

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (2013) 37: 607 – 616 © TÜBİTAK doi:10.3906/mat-1112-34

Products of conjugacy classes and products of irreducible characters in finite groups

Mohammad Reza DARAFSHEH,* Sajjad MAHMOOD ROBATI

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran,

Tehran, Iran

Received: 25.12.2011 • Accepted: 10.05.2012	•	Published Online: 12.06.2013	٠	Printed: 08.07.2013
--	---	------------------------------	---	---------------------

Abstract: Let G be a finite group. If A and B are two conjugacy classes in G, then AB is a union of conjugacy classes in G and $\eta(AB)$ denotes the number of distinct conjugacy classes of G contained in AB. If χ and ψ are two complex irreducible characters of G, then $\chi\psi$ is a character of G and again we let $\eta(\chi\psi)$ be the number of irreducible characters of G appearing as constituents of $\chi\psi$. In this paper our aim is to study the product of conjugacy classes in a finite group and obtain an upper bound for η in general. Then we study similar results related to the product of two irreducible characters.

Key words: Conjugacy classes, irreducible characters, products

1. Introduction

Let G be a finite group, $a \in G$ and $Cl(a) = a^G = \{a^g | g \in G\}$ be the conjugacy class of a in G. If the subset X of G is G-invariant, i.e. $X^g = \{x^g | x \in X\} = X$ for all $g \in G$, then X is the union of m distinct conjugacy classes of G, for some positive integer m. Set $\eta(X) = m$. Given any conjugacy classes Cl(a) and Cl(b), we can check that the product $Cl(a)Cl(b) = \{a^h b^k | k, h \in G\}$ is a G-invariant set. Hence it is a union of conjugacy classes of G. Let $\eta(Cl(a)Cl(b))$ denote the number of conjugacy classes contained in Cl(a)Cl(b). In this note, we study the product Cl(a)Cl(b) when G is a finite group.

Let [a, G] be the set of all commutators $[a, g] = a^{-1}g^{-1}ag$ where $g \in G$. Our first result is the following.

Theorem A. Let G be a finite group and $a \in G$. Then the following conditions are equivalent:

- (i) [a, G] is a subgroup of G;
- (ii) $Cl(a)Cl(a^{-1}) = [a, G];$
- (iii) $|Cl(a)Cl(a^{-1})| = |Cl(a)|;$
- (iv) $|(Cl(a))^n| = |Cl(a)|$ for all $n \in \mathbb{N}$.

An application of Theorem A is the following.

Theorem B. Let G be a finite group and $a, b \in G$ and [a, G] be a subset of Z(G). Then

(i) $\eta(Cl(a)Cl(b)) = |Cl(a)||Cl(b)|/|[a,G] \cap (Cl(b^{-1})Cl(b))||Cl(ab)|;$

(ii) If $Cl(a)Cl(b) \cap Z(G) \neq \emptyset$, then $\eta(Cl(a)Cl(b)) = |Cl(a)|$;

*Correspondence: darafsheh@ut.ac.ir

²⁰⁰⁰ AMS Mathematics Subject Classification: 20E45, 20C15.

(iii) If |Cl(a)| is an odd number, then $\eta(Cl(a)Cl(a)) = 1$;

(iv) If |Cl(a)| is an even number, then $\eta(Cl(a)Cl(a)) = 2^n$ (where *n* is the number of cyclic direct factors in the decomposition of the Sylow 2-subgroup of [a, G]).

In [1], Adan-Bante shows that if G is a finite p-group and $a \in G$ and $|Cl(a)| = p^n$, then $\eta(Cl(a)Cl(a^{-1})) \ge n(p-1) + 1$. In this paper, we prove that if G is a finite group and |Cl(a)| is an odd number, then $\eta(Cl(a)Cl(a)) \le (|Cl(a)| + 1)/2$ for all $a \in G$. Also, in Proposition 2.5, we prove that if G is a finite group and $a \in G$ and |a| is an odd number, then [a, G] is a subgroup of G if and only if $\eta(Cl(a)Cl(a)) = 1$, where |a| is the order of a.

The case of products of two irreducible characters of a finite group has been of interest to researchers as well. For a finite group G, let χ and φ be irreducible characters of G, then obviously $\chi\varphi$ is a character of G, hence $\chi\varphi = \sum_{i=1}^{k} m_i\chi_i, m_i \in \mathbb{N}$, and $\chi_i \in \operatorname{Irr}(G)$, hence we define $\eta(\chi\varphi) = k$. Analogous results on the products of the irreducible characters of G may be true for the products of conjugacy classes of G. For example we may mention [4], which studies this analogy. But in some cases this analogy may not hold.

In [7] it is proved that, there are two non-identity irreducible characters χ and φ such that $\chi\varphi$ is an irreducible character of A_n if and only if n is a perfect square, while in [3] it is proved that the product of non-trivial conjugacy classes in A_n for $n \geq 5$ is never a conjugacy class. Concerning irreducible characters of a finite p-group G, it is proved in [2] that if $\chi, \varphi \in \operatorname{Irr}(G)$ are faithful, then either $\eta(\chi\varphi) = 1$ or $\eta(\chi\varphi) \geq (p+1)/2$.

Concerning irreducible characters of a finite group G, in this paper the following results are also proved.

Theorem C. Let G be a finite group of odd order and $\chi \in Irr(G)$. Then χ vanishes on $G - Z(\chi)$ if and only if $\eta(\chi^2) = 1$.

Theorem D. Let G be a finite group and $\chi, \varphi \in Irr(G)$ such that χ vanishes on $G - Z(\chi)$. Then

(i) If $\chi \varphi \cap \text{Lin}(G) \neq \emptyset$, then $\eta(\chi \psi) = |\text{Irr}(G/Z(G))|;$

(ii) If $\chi(1)$ is an odd number, then $\eta(\chi^2) = 1$.

We also put forward the following conjecture.

Conjecture. Let G be a finite group of odd order and $\chi \in Irr(G)$, then $\eta(\chi^2) \leq (\chi(1) + 1)/2$.

2. Proof of Theorems A and C

Denote by $C_G(a) = \{g \in G | a^g = a\}$ the centralizer of a in G. Also let $[a,g] = a^{-1}a^g$ and $[a,G] = \{[a,g] | g \in G\}$. $G\}$. Since $a^g = a[a,g]$ for any $g \in G$, we have that $Cl(a) = a^G = \{ax | x \in [a,G]\}$. In particular, we get that |Cl(a)| = |[a,G]|. Through this note, we will use the well-known fact that $|Cl(a)| = |G : C_G(a)|$.

Lemma 2.1 Let G be a finite group and $a \in G$ and [a, G] be a subgroup of G. Then

(i) [a, G] is a normal subgroup of G;

(*ii*)
$$[a, G] = [a^{-1}, G]$$
.

Proof (i) Observe that

$$[a,g]^h = (a^{-1})^h a^{gh} = [a,h]^{-1}[a,gh]$$

for all $g, h \in G$. Since [a, G] is a subgroup of G, then $[a, h]^{-1}[a, gh] \in [a, G]$. Therefore [a, G] is a normal subgroup of G.

(ii) We have that

$$[a^{-1},g] = a(a^{-1})^g = (a^{-1})^{ga^{-1}}a = [a,ga^{-1}]^{-1}$$

for all $g \in G$. Also since [a, G] is a subgroup of G, then $[a, ga^{-1}]^{-1} \in [a, G]$. Therefore $[a^{-1}, G] \subseteq [a, G]$. Since $|Cl(a)| = |Cl(a^{-1})|$ we have $[a, G] = [a^{-1}, G]$.

Proof [**Proof of Theorem A**]

 $(i \Rightarrow ii)$

By Lemma 2.1, observe that

$$Cl(a)Cl(a^{-1}) = a[a,G]a^{-1}[a^{-1},G] = [a,G][a^{-1},G] = [a,G].$$

 $(ii \Rightarrow i)$

Observe that, since $a^G a = a a^G$ we can write

$$Cl(a)Cl(a^{-1}) = a[a,G]a^{-1}[a^{-1},G] = [a,G][a^{-1},G].$$

Fix $l, h \in G$. Since $Cl(a)Cl(a^{-1}) = [a, G]$ we have $[a, G][a^{-1}, G] = [a, G]$ and $[a, h][a^{-1}, k] = [a, l]$ for some $k \in G$.

Since $[a^{-1}, k]^{-1} = [a, ka^{-1}]$ we have $[a, h] = [a, l][a, ka^{-1}]$ and $[a, h][a, l]^{-1} = [a, ka^{-1}]$. Thus $1_G \in [a, G]$, and hence [a, G] is a subgroup of G.

$$(ii \Leftrightarrow iii)$$

Since $a^{-1}a^G = a^G a^{-1}$ we have $[a, G] \subseteq Cl(a)Cl(a^{-1})$. Therefore from |[a, G]| = |Cl(a)|, we obtain $Cl(a)Cl(a^{-1}) = [a, G]$ if and only if $|Cl(a)Cl(a^{-1})| = |Cl(a)|$. ($i \Rightarrow iv$)

Observe that

$$(Cl(a))^{n} = (a[a,G])^{n} = a^{n}[a,G]$$

for all $n \in \mathbb{N}$. Therefore $|(Cl(a))^n| = |Cl(a)|$. ($iv \Rightarrow i$)

Let n = 2. Observe that, since $a^G a = a a^G$, we obtain

$$Cl(a)Cl(a) = a[a, G]a[a, G] = a^{2}[a, G][a, G].$$

Thus if |Cl(a)Cl(a)| = |Cl(a)|, then |[a,G][a,G]| = |[a,G]|. Since $1_G \in [a,G]$ we obtain $[a,G] \subseteq [a,G][a,G]$ and [a,G][a,G] = [a,G]. Then we conclude that [a,G] is a subgroup of G, since $xy \in [a,G]$ for any x, y in [a,G] and [a,G] is a nonempty finite set. \Box

Proposition 2.2 Let G be a finite group and $a, b \in G$ and $Cl(a)Cl(b) \cap Z(G) \neq \emptyset$. Then [a, G] is a subgroup of G if and only if |Cl(a)Cl(b)| = |Cl(a)|.

Proof Suppose that there exists some $z \in Cl(a)Cl(b) \cap Z(G)$. Then there exists some $g \in G$ such that $z = a^g b$ and $b = (a^{-1})^g z$. Thus we have

$$Cl(a)Cl(b) = Cl(a)Cl((a^{-1})^g z) = Cl(a)Cl((a^{-1})^g)z = Cl(a)Cl(a^{-1})z,$$

therefore $|Cl(a)Cl(b)| = |Cl(a)Cl(a^{-1})|$. Thus by Theorem A, [a, G] is a subgroup of G if and only if $|Cl(a)Cl(b)| = |Cl(a)Cl(a^{-1})| = |Cl(a)|$.

Proposition 2.3 Let G be a finite group and $\chi, \psi \in \operatorname{Irr}(G)$ with $\operatorname{Irr}(\chi\psi) \cap \operatorname{Lin}(G) \neq \emptyset$. Then χ vanishes on G - Z(G) if and only if $\widehat{\chi\psi} = \rho_{G/Z(G)}$, where $\rho_{G/Z(G)}$ is the regular character of G/Z(G) and $\widehat{\chi\psi}(gZ(G)) := \chi\psi(g)$ for all $g \in G$.

Proof Suppose that χ vanishes on G - Z(G) and $\lambda \in \text{Lin}(G) \cap \text{Irr}(\chi\psi)$. Since χ and $\lambda\overline{\psi}$ are irreducible characters then $0 \neq [\chi\psi, \lambda] = [\chi, \lambda\overline{\psi}] = 1$ and $\chi = \lambda\overline{\psi}$. Therefore $\chi\psi = \lambda\overline{\psi}\psi$ and ψ vanishes on G - Z(G). We can check that $\eta(\chi\psi) = \eta(\overline{\psi}\psi)$.

We can write $\overline{\psi}(g)\psi(g) = |\psi(g)|^2 = \psi(1)^2$ for all $g \in Z(G)$ and $\overline{\psi}(g)\psi(g) = 0$ for all $g \in G - Z(G)$, thus $Z(G) = \ker(\overline{\psi}\psi)$. Suppose that $\varphi_i \in \operatorname{Irr}(\overline{\psi}\psi)$ for i = 1, ..., n, then $Z(G) = \ker(\overline{\psi}\psi) = \bigcap_{i=1}^n \ker(\varphi_i) \subseteq \ker(\varphi_i)$ and

$$0 \neq [\overline{\psi}\psi,\varphi_i] = 1/|G| \sum_{g \in G} \overline{\psi}\psi(g) \,\overline{\varphi_i}(g)$$

$$= 1/|G| \sum_{g \in Z(G)} \overline{\psi}(g)\psi(g) \,\overline{\varphi_i}(g)$$

$$= \frac{|Z(G)|\psi(1)^2 \varphi_i(1)}{|G|} = \varphi_i(1)$$
(2.1)

because $\psi(1)^2 = |G : Z(G)|$. Thus $\overline{\psi}\psi = \sum_{i=1}^n \varphi_i(1)\varphi_i$ and $|G : Z(G)| = \psi(1)^2 = \sum_{i=1}^n \varphi_i(1)^2$. Since $\operatorname{Irr}(G/Z(G)) = \{\theta \in \operatorname{Irr}(G)|Z(G) \subseteq \ker\theta\}$ and $\rho_{G/Z(G)} = \sum_{\widehat{\theta} \in \operatorname{Irr}(G/Z(G))} \widehat{\theta}(1)\widehat{\theta}$ then $\widehat{\varphi_i} \in \operatorname{Irr}(G/Z(G))$ and $\widehat{\psi}\psi = \rho_{G/Z(G)}$, where $\widehat{\varphi_i}(gZ(G)) := \varphi_i(g)$ for all $g \in G$. It follows that $\widehat{\chi\psi} = \rho_{G/Z(G)}$.

Conversely suppose $\widehat{\chi\psi} = \rho_{G/Z(G)} = \sum_{\widehat{\theta} \in \operatorname{Irr}(G/Z(G))} \widehat{\theta}(1)\widehat{\theta}$, then $\chi\psi$ vanishes on G - Z(G). On the other hand, we have $\operatorname{Irr}(\chi\psi) \cap \operatorname{Lin}(G) \neq \emptyset$, then there exists some $\lambda \in \operatorname{Lin}(G)$ such that $\lambda \in \operatorname{Irr}(\chi\psi)$ and $0 \neq [\chi\psi, \lambda] = [\chi, \lambda\overline{\psi}] = 1$. Thus we have $\chi = \lambda\overline{\psi}$ and $\chi\psi = \lambda\overline{\psi}\psi$. It follows that $\overline{\psi}\psi$ vanishes on G - Z(G) and χ vanishes on G - Z(G).

Lemma 2.4 Let G be a finite group and $a \in G$. If [a, G] is not a subgroup of G, then $\eta(Cl(a)Cl(a)) \neq 1$. **Proof** We have that $C_G(a) \subseteq C_G(a^2)$, therefore $|Cl(a^2)| \leq |Cl(a)|$. Since [a, G] is not a subgroup of G, then by proof of Theorem A, $|Cl(a^2)| \leq |Cl(a)| < |Cl(a)Cl(a)|$. Thus Cl(a)Cl(a) is not a single conjugacy class. \Box

Proposition 2.5 Let G be a finite group and $a \in G$ and the order of a be an odd number. Then [a, G] is a subgroup of G if and only if $\eta(Cl(a)Cl(a)) = 1$.

Proof We have $C_G(a) \subseteq C_G(a^2)$. Since |a| is an odd number, we can check that $C_G(a) = C_G(a^2)$. Thus

$$|Cl(a)| = |G: C_G(a)| = |G: C_G(a^2)| = |Cl(a^2)|.$$

Then by Theorem A, $Cl(a)Cl(a) = Cl(a^2)$. Conversely, by Lemma 2.4, if $\eta(Cl(a)Cl(a)) = 1$ then [a, G] is a subgroup of G and the proof is complete.

At this point we prove Theorem C, which is an analogue of Proposition 2.5.

Proof [**Proof of Theorem C**] First suppose χ vanishes on $G - Z(\chi)$. By Corollary 2.30 of [5] we have $\chi(1)^2 = |G: Z(\chi)|$. By Theorem 4.5 of [5] the alternating part of the character χ^2 which is denoted by χ_A is a character of G and for $g \in G$ we have $\chi_A(g) = 1/2(\chi(g)^2 - \chi(g^2))$. Let us define $\chi^{(2)}$ by $\chi^{(2)}(g) = \chi(g^2)$, for all $g \in G$, and χ^2 by $\chi^2(g) = \chi(g)^2$, for all $g \in G$. Then $\chi^{(2)} = \chi^2 - 2\chi_A$. Since |G| is odd, by Problem 4.5 of [5], $\chi^{(2)} \in \operatorname{Irr}(G)$, hence

$$0 \neq [\chi^{2}, \chi^{(2)}] = 1/|G| \sum_{g \in G} \chi^{2}(g) \overline{\chi^{(2)}(g)}$$

= 1/|G| $\sum_{g \in Z(\chi)} \chi^{2}(g) \overline{\chi^{(2)}(g)}.$ (2.2)

But $\chi|_{Z(\chi)} = \chi(1)\lambda_1$ and $\chi^{(2)}|_{Z(\chi)} = \chi^{(2)}(1)\lambda_2 = \chi(1)\lambda_2$ where $\lambda_1, \lambda_2 \in \text{Lin}(Z(\chi))$. Therefore continuing, (2.2), we can write:

$$0 \neq [\chi^{2}, \chi^{(2)}] = \chi(1)^{3} / |G| \sum_{g \in Z(\chi)} \lambda_{1}^{2}(g) \overline{\lambda_{2}(g)}$$

= $(\chi(1)^{3} |Z(\chi)| / |G|) [\lambda_{1}^{2}, \lambda_{2}].$ (2.3)

But $[\lambda_1^2, \lambda_2] = 0$ or 1, which implies $\lambda_1^2 = \lambda_2$ and $0 \neq [\chi^2, \chi^{(2)}] = \chi(1)$. Therefore $\chi^2 = \chi(1)\chi^{(2)}$, proving $\eta(\chi^2) = 1$.

Conversely suppose G has odd order and $\eta(\chi^2) = 1$. Since $\chi^{(2)} \in \text{Irr}(\chi^2)$ and $\eta(\chi^2) = 1$, then $\chi^2 = \chi(1)\chi^{(2)}$. If $\chi(g) \neq 0$, then

$$|\chi(g)| = \frac{\chi(1)}{|\chi(g)|} |\chi^{(2)}(g)| \ge |\chi^{(2)}(g)|.$$
(2.4)

Thus $1 = [\chi^{(2)}, \chi^{(2)}] \leq [\chi, \chi] = 1$ and it follows that $|\chi(g)| = |\chi^{(2)}(g)|$. Therefore by (2.4), we have that $\chi(1) = |\chi(g)|$ and $g \in Z(\chi)$. Thus if $\chi(g) \neq 0$ then $g \in Z(\chi)$, and therefore χ vanishes on $G - Z(\chi)$. \Box

Example 2.6 Let D_8 be the dihedral group of order 2^3 and $a \in D_8 \setminus Z(D_8)$. We can check that $Cl(a)Cl(a) = Cl(a^{-1})Cl(a) = Z(D_8)$, therefore $\eta(Cl(a)Cl(a)) = \eta(Cl(a^{-1})Cl(a)) = 2$. Thus Proposition 2.5 may not remain true if $a \in G$ has even order. On the other hand, let χ be the faithful irreducible character of D_8 . We can check that χ vanishes on G - Z(G), but $\eta(\chi^2) = 4$. Thus Theorem C may not remain true if G has even order.

3. Upper bound

Lemma 3.1 Let G be a group and $a, b \in G$. Then $\eta(Cl(a)Cl(b)) \leq |Cl(a)|$.

Proof For $c \in Cl(a)Cl(b)$ we have $c = g^{-1}agh^{-1}bh$ where $g, h \in G$, we deduce that c is conjugate to $hg^{-1}agh^{-1}b = a^{gh^{-1}}b$, and hence there is $d \in G$ such that $c^d \in a^Gb$. Therefore $c \in \bigcup_{g \in G} Cl(a^gb)$, implying

that $Cl(a)Cl(b) \subseteq \bigcup_{g \in G} Cl(a^g b)$. Clearly $\bigcup_{g \in G} Cl(a^g b) \subseteq Cl(a)Cl(b)$, hence $Cl(a)Cl(b) = \bigcup_{g \in G} Cl(a^g b)$, thus $\eta(Cl(a)Cl(b)) = \eta(\bigcup_{g \in G} Cl(a^g b)) \leq |a^G b| = |Cl(a)|$.

Proposition 3.2 Let G be a finite group and $a \in G$. If |Cl(a)| is an odd number, then Cl(a)Cl(a) is the union of at most (|Cl(a)| + 1)/2 distinct conjugacy classes, i.e. $\eta(Cl(a)Cl(a)) \leq (|Cl(a)| + 1)/2$.

Proof By Lemma 3.1, we have that $Cl(a)Cl(a) = \bigcup_{g \in G} Cl(a^g a)$. It suffices to show that for any $x \in Cl(a)$ with $x \neq a$, there exists $y \in Cl(a)$, $y \neq x, a$, such that Cl(xa) = Cl(ya). Observe that $a^g a$ and $a^{g^{-1}}a$ are always conjugate; thus, if $x = a^g$ and g^2 does not centralize a, one can take $y = a^{g^{-1}}$.

Suppose on the other hand that $g^2 \in C_G(a)$ whenever $x = a^g$. We claim that this happens only when x = a. Indeed, fix a, g with $x = a^g$. Then $(zg)^2 \in C_G(a)$ for all $z \in C_G(a)$ and taking into account that $(zg)^2 = zz^{g^{-1}}g^2$, it follows that g normalizes $C_G(a)$. Now let P be a Sylow 2-subgroup of $C_G(a)$ (which is also a Sylow 2-subgroup of $C_G(a)$ since |Cl(a)| = n is odd). Thus $P^g \subseteq C_G(a)$, therefore $P^{zg} = P$ for some $z \in C_G(a)$. By replacing g with zg, we have that g normalizes P. Thus the 2-part of g is in $P \subseteq C_G(a)$ and since $g^2 \in C_G(a)$ then $g \in C_G(a)$. Therefore we can suppose that g has odd order. But then $g \in C_G(a)$ and x = a. Thus since $Cl(a)Cl(a) = \bigcup_{i=1}^{n-1}Cl(a^{g_i}a) \cup Cl(a^2)$ for some $\{g_i\}_{i=1}^{n-1} \subseteq G \setminus C_G(a)$, then

$$\eta(Cl(a)Cl(a)) \le \frac{|Cl(a)| - 1}{2} + 1 = \frac{|Cl(a)| + 1}{2}.$$

Proposition 3.3 Let G be a finite group and $a \in G$ and |Cl(a)| = 2. Then $\eta(Cl(a)Cl(a)) = \eta(Cl(a)Cl(a^{-1})) = |Cl(a)| = 2$.

Proof Let $g \in G \setminus C_G(a)$. Observe that $Cl(a) = \{a, a^g\}$ and $a^2, aa^g \in Cl(a)Cl(a)$. By Lemma 3.1, we have $Cl(a)Cl(a) = Cl(a^2) \cup Cl(aa^g)$. Since $a^2 \neq aa^g \neq (a^2)^g$ then $aa^g \notin Cl(a^2)$. Therefore $Cl(a^2) \neq Cl(aa^g)$ and $\eta(Cl(a)Cl(a)) = |Cl(a)| = 2$.

Also, by Lemma 3.1, we have $\eta(Cl(a)Cl(a^{-1})) \leq 2$. Since $1_G \in Cl(a)Cl(a^{-1})$ and $a \notin Z(G)$, then $\eta(Cl(a)Cl(a^{-1})) = 2$

Remark 3.4 Let p and q be two prime numbers such that $p \mid q-1$. Let G be a finite nonabelian group of order pq and $a \in G$ and |a| = q.

We can check that |Cl(a)| = p and |Cl(a)Cl(a)| = p(p+1)/2. Also if $p \neq 2$, then all of the conjugacy classes contained in Cl(a)Cl(a) are of size p and therefore $\eta(Cl(a)Cl(a)) = (p+1)/2$. Thus the bound in Proposition 3.2 is optimal.

Otherwise, if p = 2, then |Cl(a)Cl(a)| = 3 and $Cl(a)Cl(a) = 1_G \cup Cl(a^2)$. Therefore $\eta(Cl(a)Cl(a)) = 2$.

4. Simple groups and symmetric groups

Proposition 4.1 Let G be a finite nonabelian group and $a \in G$. Then

(i) If $a \in G'$, then $Cl(a) \subsetneqq G'$; (ii) If $a \notin G'$, then $G' \cap Cl(a) = \emptyset$.

Proof (i) Let $a \in G'$. If $a = 1_G$ then the statement is true. Otherwise, since $a^{-1}a^G = [a, G] \subseteq G'$, therefore $Cl(a) = a^G \subseteq G'$. Since $1_G \notin Cl(a)$, thus $Cl(a) \subsetneq G'$.

(ii) Let $a \notin G'$. Since $a^{-1}a^G = [a, G]$, therefore $Cl(a) \cap G' = \emptyset$.

Corollary 4.2 Let G be a finite nonabelian simple group and $a \in G$. Then [a, G] is a subgroup of G if and only if $a = 1_G$.

Proof Assume that $a \neq 1_G$ and [a, G] be a subgroup of G. Therefore by Lemma 2.1, [a, G] is a normal subgroup of G. Since G is a finite nonabelian simple group and $[a, G] \neq 1_G$, then [a, G] = G' = G. By Proposition 4.1, $|Cl(a)| \neq G'$, we have that $[a, G] \neq G'$ and the proof is complete.

Corollary 4.3 Let G be a finite nonabelian simple group and $1_G \neq a \in G$. If |Cl(a)| is an odd number, then $2 \leq \eta(Cl(a)Cl(a)) \leq (|Cl(a)|+1)/2$.

Proof It follows from Corollary 4.2 and Lemma 2.4 and Proposition 3.2.

Proposition 4.4 Let S_n be the symmetric group of degree n and $\alpha \in S_n$. Then $[\alpha, S_n]$ is a subgroup of S_n for n > 4 if and only if $\alpha = id$.

Proof Assume that $\alpha \neq id$ and $[\alpha, S_n]$ be a subgroup of S_n . Since $[\alpha, S_n] \subseteq S'_n = A_n$ for n > 4, thus $[\alpha, S_n] = A_n$. Therefore, by Theorem A, $|Cl(\alpha)| = n!/2$, thus

$$|Cl(\alpha)| = \frac{n!}{1^{e_1}e_1!2^{e_2}e_2!\dots n^{e_n}e_n!} = \frac{n!}{2}$$

where $1^{e_1}, \ldots, n^{e_n}$ is the cycle structure of $\alpha \in S_n$. It is easy to see that $|Cl(\alpha)| \neq n!/2$ for n > 4. Therefore $[\alpha, S_n]$ is not a subgroup of S_n for n > 4.

Remark 4.5 We can check that $[\alpha, S_4]$ is not a subgroup of S_4 for all $id \neq \alpha \in S_4$.

Remark 4.6 Observe that if $Cl(a)Cl(a^{-1})$ is a subgroup of G, then $Cl(a)Cl(a^{-1})$ is a normal subgroup of G, since $Cl(a)Cl(a^{-1})$ is G-invariant.

The authors in [3] show that if $G \simeq J_1$ (where J_1 is the Janko group of order 175560) then $Cl(a)Cl(a^{-1}) = J_1$ for all $a \in J_1 \setminus \{1_G\}$. But in Corollary 4.2, we showed that if G is a finite nonabelian simple group, then $[a, G] \neq G$ for all $a \in G$.

Thus if G is a finite nonabelian simple group and $Cl(a)Cl(a^{-1})$ is a subgroup of G, then it is not necessary that [a, G] is a subgroup of G.

5. Proof of Theorems B and D

Lemma 5.1 Let G be a finite group and $a \in G$ and [a, G] is a subset of Z(G). Then [a, G] is a subgroup of G.

Proof Since $[a, G] \subseteq Z(G)$, thus $[a, g_1] = z_1$ and $[a, g_2] = z_2$ for all $g_1, g_2 \in G$ and for some $z_1, z_2 \in Z(G)$. It is easy to see that $[a, g_1][a, g_2] = z_1 z_2 = [a, g_1 g_2]$. Since $1_G \in [a, G]$ and G is a finite group, it follows that [a, G] is a subgroup of G.

Proposition 5.2 Let G be a finite group and $a, b \in G$ and $[a, G] \subseteq Z(G)$. Then all of the conjugacy classes contained in Cl(a)Cl(b) are of size |Cl(ab)|. Therefore $\eta(Cl(a)Cl(b)) = |Cl(a)Cl(b)|/|Cl(ab)|$.

Proof Since Cl(a)Cl(b) is a *G*-invariant set, then

$$Cl(a)Cl(b) = \{Cl(a^g b) | g \in G\} = \{Cl(abz) | z \in [a, G]\} = \{Cl(ab)z | z \in [a, G]\}.$$

Therefore all of the conjugacy classes contained in Cl(a)Cl(b) are of size |Cl(ab)| and the proof is complete. \Box

Corollary 5.3 Let G be a finite group and $a, b \in G$ and $[a, G] \subseteq Z(G)$. If $Cl(a)Cl(b) \cap Z(G) \neq \emptyset$, then $\eta(Cl(a)Cl(b)) = |Cl(a)|$.

Proof By proposition 5.2, we have that

$$Cl(a)Cl(b) = \{Cl(ab)z | z \in [a, G]\}.$$

Observe that since $Cl(a)Cl(b) \cap Z(G) \neq \emptyset$, then $(ab)^g \in Z(G)$ for some $g \in G$, therefore $ab \in Z(G)$. Thus $Cl(a)Cl(b) \subseteq Z(G)$ and $\eta(Cl(a)Cl(b)) = |Cl(a)Cl(b)| = |Cl(a)|$.

Proof [Proof of Theorem B]

(i) Observe that

$$Cl(a)Cl(b) = a[a,G]Cl(b) = aCl(b)[a,G]$$
(5.1)

and [a, G] is a subgroup of Z(G).

Assume that $X = \{Cl(g) | g \in G\}$. [a, G] acts on X by right multiplication in G. Thus the stabilizer of Cl(b) in [a, G] is

$$St_{[a,G]}(Cl(b)) = \{z \in [a,G] | Cl(b)z = Cl(b)\}$$

= $\{z \in [a,G] | z \in Cl(b)Cl(b^{-1})\}$
= $[a,G] \cap (C(b)Cl(b^{-1}))$ (5.2)

and the orbit of Cl(b) is

$$Orb_{[a,G]}(Cl(b)) = \{Cl(b)z | z \in [a,G]\}.$$
(5.3)

Since |Cl(b)| = |Cl(b)z| for all $z \in [a, G]$, then $|Cl(b)[a, G]| = |Cl(b)||\operatorname{Orb}_{[a,G]}(Cl(b))|$. Thus

$$|Cl(b)[a,G]| = |Cl(b)||[a,G]: St_{[a,G]}(Cl(b))| = \frac{|Cl(b)||[a,G]|}{|[a,G] \cap (Cl(b)Cl(b^{-1}))|}.$$
(5.4)

Therefore by 5.1 and 5.4, we have that

$$|Cl(a)Cl(b)| = |Cl(b)[a,G]| = \frac{|Cl(a)||Cl(b)|}{|[a,G] \cap (Cl(b)Cl(b^{-1}))|}.$$
(5.5)

Thus Proposition 5.2 and 5.5 imply (i).

(ii) Follows from Corollary 5.3.

(iii) By Lemma 5.1 we have that [a, G] is a subgroup Z(G), thus

$$Cl(a)Cl(a) = a[a, G]a[a, G] = a^{2}[a, G][a, G] = a^{2}[a, G].$$

Therefore $|Cl(a)Cl(a)| = |a^2[a,G]| = |Cl(a)|$. Also there exists $n \in \mathbb{N}$ such that $[a,G] = \langle z_1 \rangle \times \cdots \times \langle z_n \rangle$ for some $z_i \in Z(G)$, $1 \le i \le n$ (where $|z_i| = p_i^{\alpha_i}$ for $1 \le i \le n$ and $\alpha_i \in \mathbb{N}$). Thus

$$Cl(a) = a[a, G] = a\langle z_1 \rangle \times \cdots \times \langle z_n \rangle.$$

Also we have

$$Cl(a^{2}) = \{az_{1}^{i_{1}} \dots z_{n}^{i_{n}}az_{1}^{i_{1}} \dots z_{n}^{i_{n}}|i_{j} = 0, \dots, |z_{j}| - 1, j = 0, \dots, n\}$$
$$= \{a^{2}z_{1}^{2i_{1}} \dots z_{n}^{2i_{n}}|i_{j} = 0, \dots, |z_{j}| - 1, j = 0, \dots, n\}$$
$$= a^{2}(\langle z_{1}^{2} \rangle \times \dots \times \langle z_{n}^{2} \rangle).$$

Next if |Cl(a)| is an odd number, then $\langle z_j^2 \rangle = \langle z_j \rangle$ for j = 1, ..., n. Thus $Cl(a)Cl(a) = a^2[a, G] = Cl(a^2)$ and ii) follows.

(iv) Otherwise, let |Cl(a)| be an even number and P be a Sylow 2-subgroup of [a, G]. Assume that $P = \langle z_1 \rangle \times \cdots \times \langle z_m \rangle$ (where $|z_i| = 2^{\alpha_i}$ for $1 \le i \le m$ and $\alpha_i \in \mathbb{N}$). Thus we have that

$$Cl(a^{2}z_{1}^{l_{1}}\dots z_{m}^{l_{m}}) = Cl(a^{2})z_{1}^{l_{1}}\dots z_{m}^{l_{m}}$$
$$= a^{2}\left(\langle z_{1}^{2}\rangle \times \dots \times \langle z_{m}^{2}\rangle \times \dots \times \langle z_{n}^{2}\rangle\right)z_{1}^{l_{1}}\dots z_{m}^{l_{m}}$$

for $l_1, \ldots, l_m = 0, 1$. Therefore

$$Cl(a)Cl(a) = \bigcup_{l_1,\dots,l_m=0}^{1} Cl(a^2 z_1^{l_1} \dots z_m^{l_m}).$$

Thus Cl(a)Cl(a) is the union of exactly 2^m distinct conjugacy classes of G of size $|Cl(a^2)|$ and (iv) follows.

Proof [Proof of Theorem D]

(i) Follows from Proposition 2.3.

(ii) We can assume that χ is a faithful irreducible character and then $Z(\chi) = Z(G)$. Since χ vanishes on G - Z(G), by Corollary 2.30 of [5] we can write $\chi(1)^2 = [G : Z(G)]$, therefore |G : Z(G)| is an odd number. If |G| is an odd number then by Theorem C $\eta(\chi^2) = 1$. Otherwise, let |G| be an even number. If $P \in Syl_2(G)$ then $P \subseteq Z(G)$ and $P \trianglelefteq G$, because |G : Z(G)| is an odd number. By Theorem 7.41 of [6], there is a subgroup H of G such that |H| = |G : P|. Since $P \trianglelefteq G$ then we can check that $G = HP = H \times P$. By problem 4.5 of [5], $\chi^{(2)} \in \operatorname{Irr}(G)$ because $G = H \times P$ and P is an abelian subgroup of G and (|H|, 2) = 1. But by Theorem 4.5 of [5], $\chi^2 = \chi^{(2)} + 2\chi_A$ where $\chi_A \in Char(G)$. By the Proof of Theorem C we can write $0 \neq [\chi^2, \chi^{(2)}] = \chi(1)$ and $\chi^2 = \chi(1)\chi^{(2)}$. It follows that $\eta(\chi^2) = 1$.

References

- [1] Adan-Bante, E.: Conjugacy classes and finite p-groups. Arch. Math 85, 297-303 (2005).
- [2] Adan-Bante, E.: Products of characters and finite p-groups. J. Algebra 277, 236-255 (2004).
- [3] Arad, Z., Chillag, D. and Moran, G.: Groups with a small covering number. In: Products of Conjugacy Classes in Groups 222-244, Lecture Notes in Math. 1112. Berlin. Springer-Verlag (1985).
- [4] Arad, Z. and Fisman, E.: An analogy between products of two conjugacy classes and products of two irreducible characters in finite groups. Proc. Edin. Math. Soc. 30, 7-22 (1987).
- [5] Isaacs, I. M.: Character theory of finite groups. New York-San Francisco-London. Academic Press 1976.
- [6] Rotman, J. J.: An introduction to the theory of groups. New York. Springer-Verlag 1994.
- [7] Zisser, I.: Irreducible products of characters in A_n . Israel J. Math 84 no. 1-2, 147-151 (1993).