{r}$ be such that $p Q_{r} q=\theta$. If $p \neq \theta \neq q$, then there exist nonzero ideals U and V of R such that $p(U) \subseteq R$ and $q(V) \subseteq R$. Since $p \neq \theta \neq q$, there exist nonzero elements $x \in U$ and $y \in V$ such that $p(x) \neq 0_{R} \neq q(y)$. Noticing that R is a subsemiring of Q_{r}, we have

$$
p(x) R q(y) \subseteq p(x) Q_{r} q(y)=\left\{0_{R}\right\}
$$

and so $p(x) R q(y)=\left\{0_{R}\right\}$. This is a contradiction. Hence $p=\theta$ or $q=\theta$, ending the proof.

Definition 1 The set

$$
C:=\left\{g \in Q_{r} \mid g f=\text { fg for all } f \in Q_{r}\right\}
$$

is called the extended centroid of a semiring R.
It is clear that C is a subsemiring of Q_{r}. Let $\theta \neq c \in C$. Assume that $c f=\theta$ for any $f \in C$. Then, $g c f=\theta$ for any $g \in Q_{r}$. Hence, $c g f=\theta$, i.e., $c Q_{r} f=\theta$. Since $\theta \neq c$, we get $f=\theta$. Thus, C is an entire semiring.

Theorem 2 The center C of Q_{r} is a semifield.
Proof We prove that C is a semifield such that every $\theta \neq c \in C$ is inverse. Let $\theta \neq c \in C$. Since $c \in Q_{r}$, there exists $\left\{0_{R}\right\} \neq U \in N$ such that $c U \subseteq R$. Since R is a prime semiring, $c U \neq\left\{0_{R}\right\}$. Taking $\left\{0_{R}\right\} \neq V=c U$ ideal of R. Moreover, $d: V \rightarrow R, c a \mapsto a$ is a R homomorphism. Then, $d=[d, V] \in Q_{r}$. Also, $d c=1$ since $d c(a)=a=1(a)$ for all $a \in U$. Thus, $\theta \neq c \in C$ is inverse. That is, C is a semifield.

We now let $S=R C$, a subsemiring of Q_{r} containing R. We shall call S the central closure of R. The same proof used in showing that Q_{r} was prime may be employed to show that S is prime.

Proposition 2 Let R be right multiplicatively cancellable prime semiring and S be the central closure of R. Then S is a right multiplicatively cancellable prime semiring.
Proof Since $S=\left\{\sum_{\text {finite }} r_{i} c_{i} \mid\right.$ for all $\left.r_{i} \in R, c_{i} \in C\right\}$, the proof of proposition is sufficient for the finite sums with $i=1$ to 2 . Now, let $a d=b d, a=r_{1} c_{1}+r_{2} c_{2}, b=r_{1}^{\prime} c_{1}^{\prime}+r_{2}^{\prime} c_{2}^{\prime}, 0 \neq d=r_{1}^{\prime \prime} c_{1}^{\prime \prime}+r_{2}^{\prime \prime} c_{2}^{\prime \prime} \in S$, for all $r_{1}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}, r_{1}^{\prime \prime}, r_{2}^{\prime \prime} \in R, c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}, c_{1}^{\prime \prime}, c_{2}^{\prime \prime} \in C$ and $c_{1}=\left[f_{1}, U_{1}\right], c_{2}=\left[f_{2}, U_{2}\right], c_{1}^{\prime}=\left[g_{1}, V_{1}\right], c_{2}^{\prime}=\left[g_{2}, V_{2}\right]$, $c_{1}^{\prime \prime}=\left[h_{1}, W_{1}\right], \quad c_{2}^{\prime \prime}=\left[h_{2}, W_{2}\right]$. We have that

$$
\begin{aligned}
& \left(\left[\lambda_{r_{1}}, R\right]\left[f_{1}, U_{1}\right]+\left[\lambda_{r_{2}}, R\right]\left[f_{2}, U_{2}\right]\right)\left(\left[\lambda_{r_{1}^{\prime \prime}}, R\right]\left[h_{1}, W_{1}\right]+\left[\lambda_{r_{2}^{\prime \prime}}, R\right]\left[h_{2}, W_{2}\right]\right) \\
= & \left(\left[\lambda_{r_{1}^{\prime}}, R\right]\left[g_{1}, V_{1}\right]+\left[\lambda_{r_{2}^{\prime}}, R\right]\left[g_{2}, V_{2}\right]\right)\left(\left[\lambda_{r_{1}^{\prime \prime}}, R\right]\left[h_{1}, W_{1}\right]+\left[\lambda_{r_{2}^{\prime \prime}}, R\right]\left[h_{2}, W_{2}\right]\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \left(\left[\lambda_{r_{1}} f_{1}, U_{1}\right]+\left[\lambda_{r_{2}} f_{2}, U_{2}\right]\right)\left(\left[\lambda_{r_{1}^{\prime \prime}} h_{1}, W_{1}\right]+\left[\lambda_{r_{2}^{\prime \prime}} h_{2}, W_{2}\right]\right) \\
= & \left(\left[\lambda_{r_{1}^{\prime}} g_{1}, V_{1}\right]+\left[\lambda_{r_{2}^{\prime}} g_{2}, V_{2}\right]\right)\left(\left[\lambda_{r_{1}^{\prime \prime}} h_{1}, W_{1}\right]+\left[\lambda_{r_{2}^{\prime \prime}} h_{2}, W_{2}\right]\right) \\
& \left(\left[\lambda_{r_{1}} f_{1}+\lambda_{r_{2}} f_{2}, U_{1} \cap U_{2}\right]\right)\left(\left[\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}, W_{1} \cap W_{2}\right]\right) \\
= & \left(\left[\lambda_{r_{1}^{\prime}} g_{1}+\lambda_{r_{2}^{\prime}} g_{2}, V_{1} \cap V_{2}\right]\right)\left(\left[\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}, W_{1} \cap W_{2}\right]\right) \\
& {\left[\left(\lambda_{r_{1}} f_{1}+\lambda_{r_{2}} f_{2}\right)\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right),\left(W_{1} \cap W_{2}\right)\left(U_{1} \cap U_{2}\right)\right] } \\
= & {\left[\left(\lambda_{r_{1}^{\prime}} g_{1}+\lambda_{r_{2}^{\prime}} g_{2}\right)\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right),\left(W_{1} \cap W_{2}\right)\left(V_{1} \cap V_{2}\right)\right] . }
\end{aligned}
$$

Thus, there exist $K \in N$ and $K \subseteq\left(W_{1} \cap W_{2}\right)\left(U_{1} \cap U_{2}\right) \cap\left(W_{1} \cap W_{2}\right)\left(V_{1} \cap V_{2}\right)$ such that $\left(\lambda_{r_{1}} f_{1}+\lambda_{r_{2}} f_{2}\right)\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\right.$ $\left.\lambda_{r_{2}^{\prime \prime}} h_{2}\right)=\left(\lambda_{r_{1}^{\prime}} g_{1}+\lambda_{r_{2}^{\prime}} g_{2}\right)\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right)$ on $K . \forall x \in K$,

$$
\begin{aligned}
& \left(\left(\lambda_{r_{1}} f_{1}+\lambda_{r_{2}} f_{2}\right)\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right)\right)(x)=\left(\left(\lambda_{r_{1}^{\prime}} g_{1}+\lambda_{r_{2}^{\prime}} g_{2}\right)\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right)\right)(x) \\
& \left(\lambda_{r_{1}} f_{1}+\lambda_{r_{2}} f_{2}\right)\left(\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right)(x)\right)=\left(\lambda_{r_{1}^{\prime}} g_{1}+\lambda_{r_{2}^{\prime}} g_{2}\right)\left(\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right)(x)\right)
\end{aligned}
$$

and so $\lambda_{r_{1}} f_{1}+\lambda_{r_{2}} f_{2}=\lambda_{r_{1}^{\prime}} g_{1}+\lambda_{r_{2}^{\prime}} g_{2}$ on $\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right)(K)$. Since h_{1} and h_{2} are right R homomorphisms, and $K \subseteq\left(W_{1} \cap W_{2}\right)\left(U_{1} \cap U_{2}\right) \cap\left(W_{1} \cap W_{2}\right)\left(V_{1} \cap V_{2}\right)$, we get $h_{1}(K) \subseteq h_{1}\left(W_{1} \cap W_{2}\right)\left(U_{1} \cap U_{2}\right) \cap h_{1}\left(W_{1} \cap W_{2}\right)\left(V_{1} \cap V_{2}\right) \subseteq$ $\left(U_{1} \cap U_{2}\right) \cap\left(V_{1} \cap V_{2}\right)$ and $h_{2}(K) \subseteq h_{2}\left(W_{1} \cap W_{2}\right)\left(U_{1} \cap U_{2}\right) \cap h_{2}\left(W_{1} \cap W_{2}\right)\left(V_{1} \cap V_{2}\right) \subseteq\left(U_{1} \cap U_{2}\right) \cap\left(V_{1} \cap V_{2}\right)$. So that $R h_{1}(K)+R h_{2}(K) \subseteq\left(U_{1} \cap U_{2}\right) \cap\left(V_{1} \cap V_{2}\right)$. If we use that $h_{1}(K)$ and $h_{2}(K)$ are right ideals, then $R h_{1}(K)+R h_{2}(K)$ is an ideal of R. We assume that $R h_{1}(K)+R h_{2}(K)=\left\{0_{R}\right\}$. Therefore we get $R h_{1}(K) \cap R h_{2}(K) \subseteq R h_{1}(K)+R h_{2}(K)=\left\{0_{R}\right\}$. Since R is a prime semiring, $R h_{1}(K)=\left\{0_{R}\right\}$ or $R h_{2}(K)=\left\{0_{R}\right\}$. Hence we obtain that $\left(\lambda_{r_{1}^{\prime \prime}} h_{1}+\lambda_{r_{2}^{\prime \prime}} h_{2}\right)(K)=\left\{0_{R}\right\}$ for all $r_{1}^{\prime \prime}, r_{2}^{\prime \prime} \in R$ from $\left(\lambda_{r_{1}^{\prime \prime}} h_{1}\right)(K)=$ $\left\{0_{R}\right\}$ and $\left(\lambda_{r_{2}^{\prime \prime}} h_{2}\right)(K)=\left\{0_{R}\right\}$, this contradicts with $d \neq 0$. So $R h_{1}(K)+R h_{2}(K)$ must be nonzero. Therefore $\lambda_{r_{1}} f_{1}+\lambda_{r_{2}} f_{2}=\lambda_{r_{1}^{\prime}} g_{1}+\lambda_{r_{2}^{\prime}} g_{2}$ on $R h_{1}(K)+R h_{2}(K)$. Hence $\left[\lambda_{r_{1}}, R\right]\left[f_{1}, U_{1}\right]+\left[\lambda_{r_{2}}, R\right]\left[f_{2}, U_{2}\right]=$ $\left[\lambda_{r_{1}^{\prime}}, R\right]\left[g_{1}, V_{1}\right]+\left[\lambda_{r_{2}^{\prime}}, R\right]\left[g_{2}, V_{2}\right]$. That is, $r_{1} c_{1}+r_{2} c_{2}=r_{1}^{\prime} c_{1}^{\prime}+r_{2}^{\prime} c_{2}^{\prime}$ and so $a=b$, ending the proof.

Theorem 3 Let R be a right multiplicatively cancellable prime semiring. If a and b are nonzero elements in S such that $a x b=b x a$ for all $x \in R$ and S is left cancellable then there exists $q \in C$ such that $q a=b$.
Proof We may assume that $a \neq \theta$ and $b \neq \theta$. Let U be a nonzero ideal of R such that $a U \subseteq R$ and $b U \subseteq R$, and $V=U a U$. We define a mapping $f: V \rightarrow R, f\left(\sum_{i} x_{i} a y_{i}\right)=\sum_{i} x_{i} b y_{i}, x_{i}, y_{i} \in U$. Let $\sum_{i} x_{i} a y_{i}=\sum_{i} x_{i}^{\prime} a y_{i}^{\prime}, x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime} \in U$. Then,

$$
\begin{aligned}
\left(\sum_{i} x_{i} a y_{i}\right) b & =\left(\sum_{i} x_{i}^{\prime} a y_{i}^{\prime}\right) b \\
\sum_{i} x_{i}\left(a y_{i} b\right) & =\sum_{i} x_{i}^{\prime}\left(a y_{i}^{\prime} b\right)
\end{aligned}
$$

$$
\begin{gathered}
\sum_{i} x_{i}\left(b y_{i} a\right)=\sum_{i} x_{i}^{\prime}\left(b y_{i}^{\prime} a\right) \\
\left(\sum_{i} x_{i} b y_{i}\right) a=\left(\sum_{i} x_{i}^{\prime} b y_{i}^{\prime}\right) a
\end{gathered}
$$

Since S is a right multiplicatively cancellable semiring by Proposition 2, we get $\sum_{i} x_{i} b y_{i}=\sum_{i} x_{i}^{\prime} b y_{i}^{\prime}$. That is, f is well-defined. f is a right R homomorphism. Because $f((x a y) r)=f(x a(y r))=x b(y r)=(x b y) r=f(x a y) r$ for all $x, y \in U$ and $r \in R$. Let q denote the element of Q_{r} determined by f and let p be any element of Q_{r}, with $p K \subseteq R$ for some nonzero ideal K of R. For $x, y \in U$ and $z \in K$ we have $(q p)(z x a y)=q((p z) x a y)=(p z) x b y=p(z x b y)=p q(z x a y)$. Since $K U \subseteq K \cap U$ and $p q=q p$ on $K U$, we get $q p=p q$ for all $p \in Q_{r}$, and so $q \in C$. Since S is multiplicatively cancellable, xqay $=x b y$, for all $x, y \in U$ implies $q a=b$.

References

[1] Beidar, K. I., Martindale III, W. S. and Mikhalev, A.V.: Rings with Generalized Identities, Marcel Dekker, Inc. (1996)
[2] Golan, J. S.: Semirings and Their Applications, Kluwer Academic Publishers (1999).
[3] Dedekind, R.: Über die Theorie der ganzen algebraischen Zahlen, Supplement XI to P. G. Lejeune Dirichlet: Vorlesungen über Zahlentheorie, 4 Aufl., Druck und Verlag, Braunschweig, 1894.
[4] Hilbert, D: Über den Zahlbegriff, Jber. Detsch. Math.-Verein 8, 180-184 (1899).
[5] Hungtington, E. V.: Complete sets of postulates for the theories of positive integral and positive rational numbers, Trans. Amer. Math. Soc. 3, 280-284 (1902).
[6] Krull, W.: Axiomatische Begründung der Algemeinen Idealtheory, SitZ. phys.-med. Soc. Erlangen 56, 47-63 (1924).
[7] Lorenzen, P.: Abstrakte Begründung der multiplikativen Idealtheory, Math. Z. 45, 533-553 (1939).
[8] Macaulay, F. S.: Algebraic Theory of Modular Systems, Cambridge University Press, Cambridge 1916.
[9] Martindale, W. S.: Prime rings satisfying a generalized polynomial identity, J. Algebra 12, 576-584 (1969).
[10] Noether, E.: Abstrakter Aufbau der Idealtheory in algebraischen Zahl und Funktionenkörpern, Math. Ann. 96, 26-61 (1927).
[11] Öztürk, M. A. and Jun, Y. B.: On the centroid of the prime gamma rings, Comm. Korean Math. Soc. 15(3), 469-479 (2000).
[12] Öztürk, M. A. and Jun, Y. B.: On the centroid of the prime gamma rings II, Turk. J. Math. 25(3), 367-377 (2001).

[^0]: *Correspondence: hyazarli@cumhuriyet.edu.tr
 2010 AMS Mathematics Subject Classification: 12K10, 16D30, 16S99, 16Y60,16Y99.

