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Abstract: In this article we introduce the notion of the equivalence relation, isoclinism, on the central extensions of

Lie algebras, and determine all central extensions occurring in an isoclinism class of a given central extension. We also

show that under some conditions, the concepts of isoclinism and isomorphism between the central extensions of finite

dimensional Lie algebras are identical. Finally, the connection between isoclinic extensions and the Schur multiplier of

Lie algebras are discussed.
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1. Introduction

In 1940, P. Hall [6] introduced an equivalence relation on the class of all groups called isoclinism, which is weaker
than isomorphism and plays an important role in classification of finite p-groups. This notion has since been
further studied by a number of authors, including Bioch [4], Hekster [7], Jones and Wiegold [8], and Weichsel

[16]. In 1994, K. Moneyhun [10] gave a Lie algebra analogue of isoclinism as follows: Two Lie algebras L1

and L2 are isoclinic if there exists an isomophism γ between the central quotients L1/Z(L1) and L2/Z(L2)

and an isomorphism β between the derived subalgebras L2
1 and L2

2 such that γ and β are compatible with
the commutator maps of L1 and L2 . Evidently, this produces a partition on the class of all Lie algebras into
equivalence classes, the so-called isoclinism families. Note that the class of all abelian Lie algebras, whose
classification is completely known, constitutes the isoclinism family of the zero Lie algebra. In [10], it has
been proved that each isoclinism family contains a special Lie algebra, called a stem algebra, such that its
centre is contained in its derived subalgebra. The result yields that the concepts of isoclinism and isomorphism
between Lie algebras of the same finite dimension are identical. The structure of all Lie algebras occurring in
an isoclinism family has been extensively studied in [12] and also some applications have been given in [2, 11,

12, 14]. Furthermore, Salemkar et. al [15] generalized the notion of isoclinism to the notion of n-isoclinism,
that is the isoclinism with respect to the variety of nilpotent Lie algebras of class at most n .

In the next section, we introduce the concept of isoclinism on the central extensions of Lie algebras,
which is a generalization of the above mentioned work of Moneyhun, and give some equivalent conditions under
which two central extensions are isoclinic. In Section 3, we show that under some conditions, the concepts
of isoclinism and isomorphism between the central extensions of finite dimensional Lie algebras are identical.
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Finally, Section 4 is devoted to the study of the connection between isoclinism and the subalgebras of the Schur
multipliers.

Note that some results on the isoclinism and the Schur multiplier of Lie algebras also hold for the group
case (see [5, 12, 14]). However, the results in Section 3 are not generally true in the case of groups (see Example

3.8).

Throughout, all Lie algebras are considered over a fixed field Λ, and the square bracket [ , ] denotes the

Lie multiplication. An exact sequence e : 0 → M
⊆→ K → L → 0 of Lie algebras is a central extension of L if

M ⊆ Z(K). Furthermore, if M ⊆ K2 then e is called a stem extension. Obviously, eK : 0 → Z(K) → K →
K/Z(K) → 0 is always a central extension. The sequence e is said to be finite dimensional when K is of finite
dimension. If the following diagram of Lie algebras and Lie homomorphisms is commutative

e1 : 0 −−−−→ M1 −−−−→ K1
π1−−−−→ L1 −−−−→ 0

⏐
⏐
�β|M1

⏐
⏐
�β

⏐
⏐
�γ

e2 : 0 −−−−→ M2 −−−−→ K2
π2−−−−→ L2 −−−−→ 0,

where the rows are central extensions and β|M1 is the restriction of β to M1 , then the triple (β|M1 , β, γ) :
e1 → e2 is called a morphism from e1 to e2 . In particular, if β, γ are isomorphisms then e1 and e2 are said
to be isomorphic and are denoted by e1

∼= e2 .

2. Isoclinic extensions

The following definition is vital in our investigation which is similar to [9; Definitions 1.1, 1.2] for the group
case.

Definition 2.1 Let ei : 0 → Mi
⊆→ Ki

πi→ Li → 0 , i = 1, 2 , be two central extensions.

(i) The extensions e1 and e2 are said to be isoclinic if there exist Lie isomorphisms γ : L1 → L2

and β′ : K2
1 → K2

2 such that for all k1, k2 ∈ K1 we have β′([k1, k2]) = [k′
1, k

′
2] , where k′

i ∈ K2 and

γπ1(ki) = π2(k′
i), i = 1, 2 . In this case, the pair (γ, β′) is called an isoclinism from e1 to e2 and we write

(γ, β′) : e1 ∼ e2 . In particular, K1 and K2 are isoclinic as [10] if their corresponding relative central extensions
eK1 and eK2 are isoclinic.

(ii) A morphism (β|M1 , β, γ) : e1 → e2 is called isoclinic if the pair (γ, β|K2
1
) is an isoclinism from e1 to

e2 . Moreover, (β|M1 , β, γ) is said to be an isoclinic epimorphism or monomorphism if β is onto or one-to-one,
respectively.

Evidently, isoclinism between the central extensions is an equivalence relation, and then it produces the
class of all central extensions of Lie algebras into equivalence classes, called isoclinism families.

There are many examples of isoclinic morphisms. We list only a few of them. Suppose that e : 0 → M
⊆→

K
π→ L → 0 is a central extension.

(1) Let A be an abelian Lie algebra and for any Lie algebra X , the maps πX : X ⊕ A → X and
iX : X → X ⊕ A denote the projective and canonical homomorphisms, respectively. Then the extension

e ⊕ A : 0 → M ⊕ A → K ⊕ A
ππK→ L → 0 is central, and the morphisms (πM , πK, 1L) : e ⊕ A → e and

(iM , iK, 1L) : e → e ⊕ A are isoclinic epimorphism and isoclinic monomorphism, respectively.
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(2) Let N be an ideal of M with N ∩K2 = 0, π̄ : K/N → L is the epimorphism induced by π and for

any ideal Y of K containing N , the map ρY : Y → Y/N denotes the natural epimorphism. Then the extension

e/N : 0 → M/N
⊆→ K/N

π̄→ L → 0 is central, and (ρM , ρK , 1L) : e → e/N is an isoclinic epimorphism. In

particular, if (β|M1 , β, γ) : e1 → e2 is an isoclinic epimorphism of the central extensions, then there is an ideal

N of M1 such that N ∩ K2
1 = 0 and e2

∼= e1/N .

(3) Let T be a subalgebra of K such that K = T + M and π(T ) = L . Then the extension

eT : 0 → T ∩ M → T
π|T→ L → 0 is central and (i|T∩M , i, 1L) : eT → e is an isoclinic monomorphism,

where i : T → L is the inclusion map. In particular, if (β|M1 , β, γ) : e1 → e2 is an isoclinic monomorphism,
then there is a subalgebra T of K2 such that K2 = T + M2 and e1

∼= e2T .

In what follows, we use the above notations. The following lemmas give some fundamental properties of
isoclinic extensions whose proofs are simple and left to the reader.

Lemma 2.2 Let (γ, β′) : e1 ∼ e2 be an isoclinism. Then

(i) γπ1(k) = π2β
′(k) for all k ∈ K2

1 .

(ii) β′(M1 ∩ K2
1 ) = M2 ∩ K2

2 .

(iii) β′([k1, x]) = [k2, β
′(x)] for all x ∈ K2

1 , ki ∈ Ki , i = 1, 2 , with γπ1(k1) = π2(k2) .

Lemma 2.3 (i) If (γ, β′) : e1 ∼ e2 is an isoclinism, then γ induces an isomorphism γ′ : K1/Z(K1) →
K2/Z(K2) such that the pair (γ′, β′) is an isoclinism from K1 to K2 , and moreover M1 = Z(L1) if and only

if M2 = Z(L2) .

(ii) A morphism (β|M1 , β, γ) : e1 → e2 is isoclinic if and only if γ is an isomorphism and ker β∩K2
1 = 0 .

(iii) The composition of isoclinic morphisms is an isoclinic morphism.

The following main result of this section gives some equivalent conditions under which two central
extensions are isoclinic. In proving the result, we have used the argument given by Beyl and Tappe [3] in

the case of groups (see also [9; Theorems 2.4, 2.5]).

Theorem 2.4 Let e1 and e2 be two central extensions. Then the following statements are equivalent:

(i) e1 and e2 are isoclinic.

(ii) There exists a central extension e′ together with isoclinic epimorphisms from e′ onto e1 and e2 .

(iii) There exists a central extension e′′ together with isoclinic monomorphisms from e1 and e2 into e′′ .

(iv) There exist an abelian Lie algebra A , a central extension e′ , an isoclinic monomorphism from e′

into e1 ⊕ A , and an isoclinic epimorphism from e′ onto e2 .

(v) There exist an abelian Lie algebra B , a central extension e′′ , an isoclinic epimorphism from e1 ⊕ B

onto e′′ , and an isoclinic monomorphism from e2 into e′′ .

In the above theorem, if we restrict ourselves to isoclinic Lie algebras, the following consequence is
obtained, which was already proved in [12] using another technique.

Corollary 2.5 Let K1 and K2 be two arbitrary Lie algebras. Then the following statements are equivalent:

(i) K1 and K2 are isoclinic.
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(ii) There exist an abelian Lie algebra A , a subalgebra L of K1 ⊕A with K1 ⊕A = L +Z(K1 ⊕A) and

an ideal N of L with N ∩ L2 = 0 such that L/N is isomorphic to K2 .

(iii) There exist an abelian Lie algebra B , an ideal M of K1 ⊕ B with M ∩ (K1 ⊕ B)2 = 0 , and a

subalgebra T of (K1 ⊕ B)/M with (K1 ⊕ B)/M = T + Z((K1 ⊕ B)/M) such that T is isomorphic to K2 .

The rest of this section will provide a proof for Theorem 2.4.

Using the assumptions of Theorem 2.4, let γ : L1 → L2 be an isomorphism and K̄ = {(k1, k2)|ki ∈
Ki, i = 1, 2, γπ1(k1) = π2(k2)} . Then K̄ is a subalgebra of K1 ⊕ K2 and ē : 0 → M1 ⊕ M2

⊆→ K̄
δ→ L1 → 0 is

a central extension, in which δ(k1, k2) = π1(k1), for all (k1, k2) ∈ K̄ . Assuming A = K̄/K̄2 , we now have the
following lemmas.

Lemma 2.6 The isomorphism γ : L1 → L2 induces an isoclinism from e1 to e2 if and only if there exist
isoclinic epimorphisms from ē onto e1 and e2 .

Proof The necessity of the condition holds trivially.

Conversely, let γ induce an isoclinism from e1 to e2 . Then there is an isomorphism β′ : K2
1 → K2

2 induced

by γ such that the pair (γ, β′) is an isoclinism from e1 to e2 . It is readily verified that K̄2 = {(k1, β
′(k1))|k1 ∈

K2
1} . Assume that βi : K̄ → Ki , i = 1, 2, are the projective homomorphisms, γ1 = 1L1 and γ2 = γ . As

ker βi∩K̄2 = 0, it follows that (βi|M1⊕M2 , βi, γi) : ē → ei is an isoclinic epimorphism for i = 1, 2, as required. �

Lemma 2.7 Let (γ, β′) be an isoclinism from e1 to e2 . Then there exist isoclinic monomorphisms from ē into
e1 ⊕ A and e2 ⊕ A .

Proof Consider the map β̄i : K̄ → Ki ⊕A given by β̄i(k) = (βi(k), k + K̄2), for i = 1, 2. It is obvious that β̄i

is a homomorphism of Lie algebras. In the proof of Lemma 2.6, we regarded that K̄2 = {(k1, β
′(k1))|k1 ∈ K2

1} .

So, if k = (k1, k2) ∈ ker β̄i then ki = 0 and k2 = β′(k1), implying that ker β̄i = 0. Hence the morphisms

(β̄1 |M1⊕M2 , β̄1, 1L1) : ē → e1 ⊕A and (β̄2|M1⊕M2, β̄2, γ) : ē → e2 ⊕A are isoclinic monomorphisms, as required.
�

Lemma 2.8 The isomorphism γ : L1 → L2 induces an isoclinism from e1 to e2 if and only if for some ideal

T of M1 ⊕ A with T ∩ (K1 ⊕A)2 = 0 , there exist isoclinic monomorphisms from e1 and e2 into the extension

(e1 ⊕ A)/T .

Proof The necessity of the condition holds trivially.

Conversely, suppose that γ induces an isoclinism (γ, β′) from e1 to e2 . Put T = {(m1, (m1, 0)+K̄2)|m1 ∈
M1} . It is easy to see that T is an ideal of M1 ⊕ A with T ∩ (K1 ⊕ A)2 = 0. We define two homomorphisms

δ1 : K1 → (K1 ⊕ A)/T and δ2 : K2 → (K1 ⊕ A)/T as follows:

δ1(k1) = (k1, K̄
2) + T and δ2(k2) = (k1, (k1, k2) + K̄2) + T,

where ki ∈ Ki and γπ1(k1) = π2(k2). We claim that δ1 and δ2 are monomorphisms. If k1 ∈ ker δ1 , then

k1 ∈ M1 and β′(k1) = 0. But this follows that k1 = 0. Similarly, ker δ2 = 0. We therefore conclude that the
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morphisms (δ1|M1, δ1, 1L1) : e1 → (e1 ⊕ A)/T and (δ2|M2, δ2, γ
−1) : e2 → (e1 ⊕ A)/T are isoclinic monomor-

phisms, as required. �

Now, the proof of Theorem 2.4 is easily deduced from the above lemmas.

3. Isoclinic extensions of finite dimensional Lie algebras

It was established by Moneyhun in [10] that the members of an isoclinism family of finite dimensional Lie
algebras are exactly the direct sums of a stem algebra T with finite dimensional abelian Lie algebras. She also
proved that all isoclinic Lie algebras of the same finite dimension are isomorphic. In this section, we extend
these results to finite dimensional central extensions. We first recall a special case of factor sets. Suppose that

e : 0 → M
⊆→ K

π→ L → 0 is a central extension. Then a bilinear map f : L × L → M is called a factor set on
e if the following conditions hold:

(i) f(l1 , l1) = 0;

(ii) f([l1, l2], l3) + f([l2 , l3], l1) + f([l3 , l1], l2) = 0,
for all l1, l2, l3 ∈ L . Now, assume that f is a factor set on the extension e . It is checked that the direct product
M × L of vector spaces M and L can be converted into a Lie algebra by the formula [(m1, l1), (m2, l2)] =

(f(l1 , l2), [l1, l2]) . If we denote by (M ⊕L)f the above Lie algebra, then ef : 0 → Mf
⊆→ (M ⊕L)f

σ→ L → 0 is

a central extension, in which σ : (M ⊕ L)f → L is the projective map and Mf = kerσ . We henceforth assume
that the extension ef is given as just described.

We need the following lemmas and proposition for the proofs of our main results.

Lemma 3.1 Let ei : 0 → Mi
⊆→ Ki

πi→ Li → 0 , i = 1, 2 , be two central extensions. Then

(i) e1 is stem if and only if M1 contains no non-zero ideal N satisfying N ∩K2
1 = 0 .

(ii) If e1 and e2 are two isoclinic stem extensions, then M1
∼= M2 . In particular, if the Lie algebras

Ki , i = 1, 2 , are finite dimensional, then dimK1 = dimK2 .

Proof (i) Suppose first that e1 is stem, and N is an ideal of M1 with N ∩ K2
1 = 0. Then N = N ∩ M1 ⊆

N ∩ Z(K1) ∩ K2
1 = N ∩ K2

1 = 0.

Conversely, assume that on the contrary M1 � Z(K1) ∩ K2
1 . Then there exists a non-zero element

x ∈ M1 \ (Z(K1) ∩ K2
1 ). Obviously, 〈x〉 is a central ideal of K1 and consequently, by hypothesis, we must

have 〈x〉 ∩ K2
1 
= 0. So, for some non-zero element c ∈ Λ, cx ∈ K2

1 and the contradiction follows. Therefore

M1 ⊆ Z(K1) ∩ K2
1 .

(ii) It is a straightforward consequence of Lemma 2.2(ii). �

Using Lemma 3.1(i) and arguing as in the proof of [15; Theorem 3.3], we get the following corollary
whose proof we omit.

Corollary 3.2 Any central extension is isoclinic to a stem extension.

Lemma 3.3 Let ei : 0 → Mi
⊆→ Ki

πi→ Li → 0 , i = 1, 2 , be two central extensions. Then

(i) there exists a factor set f : L1 × L1 → M1 such that the extensions e1 and e1f are isomorphic;

(ii) if e1 and e2 are stem extensions and (γ, β′) : e1 ∼ e2 is an isoclinism, then there exists a factor set
g : L1 × L1 → M1 such that the extensions e2 and e1g are isomorphic.
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Proof (i) Let T1 be a vector space complement of M1 in K1 . Then for any l1 ∈ L1 , there is a unique element

tl1 ∈ T1 with π1(tl1 ) = l1 . It is easily seen that the map f : L1 ×L1 → M1 given by f(l1 , l2) = [tl1 , tl2 ]− t[l1,l2 ]

is a factor set and the isomorphism β : (M1⊕L1)f → K1 given by β(m1, l1) = m1 + tl1 induces an isomorphism
between the extensions e1 and e1f .

(ii) Owing to Lemma 2.2(ii), β′(M1) = M2 and by part (i), there exists a factor set h : L2 ×L2 → M2

such that the extensions e2 and e2h are isomorphic. Consider the map g : L1 × L1 → M1 given by

g(l1 , l2) = β′−1(h(γ(l1), γ(l2))). Evidently, g is a factor set and the isomorphism θ : (M1 ⊕L1)g → (M2 ⊕L2)h

defined by θ(m1 , l1) = (β′(m1), γ(l1)) yields the morphism (β′|M1 , θ, γ) from e1g to e2h , as required. �

Proposition 3.4 Let e : 0 → M
⊆→ K

π→ L → 0 be a finite dimensional central extension, and f, g : L×L → M

be factor sets on e such that dim(M ⊕L)f = dim(M ⊕L)g , ef is a stem extension, and the extensions ef and

eg are isoclinic. Then ef and eg are isomorphic.

Proof Assume that (γ, β′) is an isoclinism from ef to eg . It follows from the assumption and Lemma 2.2(ii)

that β′(Mf ) = Mg . For all l1, l2 ∈ L , we have

β′([(0, l1), (0, l2)]) = [(0, γ(l1)), (0, γ(l2))] = (g(γ(l1), γ(l2)), γ([l1, l2])),

and
β′([(0, l1), (0, l2)]) = β′(f(l1 , l2), [l1, l2]) = β′(f(l1 , l2), 0) + β′(0, [l1, l2]).

If we take d([l1, l2]) to be the first component of β′(0, [l1, l2]) , then we get a linear map d : L2 → M satisfying

ρβ′(f(l1 , l2), 0) + d([l1, l2]) = g(γ(l1), γ(l2)), in which ρ : Mg → M is the projective map. We extend d to all

of L by taking d to be zero on the vector space complement of L2 in L . It is fairly easy to see that the map
λ : (M ⊕ L)f → (M ⊕ L)g given by λ(m, l) = β′(m, 0) + (d(l), γ(l)) is an isomorphism. As λ|Mf = β′|Mf and

(λ|Mf , λ, γ) : ef → eg is a morphism, we deduce that the extensions ef and eg are isomorphic, which completes

the proof. �

Combining this with Lemmas 3.1 and 3.3, we get the following important result.

Corollary 3.5 Let ei : 0 → Mi
⊆→ Ki

πi→ Li → 0 , i = 1, 2 , be finite dimensional stem extensions. Then e1 and
e2 are isoclinic if and only if they are isomorphic.

Theorem 3.6 Let C be an isoclinism family of finite dimensional central extensions. Then C contains a stem
extension e1 , and every central extension lying in C is the form of e1 ⊕ A , in which A is a finite dimensional
abelian Lie algebra.

Proof In view of Corollary 3.2, C admits a stem extension e1 . Plainly, for any finite dimensional abelian
Lie algebra A , the extensions e1 and e1 ⊕ A are isoclinic and consequently e1 ⊕ A ∈ C . Now, suppose

e : 0 → M
⊆→ K

π→ L → 0 is an arbitrary central extension in C . We can find an ideal N of M such that

M = N ⊕ (M ∩ K2), and e/N is a stem extension in C . We choose the vector subspace T of K such that

K2 ⊆ T and T is the complement of N in K . Then T is an ideal of K with π(T ) = L , and the stem extensions

e1 and e/N ∼= eT are isoclinic. According to Corollary 3.5, we have eT
∼= e1 and hence e ∼= eT ⊕ N ∼= e1 ⊕ N ,

in which N is a finite dimensional abelian Lie algebra and the result is proved. �

The following important corollary is an immediate consequence of the above theorem.
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Corollary 3.7 Let ei : 0 → Mi
⊆→ Ki

πi→ Li → 0 , i = 1, 2 , be finite dimensional central extensions with
dimK1 = dimK2 . Then e1 and e2 are isoclinic if and only if they are isomorphic.

The following example shows that the results of this section are not necessarily true for groups.

Example 3.8 Consider the following groups:

G = 〈a, b | a2 = b4 = 1, ab = ba〉 ,
G1 = 〈a1, b1, c1 | a2

1 = c2
1 = 1, b4

1 = c1, a1c1 = c1a1, b1c1 = c1b1, a1b1 = c1b1a1〉 ,
G2 = 〈a2, b2, c2 | a2

2 = c2
2 = b4

2 = 1, c2a2 = a2c2, c2b2 = b2c2, a2b2 = c2b2a2〉 .
It is straightforward to verify that G1 and G2 are non-isomorphic groups of order 16 , and the extensions
ei : 1 → 〈ci〉 → Gi → G → 1 , i = 1, 2 , are isoclinic stem extensions.

4. Isoclinism and the Schur multiplier

In this section, using isoclinic extensions we obtain some interesting results on the Schur multiplier of Lie

algebras. Recall that the Schur multiplier of a Lie algebra L is the abelian Lie algebra M(L) = (R∩F 2)/[R, F ] ,

in which F/R ∼= L is a free presentation of L . We note that the Schur multiplier of L is independent of the choice

of the free presentation of L and is isomorphic to H2(L, Λ), the second homology group of L with coefficients

in the trivial L-module Λ (see [1, 5, 11 or 14] for more information on the Schur multiplier of Lie algebras). It is

easily checked that any Lie homomorphism γ : L1 → L2 induces a homomorphism M(γ) : M(L1) → M(L2).

Furthermore, for any central extension e : 0 → M
⊆→ K

π→ L → 0, it follows from [11; Proposition 4.1] that

there exists a homomorphism θ(e) : M(L) → K2 such that the sequence

0 → ker θ(e) → M(L)
θ(e)→ K2 π|→ L2 → 0

is exact (see [12; Lemma 1.2] for a special case).

Using the above assumptions and notations, we have the following useful lemmas.

Lemma 4.1 Let (β|M1 , β, γ) : e1 → e2 be a morphism of the central extensions, in which γ : L1 → L2 is an

isomorphism. Then (β|M1 , β, γ) is an isoclinic morphism if and only if M(γ)(ker θ(e1)) = ker θ(e2) .

Proof It is readily verified that the morphism (β|M1 , β, γ) : e1 → e2 yields the commutativity of the following
diagram:

0 −−−−→ ker θ(e1)
⊆−−−−→ M(L1)

θ(e1)−−−−→ K2
1

π1|−−−−→ L2
1 −−−−→ 0

⏐
⏐
�M(γ)|ker θ(e1)

⏐
⏐
�M(γ)

⏐
⏐
�β|

K2
1

⏐
⏐
�γ|

L2
1

(1)

0 −−−−→ ker θ(e2)
⊆−−−−→ M(L2)

θ(e2)−−−−→ K2
2

π2|−−−−→ L2
2 −−−−→ 0,

where rows are the exact sequences induced by the central extensions ei , i = 1, 2. As γ is an isomorphism, we
conclude that the maps γ|L2

1
and M(γ) are isomorphisms, the restriction of M(γ) to ker θ(e1) is an monomor-

phism, and β|K2
1

is an epimorphism. By Lemma 2.3(ii), (β|M1 , β, γ) is an isoclinic morphism if and only if

β|K2
1

is an isomorphism, being equivalent to the equality M(γ)(ker θ(e1)) = ker θ(e2) by the above diagram.

�
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Lemma 4.2 Let γ : L1 → L2 be an isomorphism and ē be the extension defined in Section 2 . Then

ker θ(ē) = M(γ)−1(ker θ(e2)) ∩ ker θ(e1) .

Proof Let β1 and β2 be homomorphisms defined in the proof of Lemma 2.6. Then we have β1θ(ē)(x) =

θ(e1)(x) and β2θ(ē)(x) = θ(e2)M(γ)(x), for all x ∈ M(L1). But this follows that θ(ē)(x) = (θ(e1)(x), θ(e2)M(γ)(x)),
implying the result. �

In the following we additional additional criteria for two central extensions to be isoclinic.

Theorem 4.3 Let ei : 0 → Mi
⊆→ Ki

πi→ Li → 0 , i = 1, 2 , be two central extensions, and γ : L1 → L2 be an
isomorphism. Then the following statements are equivalent:

(i) e1 and e2 are isoclinic.

(ii) There is an isomorphism β′ : K2
1 → K2

2 with β′θ(e1) = θ(e2)M(γ) .

(iii) M(γ)(ker θ(e1)) = ker θ(e2) .

Proof Let ē be the central extension introduced in Section 2, γ1 = 1L1 and γ2 = γ .

(i) =⇒ (ii) In view of Lemma 2.6, we have the following commutative diagrams:

ē : 0 −−−−→ M1 ⊕ M2 −−−−→ K̄ −−−−→ L1 −−−−→ 0
⏐
⏐
�βi|M1⊕M2

⏐
⏐
�βi

⏐
⏐
�γi

ei : 0 −−−−→ Mi −−−−→ Ki −−−−→ Li −−−−→ 0,

where (βi|M1⊕M2 , βi, γi) : ē → ei is an isoclinic epimorphism for i = 1, 2. From this one can deduce that

βi|K̄2θ(ē) = θ(ei)M(γi). Therefore, it is enough to take β′ = (β2|K̄2)(β1|K̄2)−1 .

(ii) =⇒ (iii) It follows from the diagram (1), and the fact that M(γ) is an isomorphism.

(iii) =⇒ (i) From hypothesis and Lemma 4.2, we have ker θ(ē) = ker θ(e1). Consequently, M(γi)(ker θ(ē)) =

ker θ(ei) for i = 1, 2, and so there exist isoclinic epimorphisms from ē onto e1 and e2 thanks to Lemma 4.1.
We therefore conclude from Lemma 2.6 that the extensions e1 and e2 are isoclinic. �

A stem extension e : 0 → M
⊆→ K

π→ L → 0 is called a stem cover of the Lie algebra L if M ∼= M(L).

In [13], it has been established that any Lie algebra admits at least one stem cover. In view of Corollary 3.7,
one can readily regard that finite dimensional Lie algebras, up to isomorphic, have unique stem covers. In
the following corollary we show that the stem covers of an arbitrary Lie algebra are isoclinic, which is a vast
generalization of a result obtained in [11].

Corollary 4.4 All stem covers of a given Lie algebra L are mutually isoclinic.

Proof Follows from the above theorem and the fact that if e is a stem cover of L then ker θ(e) = 0. �

Corollary 4.5 Using the assumptions and notations of Theorem 4.3 , let e1 be a stem cover of L1 , K1 and

K2 be of the same finite dimension, and dimK2
1 = dimK2

2 . Then e1 and e2 are isomorphic.

Proof Set N = θ(e1)M(γ−1)(ker θ(e2)). Then N is an ideal of K1 contained in K2
1 ∩ M1 , and we have

M(γ−1)(ker θ(e2)) = {x ∈ M(L1) | θ(e1)(x) ∈ N}

= {x ∈ M(L1) | θ(e1/N)(x) = N} = ker θ(e1/N).
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So, the extensions e1/N and e2 are isoclinic by Theorem 4.3, and consequently, dim(K2
1/N) = dim(K2

2 ). But
this follows that N = 0. Hence Corollary 3.7 implies that e1

∼= e2 , which completes the proof. �

The above corollary deduces that if K1 and K2 are two Lie algebras of the same finite dimension with

dimK2
1 = dimK2

2 , then K1 is a stem cover of a Lie algebra if and only if so is K2 .
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