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1Department of Applied Mathematics, University of Murcia, Murcia, Spain
2Department of Mathematics, Faculty of Sciences, Dokuz Eylül University, Buca, İzmir, Turkey
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Abstract: Let R be a ring and Q be a quiver. We prove the first Finitistic Dimension Conjecture to be true for RQ ,

the path ring of Q over R , provided that R satisfies the conjecture. In fact, we prove that if the little and the big

finitistic dimensions of R coincide and equal n < ∞ , then this is also true for RQ and, both the little and the big

finitistic dimensions of RQ equal n+ 1 when Q is non-discrete and n when Q is discrete. We also prove that RQ is a

quasi-Frobenius ring if and only if R is quasi-Frobenius and Q is discrete.

Key words: Finitistic dimension conjecture, path ring, quasi-Frobenius ring, quiver representation

1. Introduction

In 1960 ([2]), Bass published the so-called Finitistic Dimension Conjectures: For a finite dimensional algebra Λ,

(I) findimΛ = FindimΛ and (II) findimΛ < ∞ , where

findimΛ = sup{pdM | M is a finitely generated left Λ-module with pdM < ∞}

is the (left) little finitistic dimension of Λ, and

FindimΛ = sup{pdM | M is a left Λ-module with pdM < ∞}

is the (left) big finitistic dimension of Λ. The first conjecture was proved to be false in [13]. In fact, it was proved

that for any field k and any integer n ≥ 2, there exist finite dimensional k -algebras Λ such that findimΛ = n ,

while FindimΛ = n+ 1. Also, it has been proved to be true, for instance, for left perfect rings when the little

finitistic dimension is zero ([2]), and for Iwanaga-Gorenstein rings ([8]). However, the second conjecture still

remains open. It has been proved to be true, for example, for finite dimensional monomial algebras ([7]), for

Artin algebras with vanishing cube radical ([14]), or Artin algebras with representation dimension bounded by

3 ([9]).

Our goal in this paper is to provide a partial positive solution to the first Finitistic Dimension Conjecture.

Let R be any ring and Q be any quiver. We prove that the path ring of Q over R , denoted by RQ , does

satisfy the first Finitistic Dimension Conjecture provided that R satisfies the conjecture below, Theorem 3.9.

In fact, we prove that if Findim(R) = findim(R) = n(< ∞), then (i) Findim(RQ) = findim(RQ) = n+1 when

Q is non-discrete, and (ii) Findim(RQ) = findim(RQ) = n when Q is discrete. In particular, we infer from
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Theorem 3.2 in [8] that if R is n -Gorenstein ring, that is a two-sided noetherian ring of finite self-injective

dimension n on both sides, then RQ satisfies the first Finitistic Dimension Conjecture. Moreover, we prove

that RQ is a quasi-Frobenius ring if and only if R is a quasi-Frobenius ring and Q is a discrete quiver, where

R is called quasi-Frobenius if a left R -module is projective if and only if it is injective (or, equivalently, R is a

0-Gorenstein ring) (Proposition 3.10).

2. Preliminaries

A quiver is a directed graph whose edges are called arrows. As usual we denote a quiver by Q , understanding

that Q = (V,E) where V is the set of vertices and E is the set of arrows. An arrow of a quiver from a vertex

v1 to a vertex v2 is denoted by a : v1 → v2 . In this case we write s(a) = v1 as the initial (starting) vertex, and

t(a) = v2 as the terminal (ending) vertex. An arrow a in which s(a) = t(a) is called a loop. A quiver is said to

be discrete if it has no arrows. A path p of a quiver Q is a sequence of arrows an · · · a2a1 with t(ai) = s(ai+1).

Thus s(p) = s(a1) and t(p) = t(an). Two paths p and q can be composed, getting another path qp (or pq )

whenever t(p) = s(q) (t(q) = s(p)).

A quiver Q may be thought as a category in which the objects are the vertices of Q and the morphisms

are the paths of Q .

A representation by modules X of a given quiver Q is a functor X : Q −→ R-Mod . Such a representation

is determined by giving a module X(v) to each vertex v of Q and a homomorphism X(a) : X(v1) → X(v2) to

each arrow a : v1 → v2 of Q . A morphism η between two representations X and Y is a natural transformation,

so it will be a family ηv such that Y (a) ◦ ηv1 = ηv2 ◦ X(a) for any arrow a : v1 → v2 of Q . Thus, the

representations of a quiver Q by modules over a ring R is a category, denoted by (Q,R-Mod).

For a given quiver Q and a ring R , the path ring of Q over R , denoted by RQ , is defined as the free left

R -module, whose base are the paths p of Q , and where the multiplication is the obvious composition between

two paths. This is a ring with enough idempotents, so in fact it is a ring with local units (see [12, Ch.10, §49]).
We denote by RQ-Mod the category of unital RQ -modules (i.e. RQM such that RQM = M ). It is known that

RQ is a projective generator of the category and that the categories RQ-Mod and (Q,R-Mod) are equivalent

categories, and so (Q,R-Mod) is a Grothendieck category with enough projectives.

For a given quiver Q , one can define a family of projective generators from an adjoint situation as it was

shown in [10]. For every vertex v ∈ V and the embedding morphism {v} ⊆ Q the family {Sv(R) : v ∈ V } is

a family of projective generators of Q where the functor Sv : R-Mod −→ (Q,R-Mod) is defined in [10, §28]
as Sv(M)(w) = ⊕Q(v,w)M where Q(v, w) is the set of paths of Q starting at v and ending at w . Then Sv is

the left adjoint functor of the evaluation functor Tv : (Q,R-Mod) −→ R-Mod given by Tv(X) = X(v) for any

representation X ∈ (Q,R-Mod). There is also an algorithm for providing injective cogenerators in (Q,R-Mod)

due to [5].

Throughout the paper, by a representation of a quiver we will mean a representation by modules over

a ring R . The letter R will usually denote a nontrivial associative ring with identity and not necessarily

commutative. All modules will be unitary left R -modules, unless otherwise specified. The category of left

R -modules will be denoted by R-Mod . By pd and id we denote the projective dimension and the injective

dimension respectively. We refer to [6], [5] and [1] for any undefined notion used in the text.
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3. Finitistic Dimension Conjectures over path rings

Any non-discrete quiver Q must contain proper or loop arrows. So the main idea of our proof is to consider

first that Q has an arrow that is not a loop and then that Q has a loop.

In the proof of Lemma 3.1, we use the following result: Let Q be the quiver consisting of a single

vertex v and infinitely many loops α1, α2, . . . . Then the defining basis of the path ring RQ is the set of all

words on {α1, α2, . . .} with the empty word equal to the trivial path v ; this is the identity of RQ . Thus,

RQ ∼= R{x1, x2, . . .} where the elements of R{x1, x2, . . .} are non-commuting polynomials in indeterminates

{x1, x2, . . .} with coefficients in R . The isomorphism being induced by the R -linear map such that v 7→ 1R

and αk 7→ xk for all k = 1, 2, . . .

Lemma 3.1 Let Q be any non-discrete quiver. If Q contains an arrow (respectively, a loop), then any projective

representation over Q is also projective when it is restricted to the quiver Q1 ≡ v1
a // v2 (respectively, Q2 ,

a quiver with one vertex and one loop).

Proof Let P be a projective representation over Q . Then ⊕t(a)=vP (s(a)) → P (v) is always a splitting

monomorphism and P (v) is a projective R -module for all v ∈ V (for any quiver Q). So, in particular, for the

quiver Q1 , P (v1)
P (a) // P (v2) will be a splitting monomorphism. Thus it is a projective representation over

Q1 (since Q1 is left rooted) (see [3]). Now for the quiver Q2 , we may assume that Q contains a vertex with

infinitely many loops, and that Q2 is one of these loops. Then we have that

(Q,R-Mod) ∼= R{x1, x2, . . .} −Mod,

where the elements of R{x1, x2, . . .} are non-commuting polynomials in indeterminates {x1, x2, . . .} with

coefficients in R . Without loss of generality we may assume that (Q2, R-Mod) ∼= R[x1] -Mod . Now if P is a

projective representation over Q , that is, a projective R{x1, x2, . . .} -module, then P ⊕ L = R{x1, x2, . . .}(I)

for some representation L over Q and an index set I . But,

R{x1, x2, . . .} ∼=
⊕

p∈ x1<X>

R[x1] · p

as R[x1] - modules, where X = {x1, x2, . . .} , <X > is the free monoid of words on X , and x1 <X > is the

submonoid of <X > of words which does not start by x1 (notice that if p is the empty word, then we set

R[x1] · p = R[x1]). Since R[x1] · p ∼= R[x1] as R[x1] -modules, then ⊕p∈ x1<X>R[x1] · p is R[x1] -projective. So

P is R[x1] -projective as a direct summand, or equivalently P is a projective representation in (Q2, R-Mod). 2

Lemma 3.2 Let Q1 = (V1, E1) be a subquiver of Q = (V,E) . Assume that every projective representation over

Q is also projective when it is restricted to Q1 . Let M be any representation of Q1 . If pdQ1
(M) = n , then

pdQ(M̃) ≥ n , where M̃ is the following representation of Q : M̃(v) = M(v) ∀v ∈ V1 , M̃(v) = 0 ∀v ∈ V −V1 ,

and M̃(a) = M(a) ∀a ∈ E1 , M̃(a) = 0 ∀a ∈ E − E1 .

Proof Suppose for the contrary that r = pdQ(M̃) < n . Then there exists an exact sequence in (Q,R-Mod)

0 → Pr → · · · → P1 → P0 → M̃ → 0,
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with Pi , 0 ≤ i ≤ r being projective representations over Q . Now by the assumption,

0 → Pr |Q1→ · · · → P1 |Q1→ P0 |Q1→ M̃ |Q1= M → 0

is a projective resolution of M in (Q,R-Mod) with r < n . This contradicts with pdQ1
(M) = n . 2

Lemma 3.3 Let M be a module such that pdR(M) = n . Then:

1. pdQ(M) = n+ 1 , where M ≡ M → 0 is a representation of the quiver Q ≡ • → • .

2. pdR[x](M) = n + 1 , where R[x] is a polynomial ring and M is considered as an R[x]-module (via

xM = 0).

Proof

1. Let us fix the notation X ≡ X → 0 for any module X in this proof. We show that pdQ(M) = n+ 1 by

induction on n . For n = 0, M will be projective. So from the commutative diagram

0 // 0 //

��

M
id //

id
��

M //

0

��

0

0 // M
id // M // 0 // 0

it follows that pdQ(M) = 1. (Indeed, M cannot be projective since M
0 // 0 cannot be a splitting

epimorphism.) Now suppose that pdR(M) = n . Then there exist sequences of modules 0 → Pn → · · · →
P1 → K → 0 and 0 → K → P0 → M → 0, where Pi is a projective module for every 0 ≤ i ≤ n and

K = Ker(P0 → M). Since pdR(K) = n − 1, then by induction hypothesis pdQ(K) = n . Since P0 is a

projective module, we know that pdQ(P0) = 1. Therefore from the short exact sequence of representations

0 → K → P0 → M → 0 we get the long exact sequence of homology

· · · → 0 = ExtnQ(P0, X) → ExtnQ(K,X) → Extn+1
Q (M,X) →

→ Extn+1
Q (P0, X) = 0 → Extn+1

Q (K,X) = 0 → Extn+2
Q (M,X) →

→ Extn+2
Q (P0, X) = 0 → · · · .

So, we have Extn+j
Q (M,X) = 0, ∀j ≥ 2 and for any representation X . Since pdQ(K) = n , then

0 ̸= ExtnQ(K,X) ∼= Extn+1
Q (M,X), and this implies that pdQ(M) = n+ 1.

2. We show that pdR[x](M) = n+1 by induction on n . If n = 0, then by [11, Lemma 9.27] pdR[x](M [x]) =

pdR(M) = 0, that is, M [x] is R[x] -projective, where M [x] = R[x]⊗RM . Moreover, we have a short exact

sequence of R[x] -modules 0 → M [x] → M [x] → M → 0 (see [11, Lemma 9.29]). So, pdR[x](M) = 1 since

M cannot be R[x] -projective (otherwise the sequence would split, but it is impossible). Now suppose that

pdR(M) = n where n ≥ 2. Then we have a short exact sequence of R -modules 0 → K → P → M → 0
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where P is projective and pdR(K) = n − 1. So by induction hypothesis, we know that pdR[x](K) = n

and pdR[x](P ) = 1 (via xK = 0 and xP = 0). In fact, we can consider this short exact sequence over

R[x] -modules, and from this sequence we get the long exact sequence of R[x] -modules:

· · · → 0 = Extn(P, Y ) → Extn(K,Y ) → Extn+1(M,Y ) → Extn+1(P, Y ) = 0

→ Extn+1(K,Y ) = 0 → Extn+2(M,Y ) → Extn+2(P, Y ) = 0 → · · · .

Then we obtain that Extn+j(M,Y ) = 0 ∀j ≥ 2 and for any R[x] -module Y . Since pdR[x](K) = n , then

0 ̸= Extn(K,Y ) ∼= Extn+1(M,Y ). Hence pdR[x](M) = n+ 1.

2

Lemma 3.4 Let Q be any quiver. If Findim(R) = n , then Findim(RQ) ≤ n+ 1 .

Proof Let X be any representation in (Q,R-Mod) such that pdQ(X) < ∞ . Then it is clear that

pdR(X(v)) < ∞ , and so pdR(X(v)) ≤ n for any vertex v of Q . Now from the exact sequence

0 → K → Pn−1 → · · · → P1 → P0 → X → 0

of representations of Q where Pi is a projective representation ∀0 ≤ i ≤ n− 1 and K = Ker(Pn−1 → Pn−2),

we obtain an exact sequence of modules

0 → K(v) → Pn−1(v) → · · · → P1(v) → P0(v) → X(v) → 0

for any vertex v of Q . Then K(v) must be a projective module since pdR(X(v)) ≤ n . Moreover, by the

argument given in the proof of [10, Corollary 28.3], we have the short exact sequence

0 → ⊕a∈ESt(a)(K(s(a))) → ⊕v∈V Sv(K(v)) → K → 0

for the representation K (in fact, it exists for every representation in (Q,R-Mod)). Since the functor S pre-

serves projectives, it follows that pdQ(X) ≤ n+ 1, and this implies that Findim(RQ) ≤ n+ 1. 2

Proposition 3.5 Let Q be a non-discrete quiver. If Findim(R) = n , then Findim(RQ) = n+ 1 .

Proof By Lemma 3.4, Findim(RQ) ≤ n + 1. Now let M be an R -module such that pdR(M) = n . Since

Q is a non-discrete quiver, we can assume that it contains an arrow, say Q1 or a loop, say Q2 . So in this

case, by Lemma 3.3, there exists a representation M1 of Q1 (resp., M2 of Q2 ) such that pdQ1
(M1) = n+ 1

(resp., pdQ2
(M2) = n+1). (Notice that (Q2, R-Mod) ∼= R[x] -Mod.) Thus by Lemmas 3.1 and 3.2, it follows

that pdQ(M̃1) ≥ n+ 1 (resp. pdQ(M̃2) ≥ n+ 1), where M̃1, M̃2 are the representations given in Lemma 3.2.

Hence Findim(RQ) ≥ n+ 1.

2

Corollary 3.6 Let Q be a non-discrete quiver. If R is ring such that Findim(R) = findim(R) = n(< ∞) ,

then Findim(RQ) = findim(RQ) = n+ 1 .
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Corollary 3.7 Let Q be a non-discrete quiver. If R is n-Gorenstein ring, then Findim(RQ) = findim(RQ) =

n+ 1 .

Proof Since R is an n -Gorenstein ring, Findim(R) = findim(R) = n by [8, Theorem 3.2]. So the result

follows by Corollary 3.6. 2

Remark 3.8 If the quiver Q is discrete, then a representation X of Q is projective if and only if X(v) is a

projective module for all v ∈ V . So, if Findim(R) = findim(R) = n , then it is immediate that Findim(RQ) =

findim(RQ) = n .

Theorem 3.9 Let Q be any quiver. If R is a ring such that Findim(R) = findim(R) = n(< ∞) , then

Findim(RQ) = findim(RQ)(< ∞) .

Proof By Corollary 3.6 and Remark 3.8. 2

Recall that a ring R is called quasi-Frobenius (briefly, a QF-ring) if a left R -module is projective if

and only if it is injective. This notion can be extended to the path ring of any quiver Q . So we call RQ a

quasi-Frobenius ring if a representation of (Q,R-Mod) is projective if and only if it is injective.

Proposition 3.10 Let Q be a quiver. Then RQ is a QF-ring if and only if R is a QF-ring and Q is discrete.

Proof (⇒) Suppose on the contrary that Q is not discrete. Then we have two cases:

1. Let Q contain an arrow v1
a // v2 . We know that ⊕v∈V Sv(R) is a projective generator of (Q,R-Mod).

So, the induced representation

Sv(R)(v1)
Sv(R)(a)// Sv(R)(v2) ≡ ⊕Q(v,v1)R

// ⊕Q(v,v2)R

of the quiver v1
a // v2 is projective (see [3, Theorem 3.1]). But since Q(v, v1) ⫋ Q(v, v2), Sv(R)(a)

cannot be a splitting epimorphism, and so the representation cannot be injective (see [4, Theorem 4.2]).

2. Let Q contain loops with one vertex. Then (Q,R-Mod) ∼= R{x1, x2, . . .} -Mod, where the elements of

R{x1, x2, . . .} are non-commuting polynomials in indeterminates {x1, x2, . . .} with coefficients in R . So

R{x1, x2, . . .} is a projective module over itself, but not injective since it is not divisible (for instance, x1

doesn’t have an inverse).

So in each case we have a contradiction with RQ to be a QF-ring. Hence Q must be a discrete quiver. Now

it is easy to notice that a representation P of (Q,R-Mod) is projective (resp., injective) if and only if P (v) is

a projective left R -module, for each v ∈ V (resp., an injective left R -module, for each v ∈ V ). For instance

this can be derived from the fact that a discrete quiver is, in particular, left rooted and right rooted, so we

can use the characterization of projective (resp., injective) representations given in [3, Theorem 3.1] (resp.,

[4, Theorem 4.2]). Hence, if M is a projective (resp., an injective) R -module then we can easily construct a

projective (resp., injective) representation X in (Q,R-Mod) by the assignment X(v) = M and X(w) = 0,

∀w ∈ V,w ̸= v (where v is any fixed vertex of Q). Then by the hypothesis X will be an injective (resp., a

projective) representation in (Q,R-Mod), that is, M will be an injective (resp., a projective) left R -module.

So R is a QF-ring.
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(⇐) It follows from the previous observation on projective (resp., injective) representations of discrete

quivers. 2
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