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Abstract: Let G be a finite group. If A and B are two conjugacy classes in G , then AB is a union of conjugacy

classes in G and η(AB) denotes the number of distinct conjugacy classes of G contained in AB . If χ and ψ are two

complex irreducible characters of G , then χψ is a character of G and again we let η(χψ) be the number of irreducible

characters of G appearing as constituents of χψ . In this paper our aim is to study the product of conjugacy classes in

a finite group and obtain an upper bound for η in general. Then we study similar results related to the product of two

irreducible characters.
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1. Introduction

Let G be a finite group, a ∈ G and Cl(a) = aG = {ag|g ∈ G} be the conjugacy class of a in G . If the subset

X of G is G -invariant, i.e. Xg = {xg|x ∈ X} = X for all g ∈ G , then X is the union of m distinct conjugacy

classes of G , for some positive integer m . Set η(X) = m . Given any conjugacy classes Cl(a) and Cl(b), we

can check that the product Cl(a)Cl(b) = {ahbk|k, h ∈ G} is a G -invariant set. Hence it is a union of conjugacy

classes of G . Let η(Cl(a)Cl(b)) denote the number of conjugacy classes contained in Cl(a)Cl(b). In this note,

we study the product Cl(a)Cl(b) when G is a finite group.

Let [a, G] be the set of all commutators [a, g] = a−1g−1ag where g ∈ G . Our first result is the following.

Theorem A. Let G be a finite group and a ∈ G . Then the following conditions are equivalent:

(i) [a, G] is a subgroup of G ;

(ii) Cl(a)Cl(a−1) = [a, G] ;

(iii) |Cl(a)Cl(a−1)| = |Cl(a)| ;
(iv) |(Cl(a))n| = |Cl(a)| for all n ∈ N .

An application of Theorem A is the following.

Theorem B. Let G be a finite group and a, b ∈ G and [a, G] be a subset of Z(G). Then

(i) η(Cl(a)Cl(b)) = |Cl(a)||Cl(b)|/|[a,G]∩ (Cl(b−1)Cl(b))||Cl(ab)| ;
(ii) If Cl(a)Cl(b) ∩Z(G) �= ∅ , then η(Cl(a)Cl(b)) = |Cl(a)| ;
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(iii) If |Cl(a)| is an odd number, then η(Cl(a)Cl(a)) = 1;

(iv) If |Cl(a)| is an even number, then η(Cl(a)Cl(a)) = 2n (where n is the number of cyclic direct

factors in the decomposition of the Sylow 2-subgroup of [a, G] ).

In [1], Adan-Bante shows that if G is a finite p-group and a ∈ G and |Cl(a)| = pn , then η(Cl(a)Cl(a−1)) ≥
n(p − 1) + 1. In this paper, we prove that if G is a finite group and |Cl(a)| is an odd number, then

η(Cl(a)Cl(a)) ≤ (|Cl(a)| + 1)/2 for all a ∈ G . Also, in Proposition 2.5, we prove that if G is a finite

group and a ∈ G and |a| is an odd number, then [a, G] is a subgroup of G if and only if η(Cl(a)Cl(a)) = 1,

where |a| is the order of a .
The case of products of two irreducible characters of a finite group has been of interest to researchers as well.
For a finite group G , let χ and ϕ be irreducible characters of G , then obviously χϕ is a character of G , hence

χϕ =
∑k

i=1 miχi, mi ∈ N , and χi ∈ Irr(G), hence we define η(χϕ) = k . Analogous results on the products of

the irreducible characters of G may be true for the products of conjugacy classes of G . For example we may
mention [4], which studies this analogy. But in some cases this analogy may not hold.

In [7] it is proved that, there are two non-identity irreducible characters χ and ϕ such that χϕ is an irreducible

character of An if and only if n is a perfect square, while in [3] it is proved that the product of non-trivial
conjugacy classes in An for n ≥ 5 is never a conjugacy class. Concerning irreducible characters of a finite
p-group G , it is proved in [2] that if χ, ϕ ∈ Irr(G) are faithful, then either η(χϕ) = 1 or η(χϕ) ≥ (p + 1)/2.

Concerning irreducible characters of a finite group G , in this paper the following results are also proved.

Theorem C. Let G be a finite group of odd order and χ ∈ Irr(G). Then χ vanishes on G− Z(χ) if and only

if η(χ2) = 1.

Theorem D. Let G be a finite group and χ, ϕ ∈ Irr(G) such that χ vanishes on G − Z(χ). Then

(i) If χϕ ∩ Lin(G) �= ∅ , then η(χψ)) = |Irr(G/Z(G))| ;
(ii) If χ(1) is an odd number, then η(χ2) = 1.

We also put forward the following conjecture.

Conjecture. Let G be a finite group of odd order and χ ∈ Irr(G), then η(χ2) ≤ (χ(1) + 1)/2.

2. Proof of Theorems A and C

Denote by CG(a) = {g ∈ G|ag = a} the centralizer of a in G . Also let [a, g] = a−1ag and [a, G] = {[a, g]|g ∈
G} . Since ag = a[a, g] for any g ∈ G , we have that Cl(a) = aG = {ax|x ∈ [a, G]} . In particular, we get that

|Cl(a)| = |[a, G]| . Through this note, we will use the well-known fact that |Cl(a)| = |G : CG(a)| .

Lemma 2.1 Let G be a finite group and a ∈ G and [a, G] be a subgroup of G . Then

(i) [a, G] is a normal subgroup of G ;

(ii) [a, G] = [a−1, G] .

Proof (i) Observe that

[a, g]h = (a−1)hagh = [a, h]−1[a, gh]

for all g, h ∈ G . Since [a, G] is a subgroup of G , then [a, h]−1[a, gh] ∈ [a, G] . Therefore [a, G] is a normal
subgroup of G .

608



DARAFSHEH and MAHMOOD ROBATI/Turk J Math

(ii) We have that

[a−1, g] = a(a−1)g = (a−1)ga−1
a = [a, ga−1]−1

for all g ∈ G . Also since [a, G] is a subgroup of G , then [a, ga−1]−1 ∈ [a, G] . Therefore [a−1, G] ⊆ [a, G] .

Since |Cl(a)| = |Cl(a−1)| we have [a, G] = [a−1, G] . �

Proof [Proof of Theorem A]

(i ⇒ ii)

By Lemma 2.1, observe that

Cl(a)Cl(a−1) = a[a, G]a−1[a−1, G] = [a, G][a−1, G] = [a, G].

(ii ⇒ i)

Observe that, since aGa = aaG we can write

Cl(a)Cl(a−1) = a[a, G]a−1[a−1, G] = [a, G][a−1, G].

Fix l, h ∈ G . Since Cl(a)Cl(a−1) = [a, G] we have [a, G][a−1, G] = [a, G] and [a, h][a−1, k] = [a, l] for some
k ∈ G .

Since [a−1, k]−1 = [a, ka−1] we have [a, h] = [a, l][a, ka−1] and [a, h][a, l]−1 = [a, ka−1] . Thus 1G ∈ [a, G] ,

and hence [a, G] is a subgroup of G .

(ii ⇔ iii)

Since a−1aG = aGa−1 we have [a, G] ⊆ Cl(a)Cl(a−1). Therefore from |[a, G]| = |Cl(a)| , we obtain

Cl(a)Cl(a−1) = [a, G] if and only if |Cl(a)Cl(a−1)| = |Cl(a)| .
(i ⇒ iv)

Observe that
(Cl(a))n = (a[a, G])n = an[a, G]

for all n ∈ N . Therefore |(Cl(a))n| = |Cl(a)| .
(iv ⇒ i)

Let n = 2. Observe that, since aGa = aaG , we obtain

Cl(a)Cl(a) = a[a, G]a[a, G] = a2[a, G][a, G].

Thus if |Cl(a)Cl(a)| = |Cl(a)| , then |[a, G][a,G]| = |[a, G]| . Since 1G ∈ [a, G] we obtain [a, G] ⊆ [a, G][a, G]

and [a, G][a, G] = [a, G] . Then we conclude that [a, G] is a subgroup of G , since xy ∈ [a, G] for any x, y in

[a, G] and [a, G] is a nonempty finite set. �

Proposition 2.2 Let G be a finite group and a, b ∈ G and Cl(a)Cl(b) ∩Z(G) �= ∅ . Then [a, G] is a subgroup

of G if and only if |Cl(a)Cl(b)| = |Cl(a)| .
Proof Suppose that there exists some z ∈ Cl(a)Cl(b) ∩ Z(G). Then there exists some g ∈ G such that

z = agb and b = (a−1)gz . Thus we have

Cl(a)Cl(b) = Cl(a)Cl((a−1)gz) = Cl(a)Cl((a−1)g)z = Cl(a)Cl(a−1)z,

609



DARAFSHEH and MAHMOOD ROBATI/Turk J Math

therefore |Cl(a)Cl(b)| = |Cl(a)Cl(a−1)| . Thus by Theorem A, [a, G] is a subgroup of G if and only if

|Cl(a)Cl(b)| = |Cl(a)Cl(a−1)| = |Cl(a)| .
�

Proposition 2.3 Let G be a finite group and χ, ψ ∈ Irr(G) with Irr(χψ) ∩ Lin(G) �= ∅ . Then χ vanishes on

G− Z(G) if and only if χ̂ψ = ρG/Z(G) , where ρG/Z(G) is the regular character of G/Z(G) and χ̂ψ(gZ(G)) :=

χψ(g) for all g ∈ G .

Proof Suppose that χ vanishes on G − Z(G) and λ ∈ Lin(G) ∩ Irr(χψ). Since χ and λψ are irreducible

characters then 0 �= [χψ, λ] = [χ, λψ] = 1 and χ = λψ . Therefore χψ = λψψ and ψ vanishes on G − Z(G).

We can check that η(χψ) = η(ψψ).

We can write ψ(g)ψ(g) = |ψ(g)|2 = ψ(1)2 for all g ∈ Z(G) and ψ(g)ψ(g) = 0 for all g ∈ G−Z(G), thus

Z(G) = ker(ψψ). Suppose that ϕi ∈ Irr(ψψ) for i = 1, ..., n , then Z(G) = ker(ψψ) =
⋂n

i=1 ker(ϕi) ⊆ ker(ϕi)

and

0 �= [ψψ, ϕi] = 1/|G|
∑
g∈G

ψψ(g)ϕi(g)

= 1/|G|
∑

g∈Z(G)

ψ(g)ψ(g)ϕi(g)

=
|Z(G)|ψ(1)2ϕi(1)

|G| = ϕi(1)

(2.1)

because ψ(1)2 = |G : Z(G)| . Thus ψψ =
∑n

i=1 ϕi(1)ϕi and |G : Z(G)| = ψ(1)2 =
∑n

i=1 ϕi(1)2 . Since

Irr(G/Z(G)) = {θ ∈ Irr(G)|Z(G) ⊆ kerθ} and ρG/Z(G) =
∑

�θ∈Irr(G/Z(G)) θ̂(1)θ̂ then ϕ̂i ∈ Irr(G/Z(G)) and

ψ̂ψ = ρG/Z(G) , where ϕ̂i(gZ(G)) := ϕi(g) for all g ∈ G . It follows that χ̂ψ = ρG/Z(G) .

Conversely suppose χ̂ψ = ρG/Z(G) =
∑

�θ∈Irr(G/Z(G)) θ̂(1)θ̂ , then χψ vanishes on G − Z(G). On the

other hand, we have Irr(χψ) ∩ Lin(G) �= ∅ , then there exists some λ ∈ Lin(G) such that λ ∈ Irr(χψ) and

0 �= [χψ, λ] = [χ, λψ] = 1. Thus we have χ = λψ and χψ = λψψ . It follows that ψψ vanishes on G − Z(G)

and χ vanishes on G − Z(G). �

Lemma 2.4 Let G be a finite group and a ∈ G . If [a, G] is not a subgroup of G , then η(Cl(a)Cl(a)) �= 1 .

Proof We have that CG(a) ⊆ CG(a2), therefore |Cl(a2)| ≤ |Cl(a)| . Since [a, G] is not a subgroup of G , then

by proof of Theorem A, |Cl(a2)| ≤ |Cl(a)| < |Cl(a)Cl(a)| . Thus Cl(a)Cl(a) is not a single conjugacy class. �

Proposition 2.5 Let G be a finite group and a ∈ G and the order of a be an odd number. Then [a, G] is a

subgroup of G if and only if η(Cl(a)Cl(a)) = 1 .

Proof We have CG(a) ⊆ CG(a2). Since |a| is an odd number, we can check that CG(a) = CG(a2). Thus

|Cl(a)| = |G : CG(a)| = |G : CG(a2)| = |Cl(a2)|.
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Then by Theorem A, Cl(a)Cl(a) = Cl(a2). Conversely, by Lemma 2.4, if η(Cl(a)Cl(a)) = 1 then [a, G] is a
subgroup of G and the proof is complete. �

At this point we prove Theorem C, which is an analogue of Proposition 2.5.

Proof [Proof of Theorem C] First suppose χ vanishes on G − Z(χ). By Corollary 2.30 of [5] we have

χ(1)2 = |G : Z(χ)| . By Theorem 4.5 of [5] the alternating part of the character χ2 which is denoted by χA is

a character of G and for g ∈ G we have χA(g) = 1/2(χ(g)2 − χ(g2)). Let us define χ(2) by χ(2)(g) = χ(g2),

for all g ∈ G , and χ2 by χ2(g) = χ(g)2 , for all g ∈ G . Then χ(2) = χ2 − 2χA . Since |G| is odd, by Problem

4.5 of [5], χ(2) ∈ Irr(G), hence

0 �= [χ2, χ(2)] = 1/|G|
∑
g∈G

χ2(g)χ(2)(g)

= 1/|G|
∑

g∈Z(χ)

χ2(g)χ(2)(g).
(2.2)

But χ|Z(χ) = χ(1)λ1 and χ(2)|Z(χ) = χ(2)(1)λ2 = χ(1)λ2 where λ1, λ2 ∈ Lin(Z(χ)). Therefore continuing,

(2.2), we can write:

0 �= [χ2, χ(2)] = χ(1)3/|G|
∑

g∈Z(χ)

λ2
1(g)λ2(g)

= (χ(1)3|Z(χ)|/|G|)[λ2
1, λ2].

(2.3)

But [λ2
1, λ2] = 0 or 1, which implies λ2

1 = λ2 and 0 �= [χ2, χ(2)] = χ(1). Therefore χ2 = χ(1)χ(2) , proving

η(χ2) = 1.

Conversely suppose G has odd order and η(χ2) = 1. Since χ(2) ∈ Irr(χ2) and η(χ2) = 1, then

χ2 = χ(1)χ(2) . If χ(g) �= 0, then

|χ(g)| =
χ(1)
|χ(g)| |χ

(2)(g)| ≥ |χ(2)(g)|. (2.4)

Thus 1 = [χ(2), χ(2)] ≤ [χ, χ] = 1 and it follows that |χ(g)| = |χ(2)(g)| . Therefore by (2.4), we have that

χ(1) = |χ(g)| and g ∈ Z(χ). Thus if χ(g) �= 0 then g ∈ Z(χ), and therefore χ vanishes on G − Z(χ). �

Example 2.6 Let D8 be the dihedral group of order 23 and a ∈ D8\Z(D8) . We can check that Cl(a)Cl(a) =

Cl(a−1)Cl(a) = Z(D8) , therefore η(Cl(a)Cl(a)) = η(Cl(a−1)Cl(a)) = 2 . Thus Proposition 2.5 may not remain
true if a ∈ G has even order. On the other hand, let χ be the faithful irreducible character of D8 . We can

check that χ vanishes on G − Z(G) , but η(χ2) = 4 . Thus Theorem C may not remain true if G has even
order.

3. Upper bound

Lemma 3.1 Let G be a group and a, b ∈ G . Then η(Cl(a)Cl(b)) ≤ |Cl(a)| .
Proof For c ∈ Cl(a)Cl(b) we have c = g−1agh−1bh where g, h ∈ G , we deduce that c is conjugate to

hg−1agh−1b = agh−1
b , and hence there is d ∈ G such that cd ∈ aGb . Therefore c ∈ ⋃

g∈G Cl(agb), implying
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that Cl(a)Cl(b) ⊆ ⋃
g∈G Cl(agb). Clearly

⋃
g∈G Cl(agb) ⊆ Cl(a)Cl(b), hence Cl(a)Cl(b) =

⋃
g∈G Cl(agb),

thus η(Cl(a)Cl(b)) = η(
⋃

g∈G Cl(agb)) ≤ |aGb| = |Cl(a)| . �

Proposition 3.2 Let G be a finite group and a ∈ G . If |Cl(a)| is an odd number, then Cl(a)Cl(a) is the

union of at most (|Cl(a)|+ 1)/2 distinct conjugacy classes, i.e. η(Cl(a)Cl(a)) ≤ (|Cl(a)|+ 1)/2 .

Proof By Lemma 3.1 , we have that Cl(a)Cl(a) = ∪g∈GCl(aga). It suffices to show that for any x ∈ Cl(a)

with x �= a , there exists y ∈ Cl(a), y �= x, a , such that Cl(xa) = Cl(ya). Observe that aga and ag−1
a are

always conjugate; thus, if x = ag and g2 does not centralize a , one can take y = ag−1
.

Suppose on the other hand that g2 ∈ CG(a) whenever x = ag . We claim that this happens only when

x = a . Indeed, fix a, g with x = ag . Then (zg)2 ∈ CG(a) for all z ∈ CG(a) and taking into account that

(zg)2 = zzg−1
g2 , it follows that g normalizes CG(a). Now let P be a Sylow 2-subgroup of CG(a) (which is

also a Sylow 2-subgroup of CG(a) since |Cl(a)| = n is odd). Thus P g ⊆ CG(a), therefore P zg = P for some

z ∈ CG(a). By replacing g with zg , we have that g normalizes P . Thus the 2-part of g is in P ⊆ CG(a) and

since g2 ∈ CG(a) then g ∈ CG(a). Therefore we can suppose that g has odd order. But then g ∈ CG(a) and

x = a . Thus since Cl(a)Cl(a) = ∪n−1
i=1 Cl(agia) ∪ Cl(a2) for some {gi}n−1

i=1 ⊆ G\CG(a), then

η(Cl(a)Cl(a)) ≤ |Cl(a)| − 1
2

+ 1 =
|Cl(a)|+ 1

2
.

�

Proposition 3.3 Let G be a finite group and a ∈ G and |Cl(a)| = 2 . Then η(Cl(a)Cl(a)) = η(Cl(a)Cl(a−1)) =

|Cl(a)| = 2 .

Proof Let g ∈ G\CG(a). Observe that Cl(a) = {a, ag} and a2, aag ∈ Cl(a)Cl(a). By Lemma 3.1, we have

Cl(a)Cl(a) = Cl(a2) ∪ Cl(aag). Since a2 �= aag �= (a2)g then aag �∈ Cl(a2). Therefore Cl(a2) �= Cl(aag) and

η(Cl(a)Cl(a)) = |Cl(a)| = 2.

Also, by Lemma 3.1, we have η(Cl(a)Cl(a−1)) ≤ 2. Since 1G ∈ Cl(a)Cl(a−1) and a �∈ Z(G), then

η(Cl(a)Cl(a−1)) = 2

�

Remark 3.4 Let p and q be two prime numbers such that p | q − 1 . Let G be a finite nonabelian group of

order pq and a ∈ G and |a| = q .

We can check that |Cl(a)| = p and |Cl(a)Cl(a)| = p(p + 1)/2 . Also if p �= 2 , then all of the conjugacy

classes contained in Cl(a)Cl(a) are of size p and therefore η(Cl(a)Cl(a)) = (p + 1)/2 . Thus the bound in
Proposition 3.2 is optimal.

Otherwise, if p = 2 , then |Cl(a)Cl(a)| = 3 and Cl(a)Cl(a) = 1G∪Cl(a2) . Therefore η(Cl(a)Cl(a)) = 2 .

4. Simple groups and symmetric groups

Proposition 4.1 Let G be a finite nonabelian group and a ∈ G . Then
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(i) If a ∈ G′ , then Cl(a) � G′ ;

(ii) If a �∈ G′ , then G′ ∩ Cl(a) = ∅ .

Proof (i) Let a ∈ G′ . If a = 1G then the statement is true. Otherwise, since a−1aG = [a, G] ⊆ G′ , therefore

Cl(a) = aG ⊆ G′ . Since 1G �∈ Cl(a), thus Cl(a) � G′ .

(ii) Let a �∈ G′ . Since a−1aG = [a, G] , therefore Cl(a) ∩ G′ = ∅ . �

Corollary 4.2 Let G be a finite nonabelian simple group and a ∈ G . Then [a, G] is a subgroup of G if and
only if a = 1G .

Proof Assume that a �= 1G and [a, G] be a subgroup of G . Therefore by Lemma 2.1, [a, G] is a normal

subgroup of G . Since G is a finite nonabelian simple group and [a, G] �= 1G , then [a, G] = G′ = G . By

Proposition 4.1, |Cl(a)| �= G′ , we have that [a, G] �= G′ and the proof is complete. �

Corollary 4.3 Let G be a finite nonabelian simple group and 1G �= a ∈ G . If |Cl(a)| is an odd number, then

2 ≤ η(Cl(a)Cl(a)) ≤ (|Cl(a)| + 1)/2 .

Proof It follows from Corollary 4.2 and Lemma 2.4 and Proposition 3.2. �

Proposition 4.4 Let Sn be the symmetric group of degree n and α ∈ Sn . Then [α, Sn] is a subgroup of Sn

for n > 4 if and only if α = id .

Proof Assume that α �= id and [α, Sn] be a subgroup of Sn . Since [α, Sn] ⊆ S′
n = An for n > 4, thus

[α, Sn] = An . Therefore, by Theorem A, |Cl(α)| = n!/2, thus

|Cl(α)| =
n!

1e1e1!2e2e2! . . . nenen!
=

n!
2

where 1e1, . . . , nen is the cycle structure of α ∈ Sn . It is easy to see that |Cl(α)| �= n!/2 for n > 4. Therefore

[α, Sn] is not a subgroup of Sn for n > 4. �

Remark 4.5 We can check that [α, S4] is not a subgroup of S4 for all id �= α ∈ S4 .

Remark 4.6 Observe that if Cl(a)Cl(a−1) is a subgroup of G , then Cl(a)Cl(a−1) is a normal subgroup of

G , since Cl(a)Cl(a−1) is G-invariant.

The authors in [3] show that if G � J1 (where J1 is the Janko group of order 175560) then Cl(a)Cl(a−1) =

J1 for all a ∈ J1\{1G} . But in Corollary 4.2, we showed that if G is a finite nonabelian simple group, then

[a, G] �= G for all a ∈ G .

Thus if G is a finite nonabelian simple group and Cl(a)Cl(a−1) is a subgroup of G , then it is not

necessary that [a, G] is a subgroup of G .
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5. Proof of Theorems B and D

Lemma 5.1 Let G be a finite group and a ∈ G and [a, G] is a subset of Z(G) . Then [a, G] is a subgroup of
G .
Proof Since [a, G] ⊆ Z(G), thus [a, g1] = z1 and [a, g2] = z2 for all g1, g2 ∈ G and for some z1, z2 ∈ Z(G).

It is easy to see that [a, g1][a, g2] = z1z2 = [a, g1g2] . Since 1G ∈ [a, G] and G is a finite group, it follows that

[a, G] is a subgroup of G . �

Proposition 5.2 Let G be a finite group and a, b ∈ G and [a, G] ⊆ Z(G) . Then all of the conjugacy classes

contained in Cl(a)Cl(b) are of size |Cl(ab)| . Therefore η(Cl(a)Cl(b)) = |Cl(a)Cl(b)|/|Cl(ab)| .
Proof Since Cl(a)Cl(b) is a G -invariant set, then

Cl(a)Cl(b) = {Cl(agb)|g ∈ G} = {Cl(abz)|z ∈ [a, G]} = {Cl(ab)z|z ∈ [a, G]}.

Therefore all of the conjugacy classes contained in Cl(a)Cl(b) are of size |Cl(ab)| and the proof is complete.
�

Corollary 5.3 Let G be a finite group and a, b ∈ G and [a, G] ⊆ Z(G) . If Cl(a)Cl(b) ∩ Z(G) �= ∅ , then

η(Cl(a)Cl(b)) = |Cl(a)| .
Proof By proposition 5.2, we have that

Cl(a)Cl(b) = {Cl(ab)z|z ∈ [a, G]}.

Observe that since Cl(a)Cl(b) ∩ Z(G) �= ∅ , then (ab)g ∈ Z(G) for some g ∈ G , therefore ab ∈ Z(G). Thus

Cl(a)Cl(b) ⊆ Z(G) and η(Cl(a)Cl(b)) = |Cl(a)Cl(b)| = |Cl(a)| . �

Proof [Proof of Theorem B]

(i) Observe that

Cl(a)Cl(b) = a[a, G]Cl(b) = aCl(b)[a, G] (5.1)

and [a, G] is a subgroup of Z(G).

Assume that X = {Cl(g)|g ∈ G} . [a, G] acts on X by right multiplication in G . Thus the stabilizer of

Cl(b) in [a, G] is

St[a,G](Cl(b)) = {z ∈ [a, G]|Cl(b)z = Cl(b)}

= {z ∈ [a, G]|z ∈ Cl(b)Cl(b−1)}

= [a, G]∩ (C(b)Cl(b−1))

(5.2)

and the orbit of Cl(b) is

Orb[a,G](Cl(b)) = {Cl(b)z|z ∈ [a, G]}. (5.3)

Since |Cl(b)| = |Cl(b)z| for all z ∈ [a, G] , then |Cl(b)[a, G]| = |Cl(b)||Orb[a,G](Cl(b))| . Thus

|Cl(b)[a, G]| = |Cl(b)||[a, G] : St[a,G](Cl(b))| =
|Cl(b)||[a, G]|

|[a, G]∩ (Cl(b)Cl(b−1))| . (5.4)
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Therefore by 5.1 and 5.4, we have that

|Cl(a)Cl(b)| = |Cl(b)[a, G]|= |Cl(a)||Cl(b)|
|[a, G]∩ (Cl(b)Cl(b−1))| . (5.5)

Thus Proposition 5.2 and 5.5 imply (i).

(ii) Follows from Corollary 5.3.

(iii) By Lemma 5.1 we have that [a, G] is a subgroup Z(G), thus

Cl(a)Cl(a) = a[a, G]a[a, G] = a2[a, G][a, G] = a2[a, G].

Therefore |Cl(a)Cl(a)| = |a2[a, G]| = |Cl(a)| . Also there exists n ∈ N such that [a, G] = 〈z1〉 × · · · × 〈zn〉 for

some zi ∈ Z(G), 1 ≤ i ≤ n (where |zi| = pαi

i for 1 ≤ i ≤ n and αi ∈ N). Thus

Cl(a) = a[a, G] = a〈z1〉 × · · · × 〈zn〉.

Also we have

Cl(a2) = {azi1
1 . . . zin

n azi1
1 . . . zin

n |ij = 0, . . . , |zj| − 1, j = 0, . . . , n}

= {a2z2i1
1 . . . z2in

n |ij = 0, . . . , |zj| − 1, j = 0, . . . , n}

= a2(〈z2
1〉 × · · · × 〈z2

n〉).

Next if |Cl(a)| is an odd number, then 〈z2
j 〉 = 〈zj〉 for j = 1, . . . , n . Thus Cl(a)Cl(a) = a2[a, G] = Cl(a2)

and ii) follows.

(iv) Otherwise, let |Cl(a)| be an even number and P be a Sylow 2-subgroup of [a, G] . Assume that

P = 〈z1〉 × · · · × 〈zm〉 (where |zi| = 2αi for 1 ≤ i ≤ m and αi ∈ N). Thus we have that

Cl(a2zl1
1 . . . zlm

m ) = Cl(a2)zl1
1 . . . zlm

m

= a2 (〈z2
1〉 × · · · × 〈z2

m〉 × · · · × 〈z2
n〉)zl1

1 . . . zlm
m

for l1, . . . , lm = 0, 1. Therefore

Cl(a)Cl(a) =
1⋃

l1,...,lm=0

Cl(a2zl1
1 . . . zlm

m ).

Thus Cl(a)Cl(a) is the union of exactly 2m distinct conjugacy classes of G of size |Cl(a2)| and (iv) follows.
�

Proof [Proof of Theorem D]

(i) Follows from Proposition 2.3.

(ii) We can assume that χ is a faithful irreducible character and then Z(χ) = Z(G). Since χ vanishes

on G−Z(G), by Corollary 2.30 of [5] we can write χ(1)2 = [G : Z(G)] , therefore |G : Z(G)| is an odd number.

If |G| is an odd number then by Theorem C η(χ2) = 1. Otherwise, let |G| be an even number. If P ∈ Syl2(G)
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then P ⊆ Z(G) and P �G , because |G : Z(G)| is an odd number. By Theorem 7.41 of [6], there is a subgroup

H of G such that |H | = |G : P | . Since P �G then we can check that G = HP = H×P . By problem 4.5 of [5],

χ(2) ∈ Irr(G) because G = H × P and P is an abelian subgroup of G and (|H |, 2) = 1. But by Theorem 4.5

of [5], χ2 = χ(2) + 2χA where χA ∈ Char(G). By the Proof of Theorem C we can write 0 �= [χ2, χ(2)] = χ(1)

and χ2 = χ(1)χ(2) . It follows that η(χ2) = 1. �
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