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Abstract: For a proper subalgebra K of a finite dimensional Lie algebra L , a pair (A,B) of subalgebras of L is called

a θ -pair if L = 〈A, K〉 , B is the largest ideal of L contained in A ∩ K and for each proper subalgebra C/B of A/B

which is an ideal of L/B , we have L �= C + K . In this article, using this concept, we give some characterizations of

solvability and supersolvability of a finite dimensional Lie algebra.
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1. Introduction

All Lie algebras referred to in this article are of finite dimension at least two over a fixed field Λ. Let L be
a Lie algebra with a subalgebra K . Then the Frattini ideal, the core (with respect to L) of K , which is the

largest ideal of L in K , and the centralizer of K in L are denoted by ϕ(L), KL and CL(K), respectively.
Also, K is called a 2-maximal subalgebra of L if K is a maximal subalgebra of some maximal subalgebra M

of L .
The relation between the properties of subalgebras of a Lie algebra L and the structure of L has been

studied extensively. In [8] and [10], Towers introduced, respectively, the concepts of c-ideality of subalgebras
and the ideal index of maximal subalgebras of a Lie algebra and showed that these concepts play important
roles in the study of Lie algebra theory (see also [6]). The first two authors in [5] presented the notion of
θ -pair for maximal subalgebras and investigated its influence on the structure of some certain Lie algebras. In
this article, we define the θ -pair for proper subalgebras and give some equivalent conditions for solvability and
supersolvability of a Lie algebra.

Definition. Let K be a proper subalgebra of a Lie algebra L. A pair (A, B) of subalgebras of L is said to be
a θ -pair for K in L if it satisfies the following conditions:

(i) L = 〈A, K〉 and B = (A ∩ K)L ;

(ii) if C/B is a proper subalgebra of A/B which is an ideal of L/B , then L �= C + K .

In addition, if A is an ideal of L, then the pair (A, B) is called an ideal θ -pair for K .

This is analogous to the concept of θ -pair for any proper subgroup of a finite group given by Li and Li
in [4]; and it has since been studied by a number of authors (see [2,3]).
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Given a proper subalgebra K of a Lie algebra L , we denote by θL(K) the set of all θ -pairs for K in L .

It is easily seen that θL(K) is the same as the set of θ -pairs for maximal subalgebras as defined in [5] when K

is a maximal subalgebra of L . We define a partial order on θL(K) by means of (A, B) � (C, D) if and only if
A ≤ C , and the maximal elements with respect to ordering are called maximal θ -pairs.

The following two results give some information on θ -pairs which will be needed in our investigation.

Lemma 1.1 Let L be a Lie algebra with a proper subalgebra K and an ideal N . Then

(i) if (A, B) is a maximal θ -pair in θL(K) and N ⊆ B ∩K , then (A/N, B/N) is a maximal θ -pair in

θL/N (K/N) . Conversely, if (A/N, B/N) is a maximal θ -pair in θL/N(K/N) , then (A, B) is a maximal θ -pair

in θL(K) ;

(ii) if (A, B) ,(C, D) ∈ θL(K) and A ≤ C , then B ≤ D ;

(iii) if (A, B) is an ideal θ -pair in θL(K) , then A ∩ KL = B ;

(iv) if (A, B) is a maximal ideal θ -pair in θL(K) and N is contained in K , then N ⊆ B . In particular,
B = KL .

Proof (i) It is straightforward from the definition of θ -pair.

(ii) It is obvious that B + D is an ideal of L contained in C ∩ K and then B ≤ D .

(iii) It is readily seen that (A ∩ K)L = A ∩ KL .

(iv) Suppose that on the contrary N � B . Then A + N is an ideal of L properly containing N and

(A + N)∩KL = B + N . If C is an ideal of L with B + N ⊆ C ⊆ A + N and L = C + K , then (A ∩C)/B is

an ideal of L/B contained in A/B and

(A ∩ C) + K = ((A + N) ∩ C) + K = C + K.

Hence, using the assumption, we have A ∩ C = B or A ∩ C = A . In the former case C = B + N and in the
second case C = A+N , We therefore conclude that (A+N, B +N) is an ideal θ -pair in θL(K), contradicting

the maximality of (A, B) in θL(K). �

Lemma 1.2 Let L be a Lie algebra with a proper subalgebra K , and (A, B), (C, D) ∈ θL(K) in which A is

an ideal of L contained in C . Then C is an ideal of L and A/B ∼= C/D . In addition, if A ∩ K = B , then
C ∩ K = D .
Proof As A + D is an ideal of L contained in C and L = (A + D) + K , the condition (ii) in the definition
of θ -pair yields that A + D = C and so C is an ideal of L . We also have A ∩ D ≤ A ∩ KL = B , whence
A ∩ D = B and A/B ∼= C/D . Now, if A ∩ K = B , then C ∩ K = (A + D) ∩ K = (A ∩ K) + D = D . This
completes the proof of the lemma. �

Using the above lemma, we regard that maximal ideal θ -pairs for a proper subalgebra K of L are
maximal elements in θL(K).

Recall that the abelian socle of a Lie algebra L , Asoc(L), is the union of all minimal abelian ideals. It

is easily checked that Asoc(L) is the direct sum of minimal abelian ideals. Also, we denote the nil radical of L

by N(L). The following proposition will be used in the third section.

Proposition 1.3 ([7]) Let L be a Lie algebra. Then
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(i) N(L/ϕ(L)) = N(L)/ϕ(L) .

(ii) If ϕ(L) = 0 , then Asoc(L) = N(L) .

2. Some characterizations of solvable Lie algebras

In this section, we first characterize the solvable Lie algebras in terms of ideal θ -pairs.

Theorem 2.1 A Lie algebra L is solvable if for each 2-maximal subalgebra K of L, there is a maximal ideal
θ -pair (A, B) in θL(K) such that CL/B(A/B) �= 0 .

Proof It is obvious that L cannot be simple. Let N be a minimal ideal of L and K/N be a 2-maximal

subalgebra of L/N . By hypothesis, there is a maximal ideal θ -pair (A, B) in θL(K) with CL/B(A/B) �= 0.

Note that N ≤ B by Lemma 1.1(iv). Invoking Lemma 1.1(i), (A/N, B/N) is a maximal ideal θ -pair in

θL/N (K/N) and moreover, C(L/N)/(B/N)((A/N)/(B/N)) ∼= CL/B(A/B) �= 0. By induction, L/N is solvable.

If N ′ is another minimal ideal of L , then L/N ′ is solvable and N ∩ N ′ = 0. Hence L is solvable. We thus

assume that L has a unique minimal ideal N and L/N is solvable. If ϕ(L) �= 0, then the result holds thanks

to [7; Theorem 5]. If ϕ(L) = 0, then there is a maximal subalgebra M of L with ML = 0. Suppose now that

K is a maximal subalgebra of M and (E, 0) is a maximal ideal θ -pair in θL(K) such that CL(E) �= 0. It

follows that N ⊆ E ∩ CL(E) = Z(E), and therefore L is solvable, which gives the required result. �

Combining this with Lemma 1.2, we have the following corollary.

Corollary 2.2 A Lie algebra L is solvable if for each 2-maximal subalgebra K of L, θL(K) contains an ideal

θ -pair (A, B) such that A/B is abelian.

By arguments similar to those used in the proof of Theorem 2.1 and applying Lemma 1.2, we can further
improve the above corollary as follows.

Theorem 2.3 A Lie algebra L is solvable if and only if for each 2-maximal subalgebra K of L, there is an
ideal θ -pair (A, B) in θL(K) such that the factor Lie algebra A/B is solvable.

In proving the following result, we have used the argument given by Towers ([8; Theorem 3.4]).

Theorem 2.4 A Lie algebra L is solvable if and only if for each maximal solvable subalgebra K of L, there
is an ideal θ -pair (A, B) in θL(K) such that A ∩ K = B .

Proof The necessity holds by [5; Theorem A(v)]. Conversely, let S(L) denote the largest solvable ideal of L .

Suppose to the contrary that L is non-solvable and x1 ∈ L − S(L). Then x1 ∈ K for some maximal solvable

subalgebra K of L . By the assumption, there is an ideal θ -pair (A1, B1) in θL(K) such that A1 ∩ K = B1 .

Since B1 ⊆ S(L), it follows that x1 ∈/ A1 and the factor Lie algebra L/A1 is solvable. A1 ⊆ S(L) implies that

L is solvable, a contradiction. So, suppose that A1 � S(L) and x2 ∈ A1 − S(L). The same argument shows

that there is an ideal θ -pair (A2, B2) for K such that x2 ∈/ A2 and L/A2 is solvable.

Clearly, A1 ∩A2 is a proper subalgebra of A1 , and A1 ∩A2 ⊆ S(L) implies that L is solvable. So, we assume

that A1∩A2 � S(L) and x3 ∈ (A1∩A2)\S(L). Continuing in this way, we find ideals A1, ..., An of L such that
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A1 ∩A2 ∩ ...∩ An ⊆ S(L) and L/Ai is solvable for each 1 ≤ i ≤ n . Since L/∩n
i=1 Ai is isomorphic to a subal-

gebra of
n⊕

i=1

(L/Ai), the factor Lie algebra L/∩n
i=1Ai and then L are solvable, which is again a contradiction. �

Note that Theorem 2.4 remains valid if the statement “maximal solvable subalgebra” is replaced by
“maximal nilpotent subalgebra”.

We now give additional criteria for the solvability of Lie algebras by using maximal θ -pairs.

Theorem 2.5 A Lie algebra L is solvable if and only if for every 2-maximal subalgebra K of L and each
maximal θ -pair (A, B) in θL(K) , the factor Lie algebra A/B is solvable.

Proof The necessity holds trivially. Conversely, let L be a non-solvable Lie algebra of the smallest dimension
satisfying the hypothesis and N be a minimal ideal of L . Owing to Lemma 1.1(i), the factor Lie algebra L/N

is solvable and then, without loss of generality, we may assume that N is the unique minimal ideal of L and
ϕ(L) = 0. So, there is a maximal subalgebra M of L with ML = 0. Now, suppose that K is a maximal

subalgebra of M and (A, 0) is a maximal pair in θL(K). If N is contained in A then N is solvable and so

is L , a contradiction. Otherwise, the maximality of (A, 0) yields that (A + N, 0) does not belong to θL(K).
Hence, we find an ideal B of L such that B < A+N and L = B +K . If we choose the ideal C to be minimal
with respect to L = C + K , then (C, 0) is a θ -pair for K . Alternatively, C ≤ D for some maximal θ -pair

(D, 0) in θL(K). Since D is solvable by hypothesis, it follows that N and then L are solvable, which is again
a contradiction. This completes the proof. �

If Lie algebras are considered over a field of characteristic zero, we can improve the above theorem by
showing the following.

Theorem 2.6 Let L be a Lie algebra over a field of characteristic zero. If for every 2-maximal subalgebra K

of L, there is a maximal θ -pair (A, B) in θL(K) such that the factor Lie algebra A/B is solvable, then L is
solvable.
Proof It is proved using similar arguments as in the proof of [5; Theorem A(iv)]. �

3. Some characterizations of supersolvable Lie algebras

This section is devoted to presenting some sufficient conditions implying a Lie algebra L to be supersolvable.

Theorem 3.1 Let L be a Lie algebra in which for every maximal subalgebra K of each maximal nilpotent
subalgebra of L, there is an ideal θ -pair (A, B) in θL(K) such that dim(A/B) = 1 . Then L is supersolvable.

Proof It is readily seen from the hypothesis that Asoc(L) �= 0. Let L be a minimal counterexample and N

a minimal abelian ideal of L with dim(L/N) > 1. We first prove that L/N is supersolvable. Suppose that

U/N is a maximal nilpotent subalgebra of L/N and K/N is a maximal subalgebra of U/N . We consider the
following two cases.

Case 1: N is contained in ϕ(U). Then U/ϕ(U) is nilpotent and consequently U is a maximal nilpotent

subalgebra of L by a theorem of Barnes [1]. By hypothesis, there is an ideal θ -pair (A, B) in θL(K) such

that dim(A/B) = 1. If N ≤ A , it follows that (A/N, B/N) is an ideal θ -pair in θL/N (K/N). So, we

assume that N � A . Then A ∩ N = B ∩ N = 0 and A/B ∼= (A + N)/(B + N). We can thus deduce that

((A + N)/N, (B + N)/N) ∈ θL/N (K/N) and (A + N)/(B + N) is one-dimensional.
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Case 2: N is not contained in ϕ(U). Then U = N + M for some maximal subalgebra M of U . If

we choose the subalgebra D to be minimal with respect to U = N + D , then Lemma 7.1 of [9] follows that

N ∩ D < ϕ(D). However, U/N ∼= D/(N ∩ D) is nilpotent, implying that D is nilpotent. Consider the

subalgebra V of U to be a maximal element in the (non-empty) collection of nilpotent subalgebras, D say,
of U such that U = N + D . One may readily verify that V is a maximal subalgebra of L and moreover,
K = K ∩ (N + V ) = N + (K ∩ V ) = N + H in which H is a maximal nilpotent subalgebra of V with

K ∩ V ⊆ H . By the assumption, there is an ideal θ -pair (A, B) in θL(K) such that dim(A/B) = 1. If

N ≤ A , then (A/N, B/N) is an ideal θ -pair in θL/N (K/N). So, suppose that N ∩ A = 0 and (A + N)/N

is a minimal ideal of L/A . As L/A is a nilpotent Lie algebra, we conclude that (A + N)/A ⊆ Z(L/A) and

then [N, L] ⊆ N ∩ A = 0. Thus, N is central and N + V is a nilpotent subalgebra of L containing V .
But this follows that N ≤ V and K = H . Now, proceeding as in case 1, it may be inferred that the pair
((A + N)/N, (B + N)/N) is an ideal θ -pair in θL/N (K/N) such that (A + N)/(B + N) is one-dimensional.

Therefore L/N satisfies the hypothesis of the theorem, and hence L/N is supersolvable.

Since the class of all supersolvable Lie algebras is a saturated formation, we may assume that N is the
unique minimal abelian ideal of L and furthermore, ϕ(L) = 0. We show that dim(N) = 1. We have that
L = N + M for some maximal subalgebra M of L with ML = 0. Let V be a maximal nilpotent subalgebra
of L containing N . Then V = N + (V ∩ M). We choose H to be a maximal subalgebra of V containing

V ∩M , and assume that (A, B) is an ideal θ -pair in θL(H) such that dim(A/B) = 1. If B �= 0 then N ⊆ H ,
implying that V = H , a contradiction. Hence we must have B = 0 and then dimN = dimA = 1, which is
again a contradiction. Therefore L is supersolvable, as desired. �

An argument similar to that employed in proving Theorem 3.1 allows us to establish the following result
(the proof of which is omitted).

Theorem 3.2 Let L be a Lie algebra with Asoc(L) �= 0 . If for every maximal subalgebra K of each maximal

nilpotent subalgebra of L, there is an ideal θ -pair (A, B) in θL(K) with A ∩ K = B , then L is supersolvable.

In the next result, we establish, under some conditions, that Theorem 3.2 holds with “maximal nilpotent
subalgebras” replaced by “the largest nilpotent ideal”, which is much easier to find.

Theorem 3.3 Let L be a solvable Lie algebra over a field of characteristic zero. If for every maximal subalgebra
K of N(L) , there is an ideal θ -pair (A, B) in θL(K) with A ∩ K = B , then L is supersolvable.

Proof We use induction on the dimension of L . We distinguish two cases:

Case 1: ϕ(L) �= 0. Because of Proposition 1.3(i), any maximal subalgebra of N(L/ϕ(L)) may be

regarded as K/ϕ(L), in which K is a maximal subalgebra of N(L). By hypothesis, there is an ideal θ -

pair (A, B) in θL(K) with A ∩ K = B . If ϕ(L) is contained in B , then (A/ϕ(L), B/ϕ(L)) is an ideal

θ -pair in θL/ϕ(L)(K/ϕ(L)) with A/ϕ(L) ∩ K/ϕ(L) = B/ϕ(L). We therefore assume that ϕ(L) � B . Then

A ∩ ϕ(L) = B ∩ϕ(L), implying that A/B ∼= (A + ϕ(L))/(B + ϕ(L)). Hence (A + ϕ(L)/ϕ(L), B + ϕ(L)/ϕ(L))

is an ideal θ -pair in θL/ϕ(L)(K/ϕ(L)) such that (A + ϕ(L)) ∩ K = B + ϕ(L). So, by applying induction, we

deduce that the factor Lie algebra L/ϕ(L) and then, by [1; Theorem 7], L are supersolvable.

Case 2. ϕ(L) = 0. Invoking Proposition 1.3(ii), N(L) = C1 ⊕ C2 ⊕ . . . ⊕ Cn , in which the Ci ,

i = 1, . . . , n , are minimal abelian ideals of L . Note that the derived subalgebra L2 of L is nilpotent, and
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then L2 is a subalgebra of N(L). We first assume that L2 = N(L). If K is a maximal subalgebra of

N(L), it follows from the hypothesis of the theorem that there is an ideal θ -pair (A, B) in θL(K) with

A ∩ K = B . As L/A is isomorphic to a quotient of K , L2 is contained in A . Consequently, we must have

A = L and B = K . This shows that every maximal subalgebra of N(L) is ideal in L . We claim that any
ideal Ci is one-dimensional. To see this, suppose that C∗

i is any maximal subalgebra of Ci . It is obvious that

K := C∗
i +(C1 ⊕ . . .⊕ Ĉi ⊕ . . .⊕Cn) is a maximal subalgebra of N(L) (here Ĉi means that Ci is omitted from

the direct sum). Therefore K and C∗
i = K ∩ Ci are ideals in L . The minimality of Ci leads to the conclusion

that C∗
i = 0 and that dimCi = 1, as claimed. Now, we put Ni = C1 ⊕ . . . ⊕ Ci for i = 1, . . . , n . Then N(L)

has a chain 0 = N0 ≤ N1 ≤ N2 ≤ . . . ≤ Nn = N(L), where Ni is an ideal in L and dim(Ni/Ni−1) = 1, for

each i in the internal 1 ≤ i ≤ n . Noting that L/Nn = L/L2 is abelian, an easy induction shows that the factor

Lie algebra L/Ni is supersolvable for each 0 ≤ i ≤ n . In particular, L ∼= L/N0 is supersolvable.

We now assume that L2 is a proper subalgebra of N(L). Choose N to be a minimal abelian ideal of L

with N ∩L2 = 0. We show that N(L/N) = N(L)/N . Put N(L/N) = H/N for some ideal H of L . Certainly,

L2 lies in H and then H is isomorphic to a subalgebra of the nilpotent Lie algebra N(L/N)⊕H/L2 . But this

follows that H = N(L). An argument similar to that used in case 1 may be used to show that the factor Lie

algebra L/N is supersolvable. Therefore L/N ⊕ L/L2 and L ∼= L/(N ∩ L2) are supersolvable. The proof of
the theorem is complete. �

We end the paper by giving some other sufficient conditions for supersolvability of Lie algebras. We omit
the proof which is quite similar to the proof of [5; Theorem B].

Theorem 3.4 A Lie algebra L is supersolvable if one of the following conditions holds:

(i) For any 2-maximal subalgebra K , there is a maximal θ -pair (A, B) in θL(K) with Z∗(L/B) �= 0 ,

where Z∗(X) denotes the terminal member in the upper central series of a Lie algebra X .

(ii) For any 2-maximal subalgebra K , there is a maximal θ -pair (A, B) in θL(K) with ϕ(L) �= 0 .
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