Turkish Journal of Mathematics Turk J Math
(2013) 37: 577 — 584

© TUBITAK
T U B | TAK Research Article do0i:10.3906/mat-1105-8

http://journals.tubitak.gov.tr/math/

On the centroid of prime semirings

Hasret YAZARLI,"* Mehmet Ali OZTURK?
Cumbhuriyet University, Faculty of Arts and Sciences, Department of Mathematics, 58140 Sivas, Turkey
Adiyaman University, Faculty of Arts and Sciences, Department of Mathematics, Adiyaman, Turkey

Received: 09.05.2011 . Accepted: 13.06.2012 ° Published Online: 12.06.2013 . Printed: 08.07.2013

Abstract: We define and study the extended centroid of a prime semiring. We show that the extended centroid is a

semifield and give some properties of the centroid of a right multiplicatively cancellable prime semiring.
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1. Introduction

Semirings abound in the mathematical world around us. Indeed, the first mathematical structure we encounter—
the set of natural numbers—is a semiring. Historically, semirings first appear implicitly in [3] and later in [8],
[6], [10] and [7], in connection with the study of ideals of a ring. They also appear in [4] and [5] in connection
with the axiomatization of the natural numbers and nonnegative rational numbers. Over the years, semirings
have been studied by various researchers either in their own right, in an attempt to broaden techniques coming
from semigroup theory or ring theory, or in connection with applications. In [9] Martindale first constructed
for any prime ring R a “ring of quotients” Q. After, Oztiirk and Jun introduced the extended centroid of a
prime I'-ring and obtained some results in I'-ring M with derivation which was related to @, and the quotient

I-ring of M [11, 12]. In this paper, we define and study the extended centroid of a prime semiring.

2. Preliminaries
A semiring is a nonempty set R on which operations of addition and multiplication have been defined such that
the following conditions are satisfied:

(1) (R,+) is a commutative monoid with identity element Og;

(2) (R,.) is a monoid with identity element 1g;

(3) Multiplication distributes over addition from either side;

(4) Ogpr =0 =7r0g for all r € R;

(5) 1g # Og.

An element a of semiring R is right multiplicatively cancellable if and only if ba = ca only when b = c.
Left multiplicatively cancellable elements are similarly defined. An element of R is multiplicatively cancellable

if and only if it is both left and right multiplicatively cancellable.
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An element of semiring R is a unit if and only if there exists element r; of R satisfying rry = 1gp = ry7.
The set of all units of R is denoted by U (R). U (R) is submonoid of (R,.) which is in fact a group. If
U (R) = R\ {Ogr} then R is division semiring. A commutative division semiring is semifield.

A nonzero element a of semiring R is a left zero divisor if and only if there exists nonzero element b of
R satisfying ab = Ogr. It is a right zero divisor if and only if there exists a nonzero element b of R satisfying
ba = Or. It is a zero divisor if and only if it is both a left and right zero divisor. A semiring R having no zero

divisors is entire.
Let a be an element of semiring R. An element b of R is additive inverse of a if and only if a +b = 0p.

A left ideal U of a semiring R is a nonempty subset of R satisfying the following conditions:

(1) If a,b € U then a+be U,

(2) If a € U and r € R then ra € U,

(8) U£R (1n ¢ U).

Note that ideals are proper, namely R is not an ideal of itself.

As in the case of rings, an ideal U of a semiring R is prime if and only if whenever HK C U, for ideals
H and K of R, we must have either H CU or K C U. R is a prime semiring if and only if ideal {Og} of

semiring R is prime.

Proposition 1 [2, Proposition 7.4] The following conditions on ideal U of a semiring R are equivalent:
(1) U is prime;
(2) {arblr € R} CU ifand only if a € U or be U;
(3) If a and b are elements of R satisfying (a) (b) C U then either a € U or be U.

If R and S are semirings then function v: R — S is a morphism of semirings if and only if

(1) v(0r) = 0s,

(2) v(1g) = 1s,

(3) y(ri+712) =7 (r1) +v(r2) and 7 (rire) =~y (r1) v (r2) for all r1,r2 € R.

A morphism of semirings which is both injective and surjective is called isomorphism. If there exists
isomorphism between semirings R and S we write R = S. If v : R — S is a morphism of semirings then
Im (y) = {7 (r)|r € R} is a subsemiring of S.

Let R be a semiring. A left R semimodule is a commutative monoid (M, +) with additive identity 0ps
for which we have function R x M — M, denoted by (r,m) — rm and called scalar multiplication, which
satisfy the following conditions for all elements r; and ro of R and all elements m; and msy of M :

(1) (rir2)m =1y (rom),

(2) r(my1+ mz) =rmy +rma,

(3) 1gm=m,

(4) r0pr = 0pr = Ogm.

If R is a semiring and M and N are left R semimodules then a function « from M to N is an R
homomorphism if and only if the following conditions are satisfied:

(1) (m1 4+ ma)a=mia+ maa for all my,me € M;

(2) (rm)a =r(ma) forall m € M and r € R.
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3. Extended centroid
Let R be a prime semiring. Let us denote set of all nonzero ideals of R and R by N = N (R). That is,
N =N (R)={U|{0r} # U is ideal of R} U{R}

U and R are regarded as right R semimodules.
Define relation =y on M ={f:U — R| U € N, f isright R homomorphism} as follows: Let f, g €
M.

f =N g < there exists K € N and K CU NV such that f =g on K

where U € N and V € N are domains of f and g respectively... (x)

For any U € N and V € N it is possible to find a nonzero K € N, since R is a prime semiring. For all
U € N which isdomain of f, f =n f,since U CUNU and f= f on U. Thus =y is reflexive. Let f, g € M
where U € N and V € N are domains of f and g respectively. Suppose f =n ¢g. Then there exists K € N
and K CUNV such that f =g on K. Thus, K € N and K CV NU such that g= f on K,ie., g=n f.
Hence =y is symmetric. Let f, g,h € M where U € N, V € N and H € N are domains of f, g and h
respectively. Suppose f =nx ¢g and g =5 h. Then there exist K1, Ko € N and K1 CUNV and Kb CVNH
such that f =g on Ky and g =h on K. Thus, {Or} #K =KiNK; C (UNV)N(VNH)C UNH and
f=hon K. This implies then f =5 h. Hence =y is transitive. Consequently, =y is an equivalence relation

on M. This gives a chance for us to get partition of M. We then denote the equivalence class by f: U, 1,
where f:: {g:V — R| f =n g} and denote by @, set of all equivalence classes. That is,

Q.= {ﬂ f:U — R right R homomorphism and U € N} )
Now we define an addition "+ on @, as
f+9=1[+y,
for all f,’g\ € Q. Let f,’g\ € @, where U € N and V € N are domains of f and g, respectively. Therefore
f+9g:UNV — R is aright R homomorphism. Assume that f; =y fo and g1 =n g2, where Uy, Us, V3
and V5 are domains of f1, fo, g1 and go, respectively. Then 3IK; C U; NUs, such that f; = f» on K; and

JK5 C Vi N V4 such that g1 = g2 on Ks. Taking K = K3 N K. Then K # {0z} and
K:KlﬂKgg(UlﬂUg)ﬂ(‘/lﬂ‘/g)
= U NV)N(U:NVz).
For any z € K, we have (f1 +¢1) () = fi(2)+g1 () = fa () +g2 () = (fa+ ¢2) (z), and so fi+g1 = fa+g2

on K. Therefore fi + g1 =N fo+ g2 where fi +¢g1 : U1 NVy — R and fo + g2 : Uy N Vo — R are right
R homomorphisms. That is, addition “4” is well-defined. Now we prove that @, is a commutative monoid.

Let f,’g\,ﬁ € @ where U € N, V € N and H € N are domains of f, g and h respectively. Since
UN(VNH)=UNV)NH, wegetforallz e UN(VNH),

[f+(g+n] (@)= f(x)+(g+h)(x) = f(z)+[g(x) +h(z)
=[f (@) +g@)]+h(x)=(f+9) () +h()
=[(f +9)+h](2).
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Hence f+ (g+h)= (f+g)+h on UN(VNH). That is, f + (/g\—i-?b) = (f—i—ﬁ) +h.

Taking g e Q., where 6 : R — R, x — 0Og for all x € R.Let fe Qr, where U € N is domain of f.
Since U CUN R, we get for all x € U,

(f+0)(x)=f(z)+0(z)=f(x) +0r = f(2)
and

O+ f)(x)=0(x)+f(z)=0r+[f(x)=f(2).
Thus, f—i— 0=0+ f: f Hence 8 is the additive identity in Q..

Finally, for any elements f,’g\ € @, where U € N and V € N are domains of f and g respectively, we
haveforall z e UNV =V NU,

(f+g)(@)=f(z)+g(x)=g@)+ f(z)=(9+f) (2).

That is, f—i— g=9-+ f Therefore (Q,,+) commutative monoid.

“won

Now we define a multiplication “.” on @, as
f9="rg

for all f,’g\ € Q,. Let f,’g\ € @, where U € N and V € N are domains of f and g, respectively. Therefore
fg: VU — R is aright R homomorphism. Assume that f; =y fo and g1 =n g2 where Uy, Us, V7 and V5 are
domains of f1, f2, 91 and go respectively. Then dK; C U; N Uy such that f1 = fo on K7 and 3K, C Vi NV,
such that g1 = g2 on Ks. Also ViU; NVoUs C (U NU2) N (ViNTVa) = (U NVi) N (Uz N V2) and there exists
{0g} # K € N such that K C ViU N VoUsy. For any = € K, « € ViU; N VoUs. So that « € ViU; and

x € VoUs. Then, z = Zaibi, a; € ViNVy and b; € Uy N Us. Therefore

finite

(fig1) (x) = fi (g1 (2)) = fr (91 (Zaibi>>

finite

=1 (Zm (ai)bi> =fi (ZQ2 (Ubi)bi>

finite finite

= fa (ZQ2 (a;) bi) = f (92 (Zaibi>>
finite finite

= f2(92 () = (f292) (v),

and so fig1 = fog2 on K. Hence, fig1 =n fog2. That is, 7.” is well-defined. Now we will prove that (Q,,.)

is a monoid. Let f,’g\,ﬁ € @, where U € N, V€ N and H € N are domains of f, g and h, respectively.
Since H (VU) = (HV)U, we get for all z € H (VU),

[(f9) k] (z) = (fg) (h(x)) = f (g (h(2)))
= f((gh) (z)) = (f (gh)) ()
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Hence (fg)h = f(gh) on H (VU). That is, (f/g\) h= f(’g\ﬁ) .

Taking 1 € Q, where 1: R — R, x +— x for all z € R. Let fe @, where U € N is domain of f.
Since RU C U, we get for all x € RU, (f1)(z) = f(1(x)) = f(x) and (1f) () = 1(f (z)) = f(z). Thus,
J/“T = Tf: f Hence 1 is the multiplicative identity in @, . Therefore (Q.,.) is a monoid.

Let f,’g\,ﬁ € @ where U € N, V € N and H € N are domains of f, g and h respectively. Since
(VNH)UCVUNHU, wegetforall ze (VNH)U,

[f g+ M](z) = f(lg+h) (@)= [(g(x)+h(z))
= fg(@) + [ (h(2)) = (fg + fh) (x).

Hence f (g +h) = fg+fh on (VN H)U. That is, f(’g\—i—ﬁ) = f’g\—l—ﬁL Similarly, (f—i— /g\) h= ﬁL—i—/g\ﬁ

Suppose that 6=1. Then, 6 =x 1. That is, there exist K € N and K C RN R such that 6 =1 on K.
Therefore, 6 (z) = 1(x) for all € K. This is a contradiction with {0z} # K. Thus, 6 #1.

Now we prove thatf =0= §f for all fe Q.. Since RU C RUNR and f6 =60 on RU where U € N
is domain of f, we get f h=10. Similarly @\f: 9. Thus, (@, +,.) is a semiring.

Theorem 1 Let R be prime semiring and the relation =y on M defined by (). If R is a right multiplicatively

cancellable semiring, then R may be embedded in Q, as a subsemiring.

Proof Let a € R. Define A\, : R — R by A\, (r) = ar for all » € R. Tt is clear that A, is a right
R homomorphism. Since R € N, then A\, € M. So )\, defines element Xa of Q),.. Hence we may define
A:R— Q, by Aa) =X, for a € R. Clearly X is well-defined. Let A(a) = A(b) for any a,b € R. Then,
Xa = Xb, i.e., A\¢ =n Ap. Hence there exists K € N and K C RN R such that \, = A\, on K. Therefore,
Aa () = X (2) forall z € K. So, ax = bz for all € K. Since R is right multiplicatively cancellable semiring,
we get a =b. That is, A is injective. In order to prove A is a homomorphism, let a, b € R. Then

Aatd () = (a+ b))z = ax + bx = A\ () + N ()
= ()\a + )\b) (CC)

and

Aab () = (ab) x = a (bx) = A\, (bx)

Aa ()‘b (x)) = ()‘a)‘b) (55) )

for all z € R. It follows that A\g45 = Ay + Ap and Mg = Az Ap. Hence

~ —

Aa+b)=Aass = Ao+ Ao = Aa + Ao = A(a) + A (D)

and
A(ab) = Aab = Xads = Aok = A (@) A (b)
Also, A(0g) =6 and A (1) = 1. Therefore R is a subsemiring of Q,. O

Therefore R is a subsemiring of @Q,, we call @, the right quotient semiring of R. For purposes of

convenience, we use ¢ instead of § € @, .
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Lemma 1 Let R be a right multiplicatively cancellable prime semiring. For each nonzero q € Q,, there is
nonzero ideal U of R such that ¢ (U) C R.

Proof Clear. O

Lemma 2 Let R be a right multiplicatively cancellable prime semiring. Then the quotient semiring Q, of R
18 a prime semiring.

Proof Let p, g € Q, be such that pQ,.q = 60. If p # 6 # q, then there exist nonzero ideals U and V of R
such that p(U) C R and ¢ (V) C R. Since p # 0 # ¢, there exist nonzero elements z € U and y € V such
that p (x) # Or # ¢ (y). Noticing that R is a subsemiring of Q,, we have

p(z)Rq(y) Cp(x)Qrq(y) = {Or}

and so p(x) Rq(y) = {0Og}. This is a contradiction. Hence p =6 or ¢ = @, ending the proof. O

Definition 1 The set
C::{QEQT | gf:fgfora”fEQr}

is called the extended centroid of a semiring R.

It is clear that C is a subsemiring of Q,. Let 6 % ¢ € C. Assume that ¢f = 6 for any f € C'. Then,
gcf =0 for any g € Q,.. Hence, cgf =0, i.e., cQ,f = 6. Since 0 # ¢, we get f = 6. Thus, C is an entire

semiring.

Theorem 2 The center C' of Q, is a semifield.

Proof We prove that C' is a semifield such that every 6 # ¢ € C isinverse. Let 6 # ¢ € C'. Since ¢ € Q,., there

exists {Or} # U € N such that ¢U C R. Since R is a prime semiring, cU # {Og}. Taking {Og} #V = cU

ideal of R. Moreover, d: V — R, ca +— a is a R homomorphism.Then, d = [d,V] € Q,. Also, dc =1 since

dc(a) =a=1(a) forall a € U. Thus, § # ¢ € C is inverse. That is, C is a semifield. O
We now let S = RC', a subsemiring of @), containing R. We shall call S the central closure of R. The

same proof used in showing that @), was prime may be employed to show that S is prime.

Proposition 2 Let R be right multiplicatively cancellable prime semiring and S be the central closure of

R.Then S is a right multiplicatively cancellable prime semiring.

Proof Since S = { Z ric;| for all ; € R, ¢; € C}, the proof of proposition is sufficient for the finite sums

finite
with i =1 to 2. Now, let ad = bd, a = ric1 + reca, b = ric) +15ch, 0 # d = ric] +ric) € S, for all
1,72, Tllle27Tlllle2/ S R7 C1,C2, 0117012701117012/ S C and Cc1 = [f17U1]7 Cy = [f27U2]7 Cll = [gl»‘/l]v Cl2 = [927‘/2]7
cf = [h1,W1], ¢4 =[he, Wa]. We have that

([)\Tl ) R] [fl» Ul] + [)‘rz ) R] [f27 U2])([)‘r{’v R] [hh Wl] + [)‘Té’v R] [h27 W2] )
= ([Arg, Bllg1, Vil + [Args B] (92, V2 ) ([Aryr, B [h1, W] + [Avy, R] [ho, Wa] ).
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Then,
([Ar f1, Un] + [y f2, U2]) ([Ary ity Wi + [Ary B, Wal )

= ([Ar 91, V] + [Ary g2, Vo) ([Ary ha, Wi + [Aryha, Wa)
(A f1 4 Ay fo, Ur O UD2]) (A Ba + Ay ho, Wi N W2 )
= (A 91+ Ay g2, Vi N V2 ([Ary ha + Avy ho, Wi 0 Wa))
[(Ars f1 + Ay f2) Ay ha + Ay ha), (Wa N W2) (Un N U2)]
= [(Ar 91 + Aryg2) A bt + Ay h2), (W1 N Wo)(Vi N Va)].
Thus, there exist K € N and K C (WyNWs)(UrNUz) N (Wi NWo)(ViNVz) such that (A, f1 +Ar, fo) (Ao by +
Argh2) = (A g1+ Ay g2)(Aror b1 + Aypho) on K. Vo € K,

(A f1+ Ay fo)Arrha + Mg b)) (@) = (Mg 91 + Ay g2) (Arrr Bt + Ay ho)) ()

(Are fr + Ay f2) (A by + Ay h2) () = (Arg 91 + Ay g2) (Ary By + Ary ha) ()

and 5o A, f1+Ar, fo = Ay g1+ g2 o0 (Ayhi+Xpyhe) (K). Since hy and hy are right R homomorphisms, and
K C (WinWe) (U nU)N (W1 NWa)(ViNTa), we get hy (K) C hy(WiNWa) (U1 NUz) Nhy (W1 NW2)(ViNVa) C
(U1 nU2) N (Vi N V) and hg (K) C he(Wh N Wo)(Uy NU) N hae (W NWR)(ViNTV2) C (U1 NUz) N (VI N V).
So that Rhy (K) 4+ Rhe (K) C (U1 NU2) N (V1 N Vo). If we use that hy (K) and hg (K) are right ideals,

then Rhy (K) 4+ Rhe (K) is an ideal of R. We assume that Rh; (K) + Rha (K) = {0g}. Therefore we
get Rhy (K) N Rhy (K) C Rhy (K) + Rhe (K) = {Or}. Since R is a prime semiring, Rhy (K) = {Ogr} or
Rhy (K) = {Or}. Hence we obtain that (Ayh1 + Apyhe) (K) = {0g} for all r{/,r§ € R from (Awhi) (K) =
{Or} and (Ayyhe2) (K) = {Og}, this contradicts with d # 0. So Rhy (K) + Rhy (K) must be nonzero.
Therefore Ay, fi + Ar, f2 = A g1 + Ay g2 on Rhy (K) + Rho (K). Hence [\, B][f1, U] + [\, R] [f2,U2] =
(A, Rllg1, Vil + [Ary, R g2, V] . That is, 71c1 4+ raca = ric} + 13¢5 and so a = b, ending the proof. O

Theorem 3 Let R be a right multiplicatively cancellable prime semiring. If a and b are nmonzero elements in
S such that axb =bxa for all x € R and S is left cancellable then there exists q € C' such that qa =b.

Proof We may assume that a # 6 and b # 6. Let U be a nonzero ideal of R such that aU C R and

bU C R, and V = UaU. We define a mapping f : V — R, f (Z%M}i) = Zwibyi, zi, y; € U. Let

Zwiayi = Zwéayg, Zi, Yi, x4, y; € U. Then,
i i

(inayi> b= (Zwiayi) b
Zwi (ayib) = Zfﬂi (ay;b)
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in (byia) = Zwi (by;a)
(Zm@%) a= (Zfﬂiby:> a.

Since S is a right multiplicatively cancellable semiring by Proposition 2, we get Zwibyi = Zwiby; That is, f
' i

(2

is well-defined. f isaright R homomorphism. Because f ((zay)r) = f (xa (yr)) = zb(yr) = (xby) r = f (zay)r

for all z,y € U and r € R. Let ¢ denote the element of @, determined by f and let p be any el-

ement of Q,., with pK C R for some nonzero ideal K of R. For z,y € U and z € K we have

(qp) (zzay) = q((pz)zay) = (pz) by = p(zxby) = pq(zxay). Since KU C KNU and pg = qp on KU,

we get gp = pq for all p € @Q,, and so ¢ € C'. Since S is multiplicatively cancellable, xqay = xby, for all

z,y € U implies qa = b. O
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