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Abstract: Let G be a finite group. If A and B are two conjugacy classes in GG, then AB is a union of conjugacy
classes in G and n(AB) denotes the number of distinct conjugacy classes of G contained in AB. If x and v are two
complex irreducible characters of G, then x is a character of G and again we let 7(x%) be the number of irreducible
characters of G appearing as constituents of x%. In this paper our aim is to study the product of conjugacy classes in
a finite group and obtain an upper bound for 7 in general. Then we study similar results related to the product of two

irreducible characters.
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1. Introduction
Let G be a finite group, a € G and Cl(a) = a® = {a%g € G} be the conjugacy class of a in G. If the subset
X of G is G-invariant, i.e. X9 = {29z € X} = X for all g € G, then X is the union of m distinct conjugacy
classes of G, for some positive integer m. Set n(X) = m. Given any conjugacy classes Cl(a) and CI(b), we
can check that the product Cl(a)CI(b) = {a"V*|k, h € G} is a G-invariant set. Hence it is a union of conjugacy
classes of G. Let n(Cl(a)Cl(b)) denote the number of conjugacy classes contained in Cl(a)Cl(b). In this note,
we study the product Cl(a)Cl(b) when G is a finite group.

Let [a, G] be the set of all commutators [a, g] = a~'g~lag where g € G. Our first result is the following.

Theorem A. Let G be a finite group and a € G. Then the following conditions are equivalent:
(i) [a, @] is a subgroup of G;
(i) Cl(a)Cl(a™t) = [a,G];
(iii) |Cl(a)Cl(a™")| = |Cl(a)];
(iv) [(Cl(a))™] = |Cl(a)] for all n € N.
An application of Theorem A is the following.

Theorem B. Let G be a finite group and a,b € G and [a, G] be a subset of Z(G). Then
(1) n(Cl(a)CLD)) = [Cl(a)||CLB)|/[la, GIN (CL(B™H)CIB))[|Cl(ab)|;
(ii) If Cl(a)Cl(b) N Z(G) # 0, then n(Cl(a)Cl(b)) = |Cl(a)l;
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(iii) If |Cl(a)| is an odd number, then n(Cl(a)Cl(a)) = 1;

(iv) If |Cl(a)| is an even number, then n(Cl(a)Cl(a)) = 2™ (where n is the number of cyclic direct
factors in the decomposition of the Sylow 2-subgroup of [a, G]).

In [1], Adan-Bante shows that if G is a finite p-group and a € G and |Cl(a)| = p™, then n(Cl(a)Cl(a™1)) >
n(p — 1) + 1. In this paper, we prove that if G is a finite group and |Cl(a)| is an odd number, then
n(Cl(a)Cl(a)) < (|Cl(a)] + 1)/2 for all a € G. Also, in Proposition 2.5, we prove that if G is a finite
group and a € G and |a| is an odd number, then [a, G] is a subgroup of G if and only if n(Ci(a)Ci(a)) =1,
where |a| is the order of a.

The case of products of two irreducible characters of a finite group has been of interest to researchers as well.

For a finite group G, let x and ¢ be irreducible characters of G, then obviously x¢ is a character of G, hence
Xp = Zle m;xi, m; € N, and y; € Irr(G), hence we define n(xp) = k. Analogous results on the products of

the irreducible characters of G may be true for the products of conjugacy classes of G. For example we may
mention [4], which studies this analogy. But in some cases this analogy may not hold.

In [7] it is proved that, there are two non-identity irreducible characters y and ¢ such that y¢ is an irreducible
character of A, if and only if n is a perfect square, while in [3] it is proved that the product of non-trivial
conjugacy classes in A, for n > 5 is never a conjugacy class. Concerning irreducible characters of a finite
p-group G, it is proved in [2] that if x, ¢ € Irr(G) are faithful, then either n(xp) =1 or n(xy) > (p+1)/2.

Concerning irreducible characters of a finite group G, in this paper the following results are also proved.

Theorem C. Let G be a finite group of odd order and x € Irr(G). Then x vanishes on G — Z(x) if and only
if n(x*) = 1.
Theorem D. Let G be a finite group and x, ¢ € Irr(G) such that y vanishes on G — Z(). Then

(i) If xp NLin(G) # 0, then n(xv)) = [Irr(G/Z(G))|;

(i) If x(1) is an odd number, then 7(x?) = 1.

We also put forward the following conjecture.

Conjecture. Let G be a finite group of odd order and x € Irr(G), then n(x?) < (x(1) +1)/2.

2. Proof of Theorems A and C
Denote by Cg(a) = {g € G|a? = a} the centralizer of a in G. Also let [a,g] = a~1a? and [a, G] = {[a,g]|g €

G}. Since a9 = ala, g] for any g € G, we have that Cl(a) = a¥ = {az|z € [a,G]}. In particular, we get that
|Cl(a)| = |[a, G]|. Through this note, we will use the well-known fact that |Cl(a)| =|G : Cg(a)|.

Lemma 2.1 Let G be a finite group and a € G and [a, G| be a subgroup of G. Then
(i) la, G] is a normal subgroup of G;
(ii) [a,G] = [a~ 1, G].
Proof (i) Observe that
[a,9)" = (a™1)"a = [a, h]~"[a, gh]

for all g,h € G. Since [a,G] is a subgroup of G, then [a, h] [a,gh] € [a,G]. Therefore [a,G] is a normal
subgroup of G.
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(ii) We have that

gl =al™) = (@)™ a =[a, 907"

for all g € G. Also since [a,G] is a subgroup of G, then [a,ga"!]~! € [a,G]. Therefore [a~1,G] C [a,G].
Since |Cl(a)| = |Cl(a™1)| we have [a,G] = [a1,G]. O

Proof [Proof of Theorem A]
(i = i)

By Lemma 2.1, observe that
Cl(a)Cl(a™ ") = ala, Gla™[a™ !, G] = [a, G][a" ", G] = [a, G].

(i1 = 1)

Observe that, since a®a = aa® we can write

Cl(a)Cl(a™ ") = ala,Gla a !, G] = [a,G][a" ", G].

Fix I,h € G. Since Cl(a)Cl(a™') = [a,G] we have [a,G][a"!,G] = [a,G] and [a, h][a™ ', k] = [a,]] for some
kedG.

Since [a~1, k]~ = [a, ka~ ] we have [a, h] = [a,[][a, ka—!] and [a, h][a,]]" = [a, ka"!]. Thus 1 € [a, G],
and hence [a, G] is a subgroup of G.

(i < i)

Since a~'a® = a%a~! we have [a,G] C Cl(a)Cl(a~"'). Therefore from |[a,G]| = |Cl(a)|, we obtain
Cl(a)Cl(a™t) = [a, G] if and only if |Cl(a)Cl(a1)| = |Cl(a)|.
(i = iv)

Observe that
(Cl(a))" = (ala, G])" = a"[a, G]

for all n € N. Therefore |(Cl(a))"| = |Cl(a)].
(v = 1)

Let n = 2. Observe that, since a®a = aa®, we obtain

Cl(a)Cl(a) = ala, Glala, G] = a*[a, G][a, G].

Thus if |Cl(a)Cl(a)| = |Cl(a)|, then |[a, G][a,G]| = |[a,G]|. Since 1¢ € [a,G] we obtain [a,G] C [a, G][a, G]
and [a, G][a, G] = [a,G]. Then we conclude that [a,G] is a subgroup of G, since zy € [a,G] for any z,y in
[a, G] and [a,G] is a nonempty finite set. O

Proposition 2.2 Let G be a finite group and a,b € G and Cl(a)Cl(b)NZ(G) # 0. Then [a,G] is a subgroup
of G if and only if |Cl(a)CL(b)| = |Cl(a)].
Proof Suppose that there exists some z € Cl(a)Cl(b) N Z(G). Then there exists some g € G such that

z=a% and b= (a"1)2. Thus we have

Cl(a)Cl(b) = Cl(a)Cl((a=1)?2) = Cl(a)Cl((a~ "))z = Cl(a)Cl(a™")z,
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therefore |Cl(a)CI(b)| = |Cl(a)Cl(a"1)]. Thus by Theorem A, [a,G] is a subgroup of G if and only if
|Cl(a)CLD)| = |Cl(a)Cl(a™)| = |Cl(a)|.

Proposition 2.3 Let G be a finite group and x,v € Irr(G) with Irr(xy) NLin(G) # 0. Then x vanishes on
G — Z(G) if and only if )21\# = pG/z(a), where pgz(a) is the reqular character of G/Z(G) and wa(gZ(G)) =
x¥(g) for all g € G.
Proof Suppose that y vanishes on G — Z(G) and A € Lin(G) N Trr(xw). Since x and A\ are irreducible
characters then 0 # [x¥, \] = [x, )] = 1 and x = M). Therefore x1) = A7) and 1 vanishes on G — Z(G).
We can check that n(xvy) = ().

We can write 1(g)1(g) = |¢(g)|? = ¥(1)? for all g € Z(G) and ¥(g)y(g) = 0 for all g € G — Z(G), thus
Z(G) = ker(yp). Suppose that ¢; € Irr(yrp) for i = 1,...,n, then Z(G) = ker(¢¥p) = (i, ker(y;) C ker(y;)
and

0 # [, ] = 1/|G Y eb(9) 7il9)

geaG

=1/|G| Y P(9(e)Fil9) (2.1)

9eZ(G)

B |Z<G>|1|pé1|>2soi<1> o)

because ¥(1)? = |G : Z(G)|. Thus ¥ = > pi(1)g; and |G : Z(G)| = ¢(1)? = Y1, i(1)?. Since

Irr(G/2(G)) = {0 € Trr(G)|Z(G) € kerb} and paz(a) = Ygermiayzcy 00 then §; € ir(G/Z(G)) and

Y = payz(a). where $;(9Z(G)) := i(g) for all g € G. It follows that x¥ = pe/z(q) -
Conversely suppose )21\# = pa/z(c) = dehr(G/Z(G)) @\(1)5, then xt vanishes on G — Z(G). On the
other hand, we have Irr(x®) N Lin(G) # @, then there exists some A € Lin(G) such that A € Irr(xy) and

0 # [x¥, \] = [x, \p] = 1. Thus we have y = A\ and x = \pp. It follows that 1) vanishes on G — Z(G)
and x vanishes on G — Z(G). O

Lemma 2.4 Let G be a finite group and a € G. If [a, G| is not a subgroup of G, then n(Cl(a)Cl(a)) # 1.

Proof We have that Cg(a) C Cg(a?), therefore |Cl(a?)| < |Cl(a)|. Since [a, G] is not a subgroup of G, then
by proof of Theorem A, |Cl(a?)| < |Cl(a)| < |Cl(a)Cl(a)|. Thus Cl(a)Cl(a) is not a single conjugacy class. O

Proposition 2.5 Let G be a finite group and a € G and the order of a be an odd number. Then [a,G] is a
subgroup of G if and only if n(Cl(a)Cl(a)) =1.

Proof We have Cg(a) C Cg(a?). Since |a| is an odd number, we can check that Cg(a) = Cg(a?). Thus
Cl(a)| =G : Cala)] = |G : Ca(a®)] = [Cl(a®)].
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Then by Theorem A, Cl(a)Cl(a) = Cl(a?). Conversely, by Lemma 2.4, if n(Cl(a)Cl(a)) = 1 then [a,G] is a
subgroup of G and the proof is complete. O
At this point we prove Theorem C, which is an analogue of Proposition 2.5.

Proof [Proof of Theorem C] First suppose x vanishes on G — Z(x). By Corollary 2.30 of [5] we have
x(1)? = |G : Z(x)|. By Theorem 4.5 of [5] the alternating part of the character x? which is denoted by x4 is
a character of G and for g € G we have xa(g) = 1/2(x(9)? — x(9?)). Let us define x by x®(g) = x(¢?),
for all g € G, and x? by x%(g9) = x(9)?, for all g € G. Then x®) = x? —2x4. Since |G| is odd, by Problem
4.5 of [5], x¥ € Irr(G), hence

0# DX =1/1G1 Y ¥ (9)x®(9)

geG

=1/IG| > X*(9x@(g).

9EZ(X)

(2.2)

But x|z = x(DA1 and x|z = xP(1)A2 = x(1)A2 where A\, A; € Lin(Z(x)). Therefore continuing,
(2.2), we can write:

0# DX = x(/IG] Y A(9)a(9)
9€Z(x) (2.3)

= (x(D?[Z0OI/IGDIA, Az).

But [A\?,\s] = 0 or 1, which implies A3 = Xy and 0 # [x?,x¥] = x(1). Therefore x> = x(1)x?, proving
n(x?*) = 1.
Conversely suppose G has odd order and n(x?) = 1. Since x® € Trr(x?) and n(x?) = 1, then
X* = x(1)x®). If x(g) # 0, then
x(1)

Ix(9)| = mlx(z)(g)l > [x®(g)l. (2.4)

Thus 1 = [x®,x®] < [x,x] = 1 and it follows that |x(g)] = |x®(g)|. Therefore by (2.4), we have that
x(1) =|x(9)| and g € Z(x). Thus if x(g) # 0 then g € Z(x), and therefore x vanishes on G — Z(x). O

Example 2.6 Let Dg be the dihedral group of order 23 and a € Ds\Z(Ds). We can check that Cl(a)Cl(a) =
Cl(a=Y)Cl(a) = Z(Dsg), therefore n(Cl(a)Cl(a)) = n(Cl(a=1)Cl(a)) = 2. Thus Proposition 2.5 may not remain
true if a € G has even order. On the other hand, let x be the faithful irreducible character of Dg. We can
check that x wvanishes on G — Z(G), but n(x?) = 4. Thus Theorem C may not remain true if G has even

order.

3. Upper bound

Lemma 3.1 Let G be a group and a,b € G. Then n(Cl(a)Cl(b)) < |Cl(a)|.
Proof For ¢ € Cl(a)CI(b) we have ¢ = g lagh~'bh where g,h € G, we deduce that c is conjugate to
hg tagh™'b = aghflb, and hence there is d € G such that ¢? € a“b. Therefore ¢ €

,eq Cl(a?b), implying
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that Cl(a)Cl(b) C Uyeg Cl(ab). Clearly yeq Cl(ab) € Cl(a)Cl(b), hence Cl(a)Cl(b) = Uyeq Cl(a?b),
thus n(Cl(a)Cl(b)) = n(Uyeq Cl(a?b)) < |a%b| = |Cl(a)|. O

Proposition 3.2 Let G be a finite group and a € G. If |Cl(a)| is an odd number, then Cl(a)Cl(a) is the
union of at most (|Cl(a)| 4+ 1)/2 distinct conjugacy classes, i.e. n(Cl(a)Cl(a)) < (|Cl(a)|+1)/2.
Proof By Lemma 3.1, we have that Cl(a)Cl(a) = UgecCl(a%a). It suffices to show that for any = € Cl(a)
with = # a, there exists y € Cl(a), y # «,a, such that Cl(za) = Cl(ya). Observe that af and a9 a are
always conjugate; thus, if = a9 and g¢®> does not centralize a, one can take y = ad .

Suppose on the other hand that ¢g> € Cg(a) whenever z = a9. We claim that this happens only when
z = a. Indeed, fix a,g with = a9. Then (z9)? € Cg(a) for all z € Cg(a) and taking into account that
(29)% = 229 g2, it follows that g normalizes C(a). Now let P be a Sylow 2-subgroup of Ce(a) (which is
also a Sylow 2-subgroup of Cg(a) since |Cl(a)| = n is odd). Thus P9 C Cg(a), therefore P*9 = P for some
z € Cg(a). By replacing g with zg, we have that g normalizes P. Thus the 2-part of g is in P C Cg(a) and
since g2 € Cg(a) then g € Cg(a). Therefore we can suppose that g has odd order. But then g € Cg(a) and
z = a. Thus since Cl(a)Cl(a) = U'_'Cl(a%a) U Cl(a?) for some {g;}"";' € G\Cq(a), then

_|Cl(a)|+1
= 5 )

n(Cl(a)Cl(a)) < ICl(a2)| -1

+1

Proposition 3.3 Let G be a finite group and a € G and |Cl(a)| = 2. Then n(Cl(a)Cl(a)) = n(Cl(a)Cl(a™1t)) =
|ICl(a)| = 2.
Proof Let g € G\Cg(a). Observe that Cl(a) = {a,a?} and a?, aa? € Cl(a)Cl(a). By Lemma 3.1, we have
Cl(a)Cl(a) = Cl(a®) U Cl(aa?). Since a? # aa? # (a®)9 then aa? ¢ Cl(a?). Therefore Cl(a?) # Cl(aa?) and
n(Cl(a)Cl(a)) = |Cl(a)| = 2.

Also, by Lemma 3.1, we have n(Cl(a)Cl(a=t)) < 2. Since 1g € Cl(a)Cl(a!) and a € Z(G), then
n(Cl(a)Cl(a™")) =2

Remark 3.4 Let p and q be two prime numbers such that p| ¢ — 1. Let G be a finite nonabelian group of
order pq and a € G and |a| =q.

We can check that |Cl(a)| = p and |Cl(a)Cl(a)| =p(p+1)/2. Also if p # 2, then all of the conjugacy
classes contained in Cl(a)Cl(a) are of size p and therefore n(Cl(a)Cl(a)) = (p+ 1)/2. Thus the bound in

Proposition 3.2 is optimal.
Otherwise, if p = 2, then |Cl(a)Cl(a)| = 3 and Cl(a)Cl(a) = 1gUCI(a?). Therefore n(Cl(a)Cl(a)) = 2.

4. Simple groups and symmetric groups

Proposition 4.1 Let G be a finite nonabelian group and a € G. Then

612



DARAFSHEH and MAHMOOD ROBATI/Turk J Math

(i) If a € G', then Cl(a) G G';

(1) If a € G', then G'NCl(a) = 0.
Proof (i) Let a € G’. If a = 1¢ then the statement is true. Otherwise, since a~'a® = [a, G] C G’, therefore
Cl(a) =a® C G'. Since 1g & Cl(a), thus Cl(a) S G'.

(ii) Let a ¢ G’. Since a~'a® = [a, G], therefore Cl(a) NG = 0. O

Corollary 4.2 Let G be a finite nonabelian simple group and a € G. Then [a, G| is a subgroup of G if and
only if a = 1¢g.

Proof Assume that a # 1g and [a,G] be a subgroup of G. Therefore by Lemma 2.1, [a,G] is a normal
subgroup of G. Since G is a finite nonabelian simple group and [a,G] # l¢g, then [0,G] = G’ = G. By
Proposition 4.1, |Cl(a)| # G’, we have that [a, G] # G’ and the proof is complete. O

Corollary 4.3 Let G be a finite nonabelian simple group and 1g # a € G. If |Cl(a)| is an odd number, then
2 < n(Cl(a)Cl(a)) < (|Cl(a)] +1)/2.

Proof It follows from Corollary 4.2 and Lemma 2.4 and Proposition 3.2. o

Proposition 4.4 Let S,, be the symmetric group of degree n and o € S,,. Then [, S,] is a subgroup of Sy
for n >4 if and only if a =id.

Proof Assume that o # id and [, S,] be a subgroup of S,. Since [a,S,] C S/, = A, for n > 4, thus
[, Sp] = A, . Therefore, by Theorem A, |Cl(a)| =n!/2, thus

n! n!

1e1e12¢2¢5! .. . néne,! 2

Cl(a)]

where 1° ... n" is the cycle structure of a € S,,. Tt is easy to see that |Cl(«)| # n!/2 for n > 4. Therefore
[, Sp] is not a subgroup of S, for n > 4. O

Remark 4.5 We can check that [a, Sy] is not a subgroup of Sy for all id # « € Sy.

Remark 4.6 Observe that if Cl(a)Cl(a™t) is a subgroup of G, then Cl(a)Cl(a™t) is a normal subgroup of
G, since Cl(a)Cl(a™t) is G -invariant.
The authors in [3] show that if G =~ J; (where Jy is the Janko group of order 175560 ) then Cl(a)Cl(a™') =

J1 for all a € J1\{1g}. But in Corollary 4.2, we showed that if G is a finite nonabelian simple group, then
[a,G] # G for all a € G.

Thus if G is a finite nonabelian simple group and Cl(a)Cl(a™') is a subgroup of G, then it is not
necessary that |a, G] is a subgroup of G.

613



DARAFSHEH and MAHMOOD ROBATI/Turk J Math

5. Proof of Theorems B and D

Lemma 5.1 Let G be a finite group and a € G and [a, G| is a subset of Z(G). Then la, G| is a subgroup of
G.

Proof Since [a,G] C Z(G), thus [a,g1] = z1 and [a, g2] = 22 for all g1, g2 € G and for some 21,22 € Z(G).
It is easy to see that [a, g1][a, g2] = 2122 = [a, g1g2]. Since 1g € [a,G] and G is a finite group, it follows that
[a, G] is a subgroup of G. O

Proposition 5.2 Let G be a finite group and a,b € G and [a,G] C Z(G). Then all of the conjugacy classes
contained in Cl(a)Cl(b) are of size |Cl(ab)|. Therefore n(Cl(a)Cl(b)) = |Cl(a)CIl(b)|/|Cl(ab)].
Proof Since Cl(a)Cl(b) is a G-invariant set, then

Cl(a)Cl(b) = {Cl(a”b)|g € G} = {Cl(abz)|z € [a, G]} = {Cl(ab)z|z € [a, G]}.

Therefore all of the conjugacy classes contained in Cl(a)Cl(b) are of size |Cl(ab)| and the proof is complete.
O

Corollary 5.3 Let G be a finite group and a,b € G and [a,G| C Z(G). If Cl(a)Cl(b) N Z(G) # 0, then
n(Cl(a)ClDb)) = |Cl(a)|-
Proof By proposition 5.2, we have that

Cl(a)Cl(b) = {Cl(ab)z|z € [a, G]}.
Observe that since Cl(a)Cl(b) N Z(G) # 0, then (ab)? € Z(G) for some g € G, therefore ab € Z(G). Thus
Cl(a)Cl(b) C Z(G) and n(Cl(a)Cl(b)) = |Cl(a)CL(b)| = |Cl(a)]. O

Proof [Proof of Theorem B]
(i) Observe that
Cl(a)Cl(b) = ala, G]CI(b) = aCl(b)[a, G] (5.1)
and [a, G] is a subgroup of Z(G).
Assume that X = {Cl(g)|g € G}. [a,G] acts on X by right multiplication in G. Thus the stabilizer of
Cl(b) in [a,G] is
St (CIUB) = {= € [a, G| CU(b)= = CIb)}
={z € [a,G]|z € CUL)CI(L)} (5.2)
= [a,GIN (COH)CID™))
and the orbit of CI(b) is
Orbye,c)(CI(b)) = {Cl(b)z|z € [a,G]}. (5.3)
Since |CI(b)| = |Cl(b)z| for all z € [a, G], then |Cl(b)[a, G]| = |Cl(b)||Orby,, ¢ (CI(b))|. Thus

[CL®)||[a, Gl
|[a, GIN (CUB)CUB))

CL(b)a, G| = [CLb)[|la, G] : Stpa,c1(CUD))| =
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Therefore by 5.1 and 5.4, we have that

[Cl@)]|CL®)]
|[a, G0 (CUB)CUO=1)

|Cl(a)Cl(D)| = |ClL(D)[a, G]| = (5.5)

Thus Proposition 5.2 and 5.5 imply (i).
(ii) Follows from Corollary 5.3.

(iii) By Lemma 5.1 we have that [a, G] is a subgroup Z(G), thus
Cl(a)Cl(a) = ala, Glala, G] = a*[a, G][a, G] = a*[a, G].

= |a?[a, G]| = |Cl(a)|. Also there exists n € N such that [a,G] = (z1) x --+ x (z,) for
n (where |z;| =p;* for 1 <i<n and o; € N). Thus

Therefore |Cl(a)Cl(a)|
some z; € Z(G), 1 <4

Cl(a) = ala,G] = a(z1) X -+ X (2zp).

Also we have

Cl(a®) = {azi* .. . Zimazit . 2in)ij =0,...,]2] —1,§=0,...,n}

= {a%2}" . 22 i =0,...,]2] —1,j=0,...,n}
= a®((27) x - x (22)).

Next if |Cl(a)] is an odd number, then (22) = (z;) for j = 1,...,n. Thus Cl(a)Cl(a) = a*[a, G] = Cl(a?)
and ii) follows.

(iv) Otherwise, let |Cl(a)| be an even number and P be a Sylow 2-subgroup of [a,G]. Assume that
P ={(z1) X+ x (zmm) (where |z;] =2% for 1 <i<m and «; € N). Thus we have that

Cl(a?z .. 2ty = Cl(a®)2h .. 2l

= a? ((2) X - x (22)) X - x (22)) 2Lk

for ly,...,1l,, = 0,1. Therefore

Cl(a)Cl(a) = U Cl(a?zlr .. 2bn).
Ul =0

Thus Cl(a)Cl(a) is the union of exactly 2™ distinct conjugacy classes of G of size |Cl(a?)| and (iv) follows.
O

Proof [Proof of Theorem D]

(i) Follows from Proposition 2.3.

(ii) We can assume that x is a faithful irreducible character and then Z(x) = Z(G). Since x vanishes
on G —Z(G), by Corollary 2.30 of [5] we can write x(1)? = [G : Z(G)], therefore |G : Z(G)| is an odd number.
If |G| is an odd number then by Theorem C n(x?) = 1. Otherwise, let |G| be an even number. If P € Syly(G)
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then P C Z(G) and P <G, because |G : Z(G)| is an odd number. By Theorem 7.41 of [6], there is a subgroup
H of G such that |H| = |G : P|. Since P<G then we can check that G = HP = H x P. By problem 4.5 of [5],

x? € Irr(G) because G = H x P and P is an abelian subgroup of G' and (|H|,2) = 1. But by Theorem 4.5
of [5], x? = x® + 2x4 where x4 € Char(G). By the Proof of Theorem C we can write 0 # [x2, x(?] = x(1)
and x? = x(1)x®. Tt follows that n(x?) = 1. O
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