Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $607-616$
(c) TÜBİTAK

Products of conjugacy classes and products of irreducible characters in finite groups

Mohammad Reza DARAFSHEH,* Sajjad MAHMOOD ROBATI

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
Received: 25.12.2011 • Accepted: 10.05.2012 \quad • \quad Published Online: $12.06 .2013 \quad \bullet \quad$ Printed: 08.07 .2013

Abstract

Let G be a finite group. If A and B are two conjugacy classes in G, then $A B$ is a union of conjugacy classes in G and $\eta(A B)$ denotes the number of distinct conjugacy classes of G contained in $A B$. If χ and ψ are two complex irreducible characters of G, then $\chi \psi$ is a character of G and again we let $\eta(\chi \psi)$ be the number of irreducible characters of G appearing as constituents of $\chi \psi$. In this paper our aim is to study the product of conjugacy classes in a finite group and obtain an upper bound for η in general. Then we study similar results related to the product of two irreducible characters.

Key words: Conjugacy classes, irreducible characters, products

1. Introduction

Let G be a finite group, $a \in G$ and $C l(a)=a^{G}=\left\{a^{g} \mid g \in G\right\}$ be the conjugacy class of a in G. If the subset X of G is G-invariant, i.e. $X^{g}=\left\{x^{g} \mid x \in X\right\}=X$ for all $g \in G$, then X is the union of m distinct conjugacy classes of G, for some positive integer m. Set $\eta(X)=m$. Given any conjugacy classes $C l(a)$ and $C l(b)$, we can check that the product $C l(a) C l(b)=\left\{a^{h} b^{k} \mid k, h \in G\right\}$ is a G-invariant set. Hence it is a union of conjugacy classes of G. Let $\eta(C l(a) C l(b))$ denote the number of conjugacy classes contained in $C l(a) C l(b)$. In this note, we study the product $C l(a) C l(b)$ when G is a finite group.

Let $[a, G]$ be the set of all commutators $[a, g]=a^{-1} g^{-1} a g$ where $g \in G$. Our first result is the following.
Theorem A. Let G be a finite group and $a \in G$. Then the following conditions are equivalent:
(i) $[a, G]$ is a subgroup of G;
(ii) $C l(a) C l\left(a^{-1}\right)=[a, G]$;
(iii) $\left|C l(a) C l\left(a^{-1}\right)\right|=|C l(a)|$;
(iv) $\left|(C l(a))^{n}\right|=|C l(a)|$ for all $n \in \mathbb{N}$.

An application of Theorem A is the following.
Theorem B. Let G be a finite group and $a, b \in G$ and $[a, G]$ be a subset of $Z(G)$. Then
(i) $\eta(C l(a) C l(b))=|C l(a)||C l(b)| /\left|[a, G] \cap\left(C l\left(b^{-1}\right) C l(b)\right)\right||C l(a b)|$;
(ii) If $C l(a) C l(b) \cap Z(G) \neq \emptyset$, then $\eta(C l(a) C l(b))=|C l(a)|$;

[^0](iii) If $|C l(a)|$ is an odd number, then $\eta(C l(a) C l(a))=1$;
(iv) If $|C l(a)|$ is an even number, then $\eta(C l(a) C l(a))=2^{n}$ (where n is the number of cyclic direct factors in the decomposition of the Sylow 2 -subgroup of $[a, G]$).

In [1], Adan-Bante shows that if G is a finite p-group and $a \in G$ and $|C l(a)|=p^{n}$, then $\eta\left(C l(a) C l\left(a^{-1}\right)\right) \geq$ $n(p-1)+1$. In this paper, we prove that if G is a finite group and $|C l(a)|$ is an odd number, then $\eta(C l(a) C l(a)) \leq(|C l(a)|+1) / 2$ for all $a \in G$. Also, in Proposition 2.5, we prove that if G is a finite group and $a \in G$ and $|a|$ is an odd number, then $[a, G]$ is a subgroup of G if and only if $\eta(C l(a) C l(a))=1$, where $|a|$ is the order of a.
The case of products of two irreducible characters of a finite group has been of interest to researchers as well. For a finite group G, let χ and φ be irreducible characters of G, then obviously $\chi \varphi$ is a character of G, hence $\chi \varphi=\sum_{i=1}^{k} m_{i} \chi_{i}, m_{i} \in \mathbb{N}$, and $\chi_{i} \in \operatorname{Irr}(G)$, hence we define $\eta(\chi \varphi)=k$. Analogous results on the products of the irreducible characters of G may be true for the products of conjugacy classes of G. For example we may mention [4], which studies this analogy. But in some cases this analogy may not hold.
In [7] it is proved that, there are two non-identity irreducible characters χ and φ such that $\chi \varphi$ is an irreducible character of A_{n} if and only if n is a perfect square, while in [3] it is proved that the product of non-trivial conjugacy classes in A_{n} for $n \geq 5$ is never a conjugacy class. Concerning irreducible characters of a finite p-group G, it is proved in [2] that if $\chi, \varphi \in \operatorname{Irr}(G)$ are faithful, then either $\eta(\chi \varphi)=1$ or $\eta(\chi \varphi) \geq(p+1) / 2$.

Concerning irreducible characters of a finite group G, in this paper the following results are also proved.
Theorem C. Let G be a finite group of odd order and $\chi \in \operatorname{Irr}(G)$. Then χ vanishes on $G-Z(\chi)$ if and only if $\eta\left(\chi^{2}\right)=1$.

Theorem D. Let G be a finite group and $\chi, \varphi \in \operatorname{Irr}(G)$ such that χ vanishes on $G-Z(\chi)$. Then
(i) If $\chi \varphi \cap \operatorname{Lin}(G) \neq \emptyset$, then $\eta(\chi \psi))=|\operatorname{Irr}(G / Z(G))|$;
(ii) If $\chi(1)$ is an odd number, then $\eta\left(\chi^{2}\right)=1$.

We also put forward the following conjecture.
Conjecture. Let G be a finite group of odd order and $\chi \in \operatorname{Irr}(G)$, then $\eta\left(\chi^{2}\right) \leq(\chi(1)+1) / 2$.

2. Proof of Theorems A and C

Denote by $C_{G}(a)=\left\{g \in G \mid a^{g}=a\right\}$ the centralizer of a in G. Also let $[a, g]=a^{-1} a^{g}$ and $[a, G]=\{[a, g] \mid g \in$ $G\}$. Since $a^{g}=a[a, g]$ for any $g \in G$, we have that $C l(a)=a^{G}=\{a x \mid x \in[a, G]\}$. In particular, we get that $|C l(a)|=|[a, G]|$. Through this note, we will use the well-known fact that $|C l(a)|=\left|G: C_{G}(a)\right|$.

Lemma 2.1 Let G be a finite group and $a \in G$ and $[a, G]$ be a subgroup of G. Then
(i) $[a, G]$ is a normal subgroup of G;
(ii) $[a, G]=\left[a^{-1}, G\right]$.

Proof (i) Observe that

$$
[a, g]^{h}=\left(a^{-1}\right)^{h} a^{g h}=[a, h]^{-1}[a, g h]
$$

for all $g, h \in G$. Since $[a, G]$ is a subgroup of G, then $[a, h]^{-1}[a, g h] \in[a, G]$. Therefore $[a, G]$ is a normal subgroup of G.
(ii) We have that

$$
\left[a^{-1}, g\right]=a\left(a^{-1}\right)^{g}=\left(a^{-1}\right)^{g a^{-1}} a=\left[a, g a^{-1}\right]^{-1}
$$

for all $g \in G$. Also since $[a, G]$ is a subgroup of G, then $\left[a, g a^{-1}\right]^{-1} \in[a, G]$. Therefore $\left[a^{-1}, G\right] \subseteq[a, G]$. Since $|C l(a)|=\left|C l\left(a^{-1}\right)\right|$ we have $[a, G]=\left[a^{-1}, G\right]$.

Proof [Proof of Theorem A]

$(i \Rightarrow i i)$
By Lemma 2.1, observe that

$$
C l(a) C l\left(a^{-1}\right)=a[a, G] a^{-1}\left[a^{-1}, G\right]=[a, G]\left[a^{-1}, G\right]=[a, G] .
$$

$(i i \Rightarrow i)$
Observe that, since $a^{G} a=a a^{G}$ we can write

$$
C l(a) C l\left(a^{-1}\right)=a[a, G] a^{-1}\left[a^{-1}, G\right]=[a, G]\left[a^{-1}, G\right] .
$$

Fix $l, h \in G$. Since $C l(a) C l\left(a^{-1}\right)=[a, G]$ we have $[a, G]\left[a^{-1}, G\right]=[a, G]$ and $[a, h]\left[a^{-1}, k\right]=[a, l]$ for some $k \in G$.

Since $\left[a^{-1}, k\right]^{-1}=\left[a, k a^{-1}\right]$ we have $[a, h]=[a, l]\left[a, k a^{-1}\right]$ and $[a, h][a, l]^{-1}=\left[a, k a^{-1}\right]$. Thus $1_{G} \in[a, G]$, and hence $[a, G]$ is a subgroup of G.
($i i \Leftrightarrow i i i$)
Since $a^{-1} a^{G}=a^{G} a^{-1}$ we have $[a, G] \subseteq C l(a) C l\left(a^{-1}\right)$. Therefore from $|[a, G]|=|C l(a)|$, we obtain $C l(a) C l\left(a^{-1}\right)=[a, G]$ if and only if $\left|C l(a) C l\left(a^{-1}\right)\right|=|C l(a)|$.
$(i \Rightarrow i v)$
Observe that

$$
(C l(a))^{n}=(a[a, G])^{n}=a^{n}[a, G]
$$

for all $n \in \mathbb{N}$. Therefore $\left|(C l(a))^{n}\right|=|C l(a)|$.
$(i v \Rightarrow i)$
Let $n=2$. Observe that, since $a^{G} a=a a^{G}$, we obtain

$$
C l(a) C l(a)=a[a, G] a[a, G]=a^{2}[a, G][a, G] .
$$

Thus if $|C l(a) C l(a)|=|C l(a)|$, then $|[a, G][a, G]|=|[a, G]|$. Since $1_{G} \in[a, G]$ we obtain $[a, G] \subseteq[a, G][a, G]$ and $[a, G][a, G]=[a, G]$. Then we conclude that $[a, G]$ is a subgroup of G, since $x y \in[a, G]$ for any x, y in $[a, G]$ and $[a, G]$ is a nonempty finite set.

Proposition 2.2 Let G be a finite group and $a, b \in G$ and $C l(a) C l(b) \cap Z(G) \neq \emptyset$. Then $[a, G]$ is a subgroup of G if and only if $|C l(a) C l(b)|=|C l(a)|$.
Proof Suppose that there exists some $z \in C l(a) C l(b) \cap Z(G)$. Then there exists some $g \in G$ such that $z=a^{g} b$ and $b=\left(a^{-1}\right)^{g} z$. Thus we have

$$
C l(a) C l(b)=C l(a) C l\left(\left(a^{-1}\right)^{g} z\right)=C l(a) C l\left(\left(a^{-1}\right)^{g}\right) z=C l(a) C l\left(a^{-1}\right) z
$$

therefore $|C l(a) C l(b)|=\left|C l(a) C l\left(a^{-1}\right)\right|$. Thus by Theorem A, $[a, G]$ is a subgroup of G if and only if $|C l(a) C l(b)|=\left|C l(a) C l\left(a^{-1}\right)\right|=|C l(a)|$.

Proposition 2.3 Let G be a finite group and $\chi, \psi \in \operatorname{Irr}(G)$ with $\operatorname{Irr}(\chi \psi) \cap \operatorname{Lin}(G) \neq \emptyset$. Then χ vanishes on $G-Z(G)$ if and only if $\widehat{\chi \psi}=\rho_{G / Z(G)}$, where $\rho_{G / Z(G)}$ is the regular character of $G / Z(G)$ and $\widehat{\chi \psi}(g Z(G)):=$ $\chi \psi(g)$ for all $g \in G$.
Proof Suppose that χ vanishes on $G-Z(G)$ and $\lambda \in \operatorname{Lin}(G) \cap \operatorname{Irr}(\chi \psi)$. Since χ and $\lambda \bar{\psi}$ are irreducible characters then $0 \neq[\chi \psi, \lambda]=[\chi, \lambda \bar{\psi}]=1$ and $\chi=\lambda \bar{\psi}$. Therefore $\chi \psi=\lambda \bar{\psi} \psi$ and ψ vanishes on $G-Z(G)$. We can check that $\eta(\chi \psi)=\eta(\bar{\psi} \psi)$.

We can write $\bar{\psi}(g) \psi(g)=|\psi(g)|^{2}=\psi(1)^{2}$ for all $g \in Z(G)$ and $\bar{\psi}(g) \psi(g)=0$ for all $g \in G-Z(G)$, thus $Z(G)=\operatorname{ker}(\bar{\psi} \psi)$. Suppose that $\varphi_{i} \in \operatorname{Irr}(\bar{\psi} \psi)$ for $i=1, \ldots, n$, then $Z(G)=\operatorname{ker}(\bar{\psi} \psi)=\bigcap_{i=1}^{n} \operatorname{ker}\left(\varphi_{i}\right) \subseteq \operatorname{ker}\left(\varphi_{i}\right)$ and

$$
\begin{align*}
0 \neq\left[\bar{\psi} \psi, \varphi_{i}\right] & =1 /|G| \sum_{g \in G} \bar{\psi} \psi(g) \overline{\varphi_{i}}(g) \\
& =1 /|G| \sum_{g \in Z(G)} \bar{\psi}(g) \psi(g) \overline{\varphi_{i}}(g) \tag{2.1}\\
& =\frac{|Z(G)| \psi(1)^{2} \varphi_{i}(1)}{|G|}=\varphi_{i}(1)
\end{align*}
$$

because $\psi(1)^{2}=|G: Z(G)|$. Thus $\bar{\psi} \psi=\sum_{i=1}^{n} \varphi_{i}(1) \varphi_{i}$ and $|G: Z(G)|=\psi(1)^{2}=\sum_{i=1}^{n} \varphi_{i}(1)^{2}$. Since $\operatorname{Irr}(G / Z(G))=\{\theta \in \operatorname{Irr}(G) \mid Z(G) \subseteq k e r \theta\}$ and $\rho_{G / Z(G)}=\sum_{\hat{\theta} \in \operatorname{Irr}(G / Z(G))} \widehat{\theta}(1) \widehat{\theta}$ then $\widehat{\varphi}_{i} \in \operatorname{Irr}(G / Z(G))$ and $\widehat{\bar{\psi} \psi}=\rho_{G / Z(G)}$, where $\widehat{\varphi}_{i}(g Z(G)):=\varphi_{i}(g)$ for all $g \in G$. It follows that $\widehat{\chi \psi}=\rho_{G / Z(G)}$.

Conversely suppose $\widehat{\chi \psi}=\rho_{G / Z(G)}=\sum_{\hat{\theta} \in \operatorname{Irr}(G / Z(G))} \widehat{\theta}(1) \widehat{\theta}$, then $\chi \psi$ vanishes on $G-Z(G)$. On the other hand, we have $\operatorname{Irr}(\chi \psi) \cap \operatorname{Lin}(G) \neq \emptyset$, then there exists some $\lambda \in \operatorname{Lin}(G)$ such that $\lambda \in \operatorname{Irr}(\chi \psi)$ and $0 \neq[\chi \psi, \lambda]=[\chi, \lambda \bar{\psi}]=1$. Thus we have $\chi=\lambda \bar{\psi}$ and $\chi \psi=\lambda \bar{\psi} \psi$. It follows that $\bar{\psi} \psi$ vanishes on $G-Z(G)$ and χ vanishes on $G-Z(G)$.

Lemma 2.4 Let G be a finite group and $a \in G$. If $[a, G]$ is not a subgroup of G, then $\eta(C l(a) C l(a)) \neq 1$.
Proof We have that $C_{G}(a) \subseteq C_{G}\left(a^{2}\right)$, therefore $\left|C l\left(a^{2}\right)\right| \leq|C l(a)|$. Since $[a, G]$ is not a subgroup of G, then by proof of Theorem A, $\left|C l\left(a^{2}\right)\right| \leq|C l(a)|<|C l(a) C l(a)|$. Thus $C l(a) C l(a)$ is not a single conjugacy class.

Proposition 2.5 Let G be a finite group and $a \in G$ and the order of a be an odd number. Then $[a, G]$ is a subgroup of G if and only if $\eta(C l(a) C l(a))=1$.
Proof We have $C_{G}(a) \subseteq C_{G}\left(a^{2}\right)$. Since $|a|$ is an odd number, we can check that $C_{G}(a)=C_{G}\left(a^{2}\right)$. Thus

$$
|C l(a)|=\left|G: C_{G}(a)\right|=\left|G: C_{G}\left(a^{2}\right)\right|=\left|C l\left(a^{2}\right)\right|
$$

Then by Theorem A, $C l(a) C l(a)=C l\left(a^{2}\right)$. Conversely, by Lemma 2.4, if $\eta(C l(a) C l(a))=1$ then $[a, G]$ is a subgroup of G and the proof is complete.
At this point we prove Theorem C, which is an analogue of Proposition 2.5.
Proof [Proof of Theorem C] First suppose χ vanishes on $G-Z(\chi)$. By Corollary 2.30 of [5] we have $\chi(1)^{2}=|G: Z(\chi)|$. By Theorem 4.5 of [5] the alternating part of the character χ^{2} which is denoted by χ_{A} is a character of G and for $g \in G$ we have $\chi_{A}(g)=1 / 2\left(\chi(g)^{2}-\chi\left(g^{2}\right)\right)$. Let us define $\chi^{(2)}$ by $\chi^{(2)}(g)=\chi\left(g^{2}\right)$, for all $g \in G$, and χ^{2} by $\chi^{2}(g)=\chi(g)^{2}$, for all $g \in G$. Then $\chi^{(2)}=\chi^{2}-2 \chi_{A}$. Since $|G|$ is odd, by Problem 4.5 of $[5], \chi^{(2)} \in \operatorname{Irr}(G)$, hence

$$
\begin{align*}
0 \neq\left[\chi^{2}, \chi^{(2)}\right] & =1 /|G| \sum_{g \in G} \chi^{2}(g) \overline{\chi^{(2)}(g)} \\
& =1 /|G| \sum_{g \in Z(\chi)} \chi^{2}(g) \overline{\chi^{(2)}(g)} \tag{2.2}
\end{align*}
$$

But $\left.\chi\right|_{Z(\chi)}=\chi(1) \lambda_{1}$ and $\left.\chi^{(2)}\right|_{Z(\chi)}=\chi^{(2)}(1) \lambda_{2}=\chi(1) \lambda_{2}$ where $\lambda_{1}, \lambda_{2} \in \operatorname{Lin}(Z(\chi))$. Therefore continuing, (2.2), we can write:

$$
\begin{align*}
0 \neq\left[\chi^{2}, \chi^{(2)}\right] & =\chi(1)^{3} /|G| \sum_{g \in Z(\chi)} \lambda_{1}^{2}(g) \overline{\lambda_{2}(g)} \tag{2.3}\\
& =\left(\chi(1)^{3}|Z(\chi)| /|G|\right)\left[\lambda_{1}^{2}, \lambda_{2}\right] .
\end{align*}
$$

But $\left[\lambda_{1}^{2}, \lambda_{2}\right]=0$ or 1 , which implies $\lambda_{1}^{2}=\lambda_{2}$ and $0 \neq\left[\chi^{2}, \chi^{(2)}\right]=\chi(1)$. Therefore $\chi^{2}=\chi(1) \chi^{(2)}$, proving $\eta\left(\chi^{2}\right)=1$.

Conversely suppose G has odd order and $\eta\left(\chi^{2}\right)=1$. Since $\chi^{(2)} \in \operatorname{Irr}\left(\chi^{2}\right)$ and $\eta\left(\chi^{2}\right)=1$, then $\chi^{2}=\chi(1) \chi^{(2)}$. If $\chi(g) \neq 0$, then

$$
\begin{equation*}
|\chi(g)|=\frac{\chi(1)}{|\chi(g)|}\left|\chi^{(2)}(g)\right| \geq\left|\chi^{(2)}(g)\right| \tag{2.4}
\end{equation*}
$$

Thus $1=\left[\chi^{(2)}, \chi^{(2)}\right] \leq[\chi, \chi]=1$ and it follows that $|\chi(g)|=\left|\chi^{(2)}(g)\right|$. Therefore by (2.4), we have that $\chi(1)=|\chi(g)|$ and $g \in Z(\chi)$. Thus if $\chi(g) \neq 0$ then $g \in Z(\chi)$, and therefore χ vanishes on $G-Z(\chi)$.

Example 2.6 Let D_{8} be the dihedral group of order 2^{3} and $a \in D_{8} \backslash Z\left(D_{8}\right)$. We can check that $C l(a) C l(a)=$ $C l\left(a^{-1}\right) C l(a)=Z\left(D_{8}\right)$, therefore $\eta(C l(a) C l(a))=\eta\left(C l\left(a^{-1}\right) C l(a)\right)=2$. Thus Proposition 2.5 may not remain true if $a \in G$ has even order. On the other hand, let χ be the faithful irreducible character of D_{8}. We can check that χ vanishes on $G-Z(G)$, but $\eta\left(\chi^{2}\right)=4$. Thus Theorem C may not remain true if G has even order.

3. Upper bound

Lemma 3.1 Let G be a group and $a, b \in G$. Then $\eta(C l(a) C l(b)) \leq|C l(a)|$.
Proof For $c \in C l(a) C l(b)$ we have $c=g^{-1} a g h^{-1} b h$ where $g, h \in G$, we deduce that c is conjugate to $h g^{-1} a g h^{-1} b=a^{g h^{-1}} b$, and hence there is $d \in G$ such that $c^{d} \in a^{G} b$. Therefore $c \in \bigcup_{g \in G} C l\left(a^{g} b\right)$, implying
that $C l(a) C l(b) \subseteq \bigcup_{g \in G} C l\left(a^{g} b\right)$. Clearly $\bigcup_{g \in G} C l\left(a^{g} b\right) \subseteq C l(a) C l(b)$, hence $C l(a) C l(b)=\bigcup_{g \in G} C l\left(a^{g} b\right)$, thus $\eta(C l(a) C l(b))=\eta\left(\bigcup_{g \in G} C l\left(a^{g} b\right)\right) \leq\left|a^{G} b\right|=|C l(a)|$.

Proposition 3.2 Let G be a finite group and $a \in G$. If $|C l(a)|$ is an odd number, then $C l(a) C l(a)$ is the union of at most $(|C l(a)|+1) / 2$ distinct conjugacy classes, i.e. $\eta(C l(a) C l(a)) \leq(|C l(a)|+1) / 2$.
Proof By Lemma 3.1, we have that $C l(a) C l(a)=\cup_{g \in G} C l\left(a^{g} a\right)$. It suffices to show that for any $x \in C l(a)$ with $x \neq a$, there exists $y \in C l(a), y \neq x, a$, such that $C l(x a)=C l(y a)$. Observe that $a^{g} a$ and $a^{g^{-1}} a$ are always conjugate; thus, if $x=a^{g}$ and g^{2} does not centralize a, one can take $y=a^{g^{-1}}$.

Suppose on the other hand that $g^{2} \in C_{G}(a)$ whenever $x=a^{g}$. We claim that this happens only when $x=a$. Indeed, fix a, g with $x=a^{g}$. Then $(z g)^{2} \in C_{G}(a)$ for all $z \in C_{G}(a)$ and taking into account that $(z g)^{2}=z z^{g^{-1}} g^{2}$, it follows that g normalizes $C_{G}(a)$. Now let P be a Sylow 2 -subgroup of $C_{G}(a)$ (which is also a Sylow 2-subgroup of $C_{G}(a)$ since $|C l(a)|=n$ is odd). Thus $P^{g} \subseteq C_{G}(a)$, therefore $P^{z g}=P$ for some $z \in C_{G}(a)$. By replacing g with $z g$, we have that g normalizes P. Thus the 2-part of g is in $P \subseteq C_{G}(a)$ and since $g^{2} \in C_{G}(a)$ then $g \in C_{G}(a)$. Therefore we can suppose that g has odd order. But then $g \in C_{G}(a)$ and $x=a$. Thus since $C l(a) C l(a)=\cup_{i=1}^{n-1} C l\left(a^{g_{i}} a\right) \cup C l\left(a^{2}\right)$ for some $\left\{g_{i}\right\}_{i=1}^{n-1} \subseteq G \backslash C_{G}(a)$, then

$$
\eta(C l(a) C l(a)) \leq \frac{|C l(a)|-1}{2}+1=\frac{|C l(a)|+1}{2} .
$$

Proposition 3.3 Let G be a finite group and $a \in G$ and $|C l(a)|=2$. Then $\eta(C l(a) C l(a))=\eta\left(C l(a) C l\left(a^{-1}\right)\right)=$ $|C l(a)|=2$.
Proof Let $g \in G \backslash C_{G}(a)$. Observe that $C l(a)=\left\{a, a^{g}\right\}$ and $a^{2}, a a^{g} \in C l(a) C l(a)$. By Lemma 3.1, we have $C l(a) C l(a)=C l\left(a^{2}\right) \cup C l\left(a a^{g}\right)$. Since $a^{2} \neq a a^{g} \neq\left(a^{2}\right)^{g}$ then $a a^{g} \notin C l\left(a^{2}\right)$. Therefore $C l\left(a^{2}\right) \neq C l\left(a a^{g}\right)$ and $\eta(C l(a) C l(a))=|C l(a)|=2$.

Also, by Lemma 3.1, we have $\eta\left(C l(a) C l\left(a^{-1}\right)\right) \leq 2$. Since $1_{G} \in C l(a) C l\left(a^{-1}\right)$ and $a \notin Z(G)$, then $\eta\left(C l(a) C l\left(a^{-1}\right)\right)=2$

Remark 3.4 Let p and q be two prime numbers such that $p \mid q-1$. Let G be a finite nonabelian group of order $p q$ and $a \in G$ and $|a|=q$.

We can check that $|C l(a)|=p$ and $|C l(a) C l(a)|=p(p+1) / 2$. Also if $p \neq 2$, then all of the conjugacy classes contained in $C l(a) C l(a)$ are of size p and therefore $\eta(C l(a) C l(a))=(p+1) / 2$. Thus the bound in Proposition 3.2 is optimal.

Otherwise, if $p=2$, then $|C l(a) C l(a)|=3$ and $C l(a) C l(a)=1_{G} \cup C l\left(a^{2}\right)$. Therefore $\eta(C l(a) C l(a))=2$.

4. Simple groups and symmetric groups

Proposition 4.1 Let G be a finite nonabelian group and $a \in G$. Then

DARAFSHEH and MAHMOOD ROBATI/Turk J Math

(i) If $a \in G^{\prime}$, then $C l(a) \varsubsetneqq G^{\prime}$;
(ii) If $a \notin G^{\prime}$, then $G^{\prime} \cap C l(a)=\emptyset$.

Proof (i) Let $a \in G^{\prime}$. If $a=1_{G}$ then the statement is true. Otherwise, since $a^{-1} a^{G}=[a, G] \subseteq G^{\prime}$, therefore $C l(a)=a^{G} \subseteq G^{\prime}$. Since $1_{G} \notin C l(a)$, thus $C l(a) \varsubsetneqq G^{\prime}$.
(ii) Let $a \notin G^{\prime}$. Since $a^{-1} a^{G}=[a, G]$, therefore $C l(a) \cap G^{\prime}=\emptyset$.

Corollary 4.2 Let G be a finite nonabelian simple group and $a \in G$. Then $[a, G]$ is a subgroup of G if and only if $a=1_{G}$.
Proof Assume that $a \neq 1_{G}$ and $[a, G]$ be a subgroup of G. Therefore by Lemma 2.1, $[a, G]$ is a normal subgroup of G. Since G is a finite nonabelian simple group and $[a, G] \neq 1_{G}$, then $[a, G]=G^{\prime}=G$. By Proposition 4.1, $|C l(a)| \neq G^{\prime}$, we have that $[a, G] \neq G^{\prime}$ and the proof is complete.

Corollary 4.3 Let G be a finite nonabelian simple group and $1_{G} \neq a \in G$. If $|C l(a)|$ is an odd number, then $2 \leq \eta(C l(a) C l(a)) \leq(|C l(a)|+1) / 2$.
Proof It follows from Corollary 4.2 and Lemma 2.4 and Proposition 3.2.

Proposition 4.4 Let S_{n} be the symmetric group of degree n and $\alpha \in S_{n}$. Then $\left[\alpha, S_{n}\right]$ is a subgroup of S_{n} for $n>4$ if and only if $\alpha=i d$.

Proof Assume that $\alpha \neq i d$ and $\left[\alpha, S_{n}\right]$ be a subgroup of S_{n}. Since $\left[\alpha, S_{n}\right] \subseteq S_{n}^{\prime}=A_{n}$ for $n>4$, thus $\left[\alpha, S_{n}\right]=A_{n}$. Therefore, by Theorem A, $|C l(\alpha)|=n!/ 2$, thus

$$
|C l(\alpha)|=\frac{n!}{1^{e_{1}} e_{1}!2^{e_{2}} e_{2}!\ldots n^{e_{n}} e_{n}!}=\frac{n!}{2}
$$

where $1^{e_{1}}, \ldots, n^{e_{n}}$ is the cycle structure of $\alpha \in S_{n}$. It is easy to see that $|C l(\alpha)| \neq n!/ 2$ for $n>4$. Therefore [α, S_{n}] is not a subgroup of S_{n} for $n>4$.

Remark 4.5 We can check that $\left[\alpha, S_{4}\right]$ is not a subgroup of S_{4} for all id $\neq \alpha \in S_{4}$.

Remark 4.6 Observe that if $C l(a) C l\left(a^{-1}\right)$ is a subgroup of G, then $C l(a) C l\left(a^{-1}\right)$ is a normal subgroup of G, since $C l(a) C l\left(a^{-1}\right)$ is G-invariant.

The authors in [3] show that if $G \simeq J_{1}$ (where J_{1} is the Janko group of order 175560) then $\operatorname{Cl}(a) \operatorname{Cl}\left(a^{-1}\right)=$ J_{1} for all $a \in J_{1} \backslash\left\{1_{G}\right\}$. But in Corollary 4.2, we showed that if G is a finite nonabelian simple group, then $[a, G] \neq G$ for all $a \in G$.

Thus if G is a finite nonabelian simple group and $C l(a) C l\left(a^{-1}\right)$ is a subgroup of G, then it is not necessary that $[a, G]$ is a subgroup of G.

5. Proof of Theorems B and D

Lemma 5.1 Let G be a finite group and $a \in G$ and $[a, G]$ is a subset of $Z(G)$. Then $[a, G]$ is a subgroup of G.
Proof Since $[a, G] \subseteq Z(G)$, thus $\left[a, g_{1}\right]=z_{1}$ and $\left[a, g_{2}\right]=z_{2}$ for all $g_{1}, g_{2} \in G$ and for some $z_{1}, z_{2} \in Z(G)$. It is easy to see that $\left[a, g_{1}\right]\left[a, g_{2}\right]=z_{1} z_{2}=\left[a, g_{1} g_{2}\right]$. Since $1_{G} \in[a, G]$ and G is a finite group, it follows that $[a, G]$ is a subgroup of G.

Proposition 5.2 Let G be a finite group and $a, b \in G$ and $[a, G] \subseteq Z(G)$. Then all of the conjugacy classes contained in $C l(a) C l(b)$ are of size $|C l(a b)|$. Therefore $\eta(C l(a) C l(b))=|C l(a) C l(b)| /|C l(a b)|$.
Proof Since $C l(a) C l(b)$ is a G-invariant set, then

$$
C l(a) C l(b)=\left\{C l\left(a^{g} b\right) \mid g \in G\right\}=\{C l(a b z) \mid z \in[a, G]\}=\{C l(a b) z \mid z \in[a, G]\}
$$

Therefore all of the conjugacy classes contained in $C l(a) C l(b)$ are of size $|C l(a b)|$ and the proof is complete.

Corollary 5.3 Let G be a finite group and $a, b \in G$ and $[a, G] \subseteq Z(G)$. If $C l(a) C l(b) \cap Z(G) \neq \emptyset$, then $\eta(C l(a) C l(b))=|C l(a)|$.
Proof By proposition 5.2, we have that

$$
C l(a) C l(b)=\{C l(a b) z \mid z \in[a, G]\} .
$$

Observe that since $C l(a) C l(b) \cap Z(G) \neq \emptyset$, then $(a b)^{g} \in Z(G)$ for some $g \in G$, therefore $a b \in Z(G)$. Thus $C l(a) C l(b) \subseteq Z(G)$ and $\eta(C l(a) C l(b))=|C l(a) C l(b)|=|C l(a)|$.

Proof [Proof of Theorem B]

(i) Observe that

$$
\begin{equation*}
C l(a) C l(b)=a[a, G] C l(b)=a C l(b)[a, G] \tag{5.1}
\end{equation*}
$$

and $[a, G]$ is a subgroup of $Z(G)$.
Assume that $X=\{C l(g) \mid g \in G\} .[a, G]$ acts on X by right multiplication in G. Thus the stabilizer of $C l(b)$ in $[a, G]$ is

$$
\begin{align*}
S t_{[a, G]}(C l(b)) & =\{z \in[a, G] \mid C l(b) z=C l(b)\} \\
& =\left\{z \in[a, G] \mid z \in C l(b) C l\left(b^{-1}\right)\right\} \tag{5.2}\\
& =[a, G] \cap\left(C(b) C l\left(b^{-1}\right)\right)
\end{align*}
$$

and the orbit of $C l(b)$ is

$$
\begin{equation*}
\operatorname{Orb}_{[a, G]}(C l(b))=\{C l(b) z \mid z \in[a, G]\} . \tag{5.3}
\end{equation*}
$$

Since $|C l(b)|=|C l(b) z|$ for all $z \in[a, G]$, then $|C l(b)[a, G]|=|C l(b)|\left|\operatorname{Orb}_{[a, G]}(C l(b))\right|$. Thus

$$
\begin{equation*}
|C l(b)[a, G]|=|C l(b)|\left|[a, G]: S t_{[a, G]}(C l(b))\right|=\frac{|C l(b)||[a, G]|}{\left|[a, G] \cap\left(C l(b) C l\left(b^{-1}\right)\right)\right|} \tag{5.4}
\end{equation*}
$$

Therefore by 5.1 and 5.4 , we have that

$$
\begin{equation*}
|C l(a) C l(b)|=|C l(b)[a, G]|=\frac{|C l(a)||C l(b)|}{\left|[a, G] \cap\left(C l(b) C l\left(b^{-1}\right)\right)\right|} \tag{5.5}
\end{equation*}
$$

Thus Proposition 5.2 and 5.5 imply (i).
(ii) Follows from Corollary 5.3.
(iii) By Lemma 5.1 we have that $[a, G]$ is a subgroup $Z(G)$, thus

$$
C l(a) C l(a)=a[a, G] a[a, G]=a^{2}[a, G][a, G]=a^{2}[a, G] .
$$

Therefore $|C l(a) C l(a)|=\left|a^{2}[a, G]\right|=|C l(a)|$. Also there exists $n \in \mathbb{N}$ such that $[a, G]=\left\langle z_{1}\right\rangle \times \cdots \times\left\langle z_{n}\right\rangle$ for some $z_{i} \in Z(G), 1 \leq i \leq n$ (where $\left|z_{i}\right|=p_{i}^{\alpha_{i}}$ for $1 \leq i \leq n$ and $\alpha_{i} \in \mathbb{N}$). Thus

$$
C l(a)=a[a, G]=a\left\langle z_{1}\right\rangle \times \cdots \times\left\langle z_{n}\right\rangle
$$

Also we have

$$
\begin{aligned}
C l\left(a^{2}\right) & =\left\{a z_{1}^{i_{1}} \ldots z_{n}^{i_{n}} a z_{1}^{i_{1}} \ldots z_{n}^{i_{n}}\left|i_{j}=0, \ldots,\left|z_{j}\right|-1, j=0, \ldots, n\right\}\right. \\
& =\left\{a^{2} z_{1}^{2 i_{1}} \ldots z_{n}^{2 i_{n}}\left|i_{j}=0, \ldots,\left|z_{j}\right|-1, j=0, \ldots, n\right\}\right. \\
& =a^{2}\left(\left\langle z_{1}^{2}\right\rangle \times \cdots \times\left\langle z_{n}^{2}\right\rangle\right)
\end{aligned}
$$

Next if $|C l(a)|$ is an odd number, then $\left\langle z_{j}^{2}\right\rangle=\left\langle z_{j}\right\rangle$ for $j=1, \ldots, n$. Thus $C l(a) C l(a)=a^{2}[a, G]=C l\left(a^{2}\right)$ and ii) follows.
(iv) Otherwise, let $|C l(a)|$ be an even number and P be a Sylow 2 -subgroup of $[a, G]$. Assume that $P=\left\langle z_{1}\right\rangle \times \cdots \times\left\langle z_{m}\right\rangle$ (where $\left|z_{i}\right|=2^{\alpha_{i}}$ for $1 \leq i \leq m$ and $\alpha_{i} \in \mathbb{N}$). Thus we have that

$$
\begin{aligned}
C l\left(a^{2} z_{1}^{l_{1}} \ldots z_{m}^{l_{m}}\right) & =C l\left(a^{2}\right) z_{1}^{l_{1}} \ldots z_{m}^{l_{m}} \\
& =a^{2}\left(\left\langle z_{1}^{2}\right\rangle \times \cdots \times\left\langle z_{m}^{2}\right\rangle \times \cdots \times\left\langle z_{n}^{2}\right\rangle\right) z_{1}^{l_{1}} \ldots z_{m}^{l_{m}}
\end{aligned}
$$

for $l_{1}, \ldots, l_{m}=0,1$. Therefore

$$
C l(a) C l(a)=\bigcup_{l_{1}, \ldots, l_{m}=0}^{1} C l\left(a^{2} z_{1}^{l_{1}} \ldots z_{m}^{l_{m}}\right)
$$

Thus $C l(a) C l(a)$ is the union of exactly 2^{m} distinct conjugacy classes of G of size $\left|C l\left(a^{2}\right)\right|$ and (iv) follows.

Proof [Proof of Theorem D]

(i) Follows from Proposition 2.3.
(ii) We can assume that χ is a faithful irreducible character and then $Z(\chi)=Z(G)$. Since χ vanishes on $G-Z(G)$, by Corollary 2.30 of [5] we can write $\chi(1)^{2}=[G: Z(G)]$, therefore $|G: Z(G)|$ is an odd number. If $|G|$ is an odd number then by Theorem C $\eta\left(\chi^{2}\right)=1$. Otherwise, let $|G|$ be an even number. If $P \in S y l_{2}(G)$
then $P \subseteq Z(G)$ and $P \unlhd G$, because $|G: Z(G)|$ is an odd number. By Theorem 7.41 of [6], there is a subgroup H of G such that $|H|=|G: P|$. Since $P \unlhd G$ then we can check that $G=H P=H \times P$. By problem 4.5 of [5], $\chi^{(2)} \in \operatorname{Irr}(G)$ because $G=H \times P$ and P is an abelian subgroup of G and $(|H|, 2)=1$. But by Theorem 4.5 of [5], $\chi^{2}=\chi^{(2)}+2 \chi_{A}$ where $\chi_{A} \in \operatorname{Char}(G)$. By the Proof of Theorem C we can write $0 \neq\left[\chi^{2}, \chi^{(2)}\right]=\chi(1)$ and $\chi^{2}=\chi(1) \chi^{(2)}$. It follows that $\eta\left(\chi^{2}\right)=1$.

References

[1] Adan-Bante, E.: Conjugacy classes and finite p-groups. Arch. Math 85, 297-303 (2005).
[2] Adan-Bante, E.: Products of characters and finite p-groups. J. Algebra 277, 236-255 (2004).
[3] Arad, Z., Chillag, D. and Moran, G.: Groups with a small covering number. In: Products of Conjugacy Classes in Groups 222-244, Lecture Notes in Math. 1112. Berlin. Springer-Verlag (1985).
[4] Arad, Z. and Fisman, E.: An analogy between products of two conjugacy classes and products of two irreducible characters in finite groups. Proc. Edin. Math. Soc. 30, 7-22 (1987).
[5] Isaacs, I. M.: Character theory of finite groups. New York-San Francisco-London. Academic Press 1976.
[6] Rotman, J. J.: An introduction to the theory of groups. New York. Springer-Verlag 1994.
[7] Zisser, I.: Irreducible products of characters in A_{n}. Israel J. Math 84 no. 1-2, 147-151 (1993).

[^0]: *Correspondence: darafsheh@ut.ac.ir
 2000 AMS Mathematics Subject Classification: 20E45, 20 C 15.

