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Abstract: Let l(y) be a formally self-adjoint vector-valued differential expression of order n on an interval (a,∞)(−∞ ≤
a < ∞) with complex matrix-valued function coefficients and finite equal deficiency indices. In this paper, applying

complex symplectic algebra, we give a reformulation for self-adjoint domains of the minimal operator associated with

l(y) and classify them.
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1. Introduction

Let l(y) be a formally self-adjoint vector-valued differential expression of order n on an interval I = (a,∞)(−∞ ≤
a < ∞) with complex matrix-valued coefficients and finite equal deficiency indices. It is well known from the

general operator theory that the minimal operator associated with l(y) can be extended to a self-adjoint opera-
tor in a Hilbert space. The study of boundary value problems involving linear differential equations is becoming
a well-established area of analysis. Applying the extension theory of symmetric operators to concrete differential
operators, a general characterization of self-adjoint extensions of symmetric differential operators is established.
For details of some of this work we refer to [1]–[17], etc.

Recently, in [13] Wang, Sun and Zettl give a representation of self-adjoint conditions in terms of certain
solutions for real parameter, which leads to a classification of solutions as limit-point or limit-circle in analogy
with the celebrated Weyl classification in the second-order case. In [7] Hao, Sun, Wang and Zettl, applying

results from [13], characterize self-adjoint domains of general even order linear ordinary differential operators

in terms of real-parameter solutions of the differential equation, which is a follow up of [13].

In [3, 4, 5], the complex symplecto-algebraic complete characterizations of self-adjoint extensions of
symmetric operators are given. This paper presents a generalization to the case of vector-valued functions
of the approach presented in [4]. This approach is based on the following idea. Let l(y) be some ordinary

formally self-adjoint differential operator considered in Hilbert space L2(I) on some interval I . We can define

in the standard way the minimal and maximal operators T0 and T1 associated to l(y), with domains denoted by

D(T0), D(T1). On the domain D(T1) we introduce skew-Hermitian form [y : z] = (T1y, z)−(y, T1z), where (·, ·)
denotes the scalar product in L2(I). This form generates sympletic structure on the space S = D(T1)/D(T0)

and there is one-to-one correspondence between complete (maximal) Lagrangian space L in S and self-adjoint
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extensions T of T0 . In this way study of self-adjoint extensions is reduced to study of Lagrangian subspace in
the space S and one can try to find the relations between the geometric and algebra properties of L as subspace
in S , and the structure of boundary conditions that define the self-adjoint extension T corresponding to L .
Applying complex symplectic algebra, we present complete characterizations and classifications for self-adjoint
domains associated with l(y).

The layout of this paper is as follows. In Section 1 we summarize the results of symplectic algebra and
vector-valued differential operators. In Section 2 complex symplecto-algebraic characterizations of self-adjoint
boundary conditions of vector-valued differential operator are given at the case with a finite regular endpoint.
Section 3 presents some results at the case with two singular endpoints.

2. Preliminaries

Definition 1 (Definition 1.1 of [4]) A complex symplectic space S is a complex linear space with a prescribed

symplectic form [· : ·] , namely a sesquilinear form

(i) u, v → [u : v], S × S → C , so for all vectors u, v, ω ∈ S and complex scalars c1, c2 ∈ C , [c1u + c2v :

ω] = c1[u : ω] + c2[v : ω] , which is skew-Hermitian;

(ii) [u : v] = −[v : u] , so for all vectors u, v, ω ∈ S and complex scalars c1, c2 ∈ C , [u : c1v + c2ω] =

c1[u : v] + c2[u : ω] , and which is also non-degenerate;

(iii) [u : S] = 0 implies u = 0 , for all u ∈ S .

Definition 2 (Definition 1.2 of [4]) A linear subspace L in the complex symplectic space S is called La-

grangian in case [L : L] = 0 , that is, for all u, v ∈ L, [u : v] = 0.

Definition 3 (Definition 1.2 of [4]) A Lagrangian space L ⊂ S is complete in case u ∈ S and [u : L] = 0
imply u ∈ L.

Definition 4 (Definition 2.2 of [4]) Let S be a complex symplectic space with symplectic form [· : ·] . Then
linear subspace S+ and S− are symplectic ortho-complements in S , written as

S = S+ ⊕ S−,

in case
(i) S = span{S+, S−};
(ii) [S− : S+] = 0 .

Consider the formally self-adjoint vector-valued differential expression introduced by J. Weidmann [16]:

l[y](x) = r(x)−1
{ [ n

2 ]∑
k=0

(−1)k(pk(x)y(k)(x))(k)

+
[ n−1

2 ]∑
k=0

(−1)k[(qk(x)y(k)(x))(k+1) − (qk(x)∗y(k+1)(x))(k)]
}
,

(1.1)

where y(x) = (y1(x), . . . , ym(x))t is defined in the interval I = (a,∞), −∞ ≤ a < ∞ ; [α] denotes the

greatest integer not greater than α . The m × m matrix-valued functions r(x), pj(x)(j = 0, 1, . . . , [n
2 ]) and
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qj(x)(j = 0, 1, . . . , [n−1
2 ]) satisfy

(i) r(x), pj(x) and qj(x) are measurable over I ;

(ii) r(x) is a positive, definite matrix and pj(x) are Hermitian; and p−1
k ∈ ACloc(I) if n = 2k ; qk, (qk−q∗k)−1 ∈

ACloc(I) if n = 2k + 1;

(iii) p−1
k , p−1

k qk−1, pk−1 − q∗k−1p
−1
k qk−1, pj (j = 0, 1, . . . , k − 2), qj (j = 0, 1, . . . , k − 2) and r are absolutely

Lebesgue integrable on all compact subset of I if n = 2k ; (qk−q∗k)−1, (qk−q∗k)−1(pk+q′k), (qk−q∗k)−1qk−1, pj (j =

0, 1, . . . , k − 1), qj (j = 0, 1, . . . , k − 1) and r are absolutely Lebesgue integrable on all compact subsets of I if

n = 2k + 1.

Thus n is the order of l(y). Define the quasi-derivatives y[r](r = 0, 1, . . . , n) as in pages 26-30 of [16],

then the differential expression (1.1) can be rewritten as

l[y](x) = r(x)−1y[n](x).

In the complex vector space Cm = {α : α = (c1, . . . , cm)t, ci(i = 1, 2, . . . , m) ∈ C} , define inner product

(ξ, η) =
m∑

i=1

ξiηi, ξ = (ξ1, . . . , ξm)t, η = (η1, . . . , ηm)t.

A Hilbert space

H = {f : I → C
m, f measurable |

∫
I

(r(x)f(x), f(x))dx < ∞}

with inner product

〈y, z〉 =
∫

I

(r(x)y(x), z(x))dx, for all y, z ∈ H,

denoting Hilbert space H as L2
r(I).

For the differential expression l(y) defined as above, its maximal operator T1 : T1y = l(y) on

D(T1) = {y : I → C
m, y[k] ∈ ACloc(I)(k = 0, 1, . . . , n − 1), y and l(y) ∈ L2

r(I)}, (1.2)

where ACloc(I) denotes a set of complex-vector valued functions which are absolutely continuous on all compact
subintervals of I and its minimal operator T0 :

T0y = l(y) on D(T0) = {y ∈ D(T1) | [y : D(T1)] = 0}. (1.3)

Here, the skew-Hermitian form [· : ·] on D(T1) is given by

[y : z] = 〈T1y, z〉 − 〈y, T1z〉, for y, z ∈ D(T1), (1.4)

where [y : z] = 〈T1y, z〉 − 〈y, T1z〉 is the Lagrange bilinear form associated with l(y).

It is known from Theorem 3.1 of [16] that T0 ⊂ T1 on D(T0) ⊂ D(T1) ⊂ L2
r(I) satisfy

(i) D(T0) is dense in L2
r(I), so also D(T1) is dense in L2

r(I);

(ii) adjoints T ∗
0 = T1 and T ∗

1 = T0 ,
so both T0 and T1 are closed operators, T0 is symmetric.
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For any [c, d] ⊂ I, y, z ∈ D(T1), we have Green’s formula (see pages 35–40 in [16] or see equations (1.3)

and (1.4) in [17]), ∫ d

c

{(r(x)ly(x), z(x)) − (r(x)y(x), lz(x))}dx = [y, z]n(d) − [y, z]n(c), (1.5)

where
[y, z]n(x) = Rn(y)(x)AR∗

n(z)(x), [y, z]n(∞) = lim
x→∞

[y, z]n(x) exists, (1.6)

Rn(y)(x) = (y[0](x)t, y[1](x)t, . . . , y[n−1](x)t), x ∈ I. (1.7)

Here, t denotes the transpose of matrix and

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
���������

0 · · · 0 0 · · · Em

...
. . .

...
...

. . .
...

0 · · · 0 Em · · · 0
0 · · · −Em 0 · · · 0
...

. . .
...

...
. . .

...
−Em · · · 0 0 · · · 0

�
���������

if n is even ;

�
������������

0 · · · 0 0 0 · · · Em

...
. . .

...
...

...
. . .

...
0 · · · 0 0 Em · · · 0
0 · · · 0 q∗k(x) − qk(x) 0 · · · 0
0 · · · −Em 0 0 · · · 0
...

. . .
...

...
...

. . .
...

−Em · · · 0 0 0 · · · 0

�
������������

if n is odd,

(1.8)

where Em denotes the identity matrix of size m .

Hereafter, [·, ·]n(x) is called the Lagrange bi-linear form corresponding to l(y) on I .

Since l(y) is a formally self-adjoint differential expression on I , we easily get from (1.1) and (1.8) that

A∗ = −A, rank A = nm. (1.9)

In order to describe the self-adjoint boundary conditions of differential operator we introduce the defi-
ciency indices of T0 : these are the integers

d± = dim (ker(T1 ∓ i)).

In this paper, we assume l(y) is a regular, formally self-adjoint differential expression with finite, equal

deficiency indices (d, d). Obviously,
0 ≤ d ≤ nm.

Define an endpoint space S , for l(y) on I , as the quotient or identification vector space

S = D(T1)/D(T0), (1.10)

so there is a natural projection map

ψ : D(T1) → S, f �→ f = {f + D(T0)}, for f ∈ S, f ∈ D(T1).

Define the symplectic form [· : ·] in S , for f = {f + D(T0)} and g = {g + D(T0)} ,

[f : g] = [f : g]. (1.11)
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3. The case with a finite regular endpoint

The endpoint a is called regular if, for some a < c < ∞ , p−1
k , p−1

k qk−1, pk−1−q∗k−1p
−1
k qk−1, pj (j = 0, 1, . . . , k−

2), qj (j = 0, 1, . . . , k−2) and r are Lebesgue integrable on (a, c) when n = 2k or (qk − q∗k)−1, (qk− q∗k)−1(pk +

q′k), (qk−q∗k)−1qk−1, pj (j = 0, 1, . . . , k−1), qj (j = 0, 1, . . . , k−1) and r are Lebesgue integrable on (a, c) when

n = 2k+1; otherwise a is said to be singular. Without loss of generality we consider the case with a finite regular
endpoint a . In this section, we apply the theory of complex symplectic spaces to the boundary value problems
of linear vector-valued differential operators with order n(≥ 1) and complex matrix valued coefficients defined

on [a,∞)(−∞ < a < ∞) and equal deficiency indices (d, d) (obviously, [nm+1
2 ] ≤ d ≤ nm). This section treats

the positioning of a Lagrangian subspace within S , and gives necessary and sufficient conditions for k -grade

(0 ≤ k ≤ d − [nm+1
2 ]) complete Lagrangian subspaces.

Let
D̃(l) = D(T0) ⊕ span{χ11, χ12, . . . , χmn}, (2.1)

where the symbol ⊕ denotes a direct sum and span{χ11, . . . , χmn} denotes the linear span of χ11, . . . , χmn and

χij(i = 1, · · · , m; j = 1, . . . , n) be a set of functions in D(T1) which satisfy the following conditions:

χ
[k−1]
ij (a) =

{
0m×1 for j = k;

ei for j = k,
χij(t) = 0 for all t ≥ a + 1, (2.2)

where ei is the ith canonical unit vector in Cm and 0m×1 = (
m︷ ︸︸ ︷

0, . . . , 0 )t . Clearly, χij∈D0(l).

For any z̃ ∈ D̃(l), it is not difficult to see that

[y, z̃]n(∞) = 0, for all y ∈ D(T1). (2.3)

Let N = 2d− nm , then l(y) = λy (Imλ = 0) has N linearly independent square integrable solutions on

[a,∞), denoted by θ1, . . . , θN , which satisfy

rank K = N, D(T1) = D̃(l) ⊕ span{θ1, . . . , θN},

where K = ([θi, θj ]n(∞))1≤i,j≤N , K∗ = −K (cf. Lemma 3 of [15]).

Since K∗ = −K , (iK)∗ = iK (where i2 = −1), iK is symmetric Hermitian, there exists some complex
non-singular matrix T such that

T (iK)T ∗ = diag{Eq,−Ep},

where p + q = N, p ≥ 0, q ≥ 0. So TKT ∗ = diag{−iEq, iEp} .

Define θ̃1, . . . , θ̃N , such that ⎛⎜⎝ θ̃1

...
θ̃N

⎞⎟⎠ = T

⎛⎜⎝ θ1

...
θN

⎞⎟⎠ ,

obviously, θ̃1, . . . , θ̃N are N linearly independent square integrable solutions of l(y) = λy on [a,∞), which
satisfy

([θ̃i, θ̃j]n(∞))1≤i,j≤N = diag{−iEq , iEp}, D(T1) = D̃(l) ⊕ span{θ̃1, . . . , θ̃N}.
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Thus we have

Lemma 1 Let N = 2d − nm. Then l(y) = λy (Im λ = 0) has N linearly independent square integrable

solutions on [a,∞) , denoted by θ1, . . . , θN , which satisfy

J � ([θi, θj ]n(∞))1≤i,j≤N = diag{−iEq , iEp}, D(T1) = D̃(l) ⊕ span{θ1, . . . , θN}. (2.4)

Obviously, J∗ = −J and J = −J−1 .

Lemma 2 The complex vector space
S = D(T1)/D(T0)

with the Skew-Hermitian from [· : ·] , as in (1.11), is a complex symplectic space and dim S = 2d .

Proof Since the operators T1 and T0 arise from the differential expression of order n ≥ 1 on [a,∞), it follows

from the theory of linear ordinary differential equation and von Neumann’s formula (Theorem 4.3 of [16]) that
S has a finite dimension, and dimS = 2d . It is easy to verify by Definition 1 that S is a complex symplectic
space. Thus we have the following lemma.

Lemma 3 Let linear subspace of S

S− = {y ∈ S | [y, θi]n(∞) = 0, i = 1, 2, . . . , 2d− nm},

S+ = {y ∈ S | y[k](a) = 0, k = 0, 1, . . . , n − 1},

then S = S− ⊕ S+ and dim S− = nm, dim S+ = 2d− nm.

Proof In fact, the definition of minimal operator (Theorem 3.12 of [16]) implies

D(T0) = {f ∈ D(T1)|f [k](a) = 0, k = 0, 1, . . . , n− 1; [f, θi]n(∞) = 0, 1 ≤ i ≤ 2d− nm},

together with the decomposition of maximal operator domains D(T1) and Definition 4, it is easy to see that
the results hold. �

Applying GKN-Theorem (Corollary 1 of Appendix in [4]) and the balanced intersection principle (The-

orem 2.4 in [4]) to the quotient vector space S , we have this next lemma.

Lemma 4 (GKN-Theorem) (i) There exists a self-adjoint extension T of T0 if and only if there exists a
complete Lagrangian subspace L ⊆ S ;

(ii) A Lagrangian subspace L ⊂ S is complete if and only if dim L = d , where (d, d) is the deficiency

indices of l(y) ;

(iii) For each self-adjoint operator T on domains D(T ) ⊂ L2
r(I) , which is an extension of T0 on D(T0) ,

the corresponding complete Lagrangian subspace L is defined by

L = D(T )/D(T0),

so D(T ) = c1f1 + · · ·+cdfd +D(T0) . Here {f1, . . . , fd} is any basis of L , with any corresponding representative

functions f1, . . . , fd ∈ D(T1) , and c1, . . . , cd are arbitrary complex numbers.
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Lemma 5 (Balanced intersection principle) For each complete Lagrangian space L in S , then

0 ≤ d − [
nm + 1

2
] − dim L ∩ S+ = [

nm

2
] − dim L ∩ S− ≤ d − [

nm + 1
2

].

Definition 5 For each complete Lagrangian space L in S , let

k = d − [
nm + 1

2
] − dim L ∩ S+ = [

nm

2
] − dim L ∩ S−.

Then L is called k -grade, or D(TL) is called k -grade.

From Lemma 2, we see that dim S = 2d , so the complex symplectic space S is linearly isomorphic to

C2d = {α|α = (c1, c2, . . . , c2d)t, ci ∈ C, i = 1, 2, . . . , 2d} . We can use the customary unit basis vectors in C2d ,

e1 = (1, 0, . . . , 0)t, e2 = (0, 1, 0, . . . , 0)t, . . . , enm = (
nm︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)t,

f1 = (
nm + 1︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)t, f2 = (
nm + 2︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)t, f2d−nm = (0, . . . , 0, 1)t,

so
S = span{e1, e2, . . . , enm, f1, f2, . . . , f2d−nm}.

Lemma 6 Let the deficiency index of l(y) on [a,∞) , def(l) = (d, d) ([nm+1
2 ] ≤ d ≤ nm) , N = 2d− nm. For

all α1 , α2 , . . ., αn ∈ Cm , β1 , β2 , . . ., βN ∈ C , there exists y ∈ D(T1) , such that

y[i−1](a) = αi (i = 1, 2, . . . , n); [y, θk]n(∞) = βk (k = 1, 2, . . . , N), (2.5)

where θk(k = 1, 2, . . . , N) defined in Lemma 1.

Proof By Lemma 1 and (2.1), for all y ∈ D(T1), there exist dij ∈ C(1 ≤ i ≤ m; 1 ≤ j ≤ n) and

ck(1 ≤ k ≤ N) ∈ C , such that

y = y0 +
m∑

i=1

n∑
j=1

dijχij +
N∑

k=1

ckθk,

where y0 ∈ D(T0), χij defined in (2.2). Choose

⎛⎜⎝ c1

...
cN

⎞⎟⎠ = −J t

⎛⎜⎝ β1

...
βN

⎞⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d11

...
dm1

...
d1n

...
dmn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝ αt
1
...

αt
n

⎞⎟⎠ + Φ(a)J t

⎛⎜⎝ β1

...
βN

⎞⎟⎠ ,

where J is defined in Lemma 1 and

Φ(a) =

⎛⎜⎜⎜⎜⎝
θ
[0]
1 (a)t θ

[0]
2 (a)t . . . θ

[0]
N (a)t

θ
[1]
1 (a)t θ

[1]
2 (a)t . . . θ

[1]
N (a)t

...
...

. . .
...

θ
[n−1]
1 (a)t θ

[n−1]
2 (a)t . . . θ

[n−1]
N (a)t

⎞⎟⎟⎟⎟⎠ .
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Therefore y ∈ D(T1), the fact that χij satisfy (2.2) and a direct computation imply that y satisfies (2.5). This
completes the proof of this Lemma. �

From Lemma 6 we can introduce corresponding coordinates in S by the convenient choice

f = (f(a)t, f [1](a)t, . . . , f [n−1](a)t, [f, θ1]n(∞), . . . , [f, θ2d−nm]n(∞))
=

∑m
i=1

∑n
j=1 f

[j−1]
i (a)ei+(j−1)m + [f, θ1]n(∞)f1 + . . . + [f, θ2d−nm]n(∞)f2d−nm,

(2.6)

where f = {f + D(T0)} , for f = (f1, . . . , fm)t ∈ D(T1).

In terms of these coordinates, the symplectic form [· : ·] in S can be expressed as the following form as
Theorem 1.

Theorem 1 For f , g ∈ S , we have [f : g] = fHg∗ , where f , g appearing in the right side of the equation take

each corresponding coordinate in S defined in (2.6),

H =
(

−A(a) 0nm×(2d−nm)

0(2d−nm)×nm J

)
2d×2d

and A(a), J defined in (1.8) and (2.4), respectively.

Proof By (1.4), (1.5) and (1.11), we get for f , g ∈ S ,

[f : g] = [f : g] = 〈T1f, g〉 − 〈f, T1g〉
= 〈lf, g〉 − 〈f, lg〉 = [f, g]n(∞) − [f, g]n(a). (2.7)

From (1.6), we have

[f, g]n(a) = Rn(f)(a)A(a)R∗
n(g)(a). (2.8)

Denotes
rn(f)(∞) = ([f, θ1]n(∞), . . . , [f, θN ]n(∞).

Now we prove
[f, g]n(∞) = rn(f)(∞)Jr∗n(g)(∞).

By Lemma 1, for f, g ∈ D(T1), there exist f̃ , g̃ ∈ D̃(l) and ci, di (i = 1, 2, . . . , N) ∈ C , such that

f = f̃ +
N∑

i=1

ciθi, g = g̃ +
N∑

i=1

diθi, (2.9)

together with (2.3), we get

[f, θi]n(∞) = (c1, . . . , cN)

⎛⎜⎝ [θ1, θi]n(∞)
...

[θN , θi]n(∞)

⎞⎟⎠ (i = 1, 2, . . . , N),

which can be written as
rn(f)(∞) = (c1, . . . , cN)J,

that is,

(c1, . . . , cN) = rn(f)(∞)J−1. (2.10)
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Similarly,

(d1, . . . , dN)∗ = (J∗)−1r∗n(g)(∞) = Jr∗n(g)(∞). (2.11)

By (2.9), (2.10) and (2.11), we obtain

[f, g]n(∞) = (c1, . . . , cN)J(d1, . . . , dN)∗

= rn(f)(∞)Jr∗n(g)(∞). (2.12)

Equations (2.7), (2.8) and (2.12) imply

[f : g] = rn(f)(∞)Jr∗n(g)(∞) − Rn(f)(a)A(a)R∗
n(g)(a)

= (Rn(f)(a), rn(f)(∞))H(Rn(g)(a), rn(g)(∞))∗

= fHg∗,

and so the result follows. �

By Theorem 1, we can introduce the corresponding symplectic form [· : ·] in C2d using the skew-Hermitian

2d × 2d matrix H (it is easy to verify that H is a skew-Hermitian matrix from (1.9) and Lemma 1), thus the

boundary value problem for the differential expression l(y) on [a,∞) is reduced, via the GKN-Theorem, to the
purely algebraic problem of determining all the complete Lagrangian subspaces L in the complex symplectic

space C2d , and a complete Lagrangian subspaces of C2d is of S by virtue of the symplectic isomorphism of S

with C2d .

Theorem 2 A complete Lagrangian subspace in S is 0-grade, or 1-grade, . . ., or (d − [nm+1
2 ])-grade.

Proof Lemma 5 and Definition 5 imply Theorem 2. �

Theorem 3 For S− and S+ defined in Lemma 3, we have

S− = span{e1, e2, . . . , enm}, S+ = span{f1, f2, . . . , f2d−nm}.
Proof First we prove S− = span{e1, e2, . . . , enm} . For f = {f + D(T0)} ∈ S− , then f ∈ D(T1) and

[f, θi]n(∞) = 0 (i = 1, 2, . . . , 2d− nm). By (2.6), we have

f =
m∑

i=1

n∑
j=1

f
[j−1]
i (a)ei+(j−1)m ∈ span{e1, e2, . . . , enm},

that is,

S− ⊂ span{e1, e2, . . . , enm}. (2.13)

Conversely, if f ∈ span{e1, e2, . . . , enm} , then f =
∑m

i=1

∑n
j=1 f

[j−1]
i (a)ei+(j−1)m, which implies

[f, θi]n(∞) = 0 (i = 1, 2, . . . , 2d− nm), that is, f ∈ S− , thus

span{e1, e2, . . . , enm} ⊂ S−. (2.14)

Equations (2.13) and (2.14) imply S− = span{e1, e2, . . . , enm} .

Similarly, S+ = span{f1, f2, . . . , f2d−nm}. Therefore, Theorem 2 holds. �
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Theorem 4 L is a k -grade (0 ≤ k ≤ d− [nm+1
2 ]) complete Lagrangian subspace in S if and only if there exist

aij , bit ∈ C (i = 1, 2, . . . , d; j = 1, 2, . . . , nm; t = 1, 2, . . . , 2d− nm), such that

L = span{a11e
1 + a12e

2 + · · ·+ a1,nmenm + b11f
1 + b12f

2 + · · ·+ b1,2d−nmf2d−nm,
. . . , ad1e

1 + ad2e
2 + · · ·+ ad,nmenm + bd1f

1 + bd2f
2 + · · ·+ bd,2d−nmf2d−nm}, (2.15)

and (i) rank A = [nm+1
2

] + k , rank B = d − [nm
2

] + k , where A = (aij)d×nm and B = (bit)d×(2d−nm) ;

(ii) αiHα∗
j = 0 (1 ≤ i, j ≤ d) ,where αi =(ai1 , . . .,ai,nm ,bi1 ,bi2 , . . ., bi,2d−nm ) and H defined in Theorem 1.

Proof (Necessity) For all f , g ∈ L , there exist s1i, s2i (i = 1, 2, . . . , d) ∈ C , such that

f =
∑d

i=1 s1i(ai1e
1 + · · ·+ ai,nmenm + bi1f

1 + · · ·+ bi,2d−nmf2d−nm)
= (

∑d
i=1 s1iai1)e1 + · · ·+ (

∑d
i=1 s1iai,nm)enm + (

∑d
i=1 s1ibi1)f1 + · · ·

+(
∑d

i=1 s1ibi,2d−nm)f2d−nm,

(2.16)

and

g = (
∑d

i=1 s2iai1)e1 + · · ·+ (
∑d

i=1 s2iai,nm)enm + (
∑d

i=1 s2ibi1)f1 + · · ·
+(

∑d
i=1 s2ibi,2d−nm)f2d−nm.

(2.17)

By Theorem 1 and (ii), we obtain

[f : g] = (
∑d

i=1 s1iai,1, . . . ,
∑d

i=1 s1iai,nm,
∑d

i=1 s1ibi1, . . . ,
∑d

i=1 s1ibi,2d−nm)H
(
∑d

i=1 s2iai1, . . . ,
∑d

i=1 s2iai,nm,
∑d

i=1 s2ibi1, . . . ,
∑d

i=1 s2ibi,2d−nm)∗

= (s11, . . . , s1d)(A|B)H
(

A∗

B∗

)
(s21, . . . , s2d)∗ = 0,

(2.18)

which implies [L : L] = 0, that is, L is a Lagrangian subspace in S .

With the theory of matrices and (i), there exist matrices Ã([ nm
2 ]−k)×nm ,

B̃(d−[ nm+1
2 ]−k)×(2d−nm) , C(2k+[nm+1

2 ]−[ nm
2 ])×nm , D(2k+[ nm+1

2 ]−[ nm
2 ])×(2d−nm) satisfying

rank Ã = [nm
2

]−k , rank B̃ = d−[nm+1
2

]−k , rank C = rank D = 2k+[nm+1
2

]−[nm
2

] , rank
(

Ã
C

)
= [nm+1

2
]+k ,

rank
(

D

B̃

)
= d − [nm

2 ] + k , such that (A|B) is equivalent to

⎛⎜⎝ Ã([ nm
2 ]−k)×nm 0([ nm

2 ]−k)×(2d−nm)

C(2k+[nm+1
2 ]−[ nm

2 ])×nm D(2k+[ nm+1
2 ]−[ nm

2 ])×(2d−nm)

0(d−[ nm+1
2 ]−k)×nm B̃(d−[ nm+1

2 ]−k)×(2d−nm)

⎞⎟⎠ . (2.19)

From (2.19), we see that rank(A|B) = d which implies dim L = d , thus by Lemma 4, we see that L is a
complete Lagrangian subspace in S . Next we give the fact that L is k -grade.

By (2.15) and (2.19), we see that there only exist [nm
2 ]−k linearly independent vectors fr (1 ≤ r ≤ [nm

2 ]−
k) in L such that [fr, θi]n(∞) = 0 (1 ≤ r ≤ [nm

2
]−k; i = 1, 2, . . . , 2d−nm), that is, fr (1 ≤ r ≤ [nm

2
]−k) ∈ S− ,

which implies

dim L ∩ S− = [
nm

2
] − k. (2.20)
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Similarly, there only exist d − [nm+1
2 ] − k linearly independent vectors gs (1 ≤ s ≤ d − [nm+1

2 ] − k) in L such

that g
[i]
s (a) = 0 (1 ≤ s ≤ d− [nm+1

2
]− k; i = 0, 1, 2, . . . , n− 1), that is, gs(1 ≤ s ≤ d− [nm+1

2
]− k) ∈ S+ , which

implies

dim L ∩ S+ = d − [
nm + 1

2
] − k. (2.21)

Together with Definition 5, (2.20) and (2.21), we obtain

k = d − [
nm + 1

2
]− dim L ∩ S+ = [

nm

2
] − dim L ∩ S−,

thus L is k -grade.

(Sufficiency) Since L is a k -grade complete Lagrangian subspace in S ,

dim L = d, dim L∩ S− = [
nm

2
] − k, dim L ∩ S+ = d − [

nm + 1
2

] − k and [L : L] = 0. (2.22)

Since S = span{e1, . . . , enm, f1, . . . , f2d−nm} and dim L = d , there exist aij, bit ∈ C (i = 1, 2, . . . , d; j =

1, 2, . . . , nm; t = 1, 2, . . . , 2d − nm), such that

L = span{a11e
1 + a12e

2 + · · ·+ a1,nmenm + b11f
1 + b12f

2 + · · ·+ b1,2d−nmf2d−nm,
. . . , ad1e

1 + ad2e
2 + · · ·+ ad,nmenm + bd1f

1 + bd2f
2 + · · ·+ bd,2d−nmf2d−nm}, (2.23)

by (2.23) and [L : L] = 0, it is verified that (ii) is true.

By (2.22) and (2.23), we see that (i) is true. This completes the proof. �

Corollary 1 L is a k -grade (0 ≤ k ≤ d − [nm+1
2 ]) complete Lagrangian subspace in S if and only if there

exist aij, bit ∈ C (i = 1, 2, . . . , d; j = 1, 2, . . . , nm; t = 1, 2, . . . , 2d− nm), such that

L = {f ∈ S|∃si(i = 1, 2, . . . , d) ∈ C, (f(a)t, f [1](a)t, . . . , f [n−1](a)t)t =
At(s1, s2, . . . , sd)t, ([f, θ1]n(∞), . . . , [f, θ2d−nm]n(∞))t = Bt(s1 , . . . , sd)t},

and (i) rank A = [nm+1
2

] + k , rank B = d − [nm
2

] + k , where A = (aij)d×nm and B = (bit)d×(2d−nm) ;

(ii) αiHα∗
j = 0 (1 ≤ i, j ≤ d) , where αi =(ai1 , . . .,ai,nm ,bi1 ,bi2 , . . ., bi,2d−nm) and H defined in Theorem 1.

Proof (Sufficiency) For all f ∈ L , by Theorem 4, there exist si (i = 1, 2, . . . , d) ∈ C , such that

f =
∑d

i=1 si(ai1e
1 + · · ·+ ai,nmenm + bi1f

1 + · · ·+ bi,2d−nmf2d−nm)
= (

∑d
i=1 siai1)e1 + · · ·+ (

∑d
i=1 siai,nm)enm + (

∑d
i=1 sibi1)f1 + · · ·

+(
∑d

i=1 sibi,2d−nm)f2d−nm.

(2.24)

By (2.6), we obtain

∑d
i=1 siai1 = f1(a), . . . ,

∑d
i=1 siai,m = fm(a), . . . ,∑d

i=1 siai,nm−m+1 = f
[n−1]
1 (a), . . . ,

∑d
i=1 siai,nm = f

[n−1]
m (a);∑d

i=1 sibi1 = [f, θ1]n(∞), . . . ,
∑d

i=1 sibi,2d−nm = [f, θ2d−nm]n(∞),
(2.25)
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that is,

(f(a)t, f [1](a)t, . . . , f [n−1](a)t)t = At(s1, s2, . . . , sd)t,
([f, θ1]n(∞), . . . , [f, θ2d−nm]n(∞))t = Bt(s1, . . . , sd)t.

(2.26)

Obviously, (i) and (ii) hold.

(Necessity) For arbitrary f ∈ L , equation (2.26) implies that (2.25) holds. By (2.6), we see that (2.24)
is true. From Theorem 4, we get that L is a k -grade complete Lagrangian subspace in S . This completes the
proof of Corollary. �

4. The case with two singular endpoints

Theorem 4 can be generalized to the case when l(y) is singular at the endpoint a . For this we need Kodaira’s
deficiency index formula for vector-valued symmetric differential operators.

Let T0 be the minimal operator associated with l(y) and D(T0) is the domain of T0 . Choose c to

be a fixed point between a and ∞ , and write T−
0 and T+

0 as the minimal operators generated by l(y) in

L2
r(a, c] and L2

r [c,∞), respectively; D(T−
0 ) and D(T+

0 ) are the domains associated with them. We use T1, T
−
1

and T+
1 to denote the maximal operators generated in L2

r(a,∞),L2
r(a, c] and L2

r [c,∞) by l(y), respectively;

D(T1),D(T−
1 ),D(T+

1 ) are the domains associated with them. Denote the deficiency indices of T−
0 and T+

0 as

(d+
1 , d−

1 ) and (d+
2 , d−

2 ), respectively, then we see from Theorem 4.3 of [16] that

[
nm + 1

2
] ≤ d+

i , d−
i ≤ nm (i = 1, 2). (3.1)

Letting (d+, d−) be the deficiency index of T0 , we have the following Kodaira’s formula.

Lemma 7 (Kodaira’s formula, Theorem 4.2 of [16])

d+ = d+
1 + d+

2 − nm, d− = d−
1 + d−

2 − nm.

According to the definition of deficiency index, equations l(y) = iy and l(y) = −iy have d+
1 linearly

independent solutions φ1, . . . , φd+
1

in L2
r(a, c] and d−

1 linearly independent solutions φd+
1 +1, . . . , φd+

1 +d−
1

in

L2
r(a, c] , respectively.

Similarly, equations l(y) = iy and l(y) = −iy have d+
2 linearly independent solutions ψ1, . . . , ψd+

2
in

L2
r [c,∞) and d−

2 linearly independent solutions ψd+
2 +1 , . . ., ψd+

2 +d−
2

in L2
r [c,∞), respectively.

Denote
N1 � d+

1 + d−
1 − nm, N2 � d+

2 + d−
2 − nm. (3.2)

By Lemma 1, there exist φi (i = 1, 2, . . . , N1) and ψi (i = 1, 2, . . . , N2) as above satisfying

rank J− = N1, rank J+ = N2, (3.3)

where J− = ([φr, φs]n(a))1≤r,s≤N1 = diag{−iEq1 , iEp1} (p1 + q1 = N1, p1 ≥ 0, q1 ≥ 0),

J+ = ([ψr, ψs]n(∞))1≤r,s≤N2 = diag{−iEq2 , iEp2} (p2 + q2 = N2, p2 ≥ 0, q2 ≥ 0) and (J−)∗ = −J− ,

(J+)∗ = −J+.

628



YANG/Turk J Math

Assume d+
1 +d+

2 −nm = d−
1 +d−

2 −nm = d , i.e., d+ = d− = d , it is well known from the general operator

theory that the minimal operator associated with l(y) can be extended to a self-adjoint differential operator in

L2
r(a,∞). Similar to the case with a finite regular endpoint a in Section 2, we obtain following results.

Lemma 8 The complex vector space
S = D(T1)/D(T0),

with the skew-Hermitian from [· : ·] , as in (1.11), is a complex symplectic space and dim S = 2d .

Lemma 9 Suppose the linearly subspace of S

S− = {y ∈ S | [y, ψi]n(∞) = 0, i = 1, 2, . . . , N2},

S+ = {y ∈ S | [y, φi]n(a) = 0, i = 1, 2, . . . , N1},

then S = S− ⊕ S+ , and dim S− = N1 , dim S+ = N2 .

Lemma 10 (Balanced intersection principle) For each complete Lagrangian space L in S , then

0 ≤
[
N2

2

]
− dim L ∩ S+ =

[
N1

2

]
− dim L ∩ S− ≤ min

{[
N2

2

]
,

[
N1

2

]}
� ν.

Lemma 11 Let def(T−
0 ) = (d+

1 , d−
1 ) , def(T+

0 ) = (d+
2 , d−

2 ) , N1 = d+
1 + d−

1 − nm, N2 = d+
2 + d−

2 − nm. For

all α1 ,α2 , . . .,αN1 , β1 ,β2 , . . .,βN2 ∈ C , there exists y ∈ D(T1) , such that

[y, φr]n(a) = αr (r = 1, 2, . . . , N1), [y, ψs]n(∞) = βs (s = 1, 2, . . . , N2), (3.4)

where φr, ψs is defined as above.

Proof By von Neumann’s decomposition in [10], for all y ∈ D(T1), y has unique representation

y =

{
y0 +

∑m
i=1

∑n
j=1 dijχij +

∑N1
k=1 ckφk (y0 ∈ D(T−

0 ), x ∈ (a, c]),
y′0 +

∑m
i=1

∑n
j=1 d′

ijχ
′
ij +

∑N2
k=1 c′sΨs (y′0 ∈ D(T+

0 ), x ∈ [c,∞)),

where χij ∈ D(T−
1 ) satisfy

χ
[k−1]
ij (a) =

{
0m×1 for j = k;

ei for j = k,
χij(t) = 0 for all t ≤ a − 1 (1 ≤ i ≤ m; 1 ≤ j ≤ n)

and χ′
ij ∈ D(T+

1 ) satisfy

χ
[k−1]
ij (a)′ =

{
0m×1 for j = k;

ei for j = k,
χij(t) = 0 for all t ≥ a + 1 (1 ≤ i ≤ m; 1 ≤ j ≤ n),

and dij, d
′
ij, c1, . . . , cN1 , c

′
1, . . . , c

′
N2

∈ C . Choose

⎛⎜⎝ c1

...
cN1

⎞⎟⎠ = −(J−)t

⎛⎜⎝ α1

...
αN1

⎞⎟⎠ ,

⎛⎜⎝ c′1
...

c′N2

⎞⎟⎠ = −(J+)t

⎛⎜⎝ β1

...
βN2

⎞⎟⎠ .

629



YANG/Turk J Math

Then y ∈ D(T1), and it is easy to verify that y satisfies (3.4), and so the results follow. �

From Lemma 8, we see that dim S = 2d , so the complex symplectic space S is linearly isomorphic to

C2d . We can use the customary unit basis vectors in C2d ,

e1 = (1, 0, . . . , 0)t, e2 = (0, 1, 0, . . . , 0)t, . . . , eN1 = (
N1︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)t,

f1 = (
N1 + 1︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)t, f2 = (
N1 + 2︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)t, fN2 = (0, . . . , 0, 1)t,

so

S = span{e1, e2, . . . , eN1 , f1, f2, . . . , fN2}.

From Lemma 2, we can introduce corresponding coordinates in S by the convenient choice

f = ([f, φ1]n(a), . . . , [f, φN1]n(a), [f, ψ1]n(∞), . . . , [f, ψN2]n(∞))
= [f, φ1]n(a)e1 + · · ·+ [f, φN1 ]n(a)eN1 + [f, ψ1]n(∞)f1

+[f, ψN2 ]n(∞)fN2 ,
(3.5)

where f = {f + D(T0)} , for f ∈ D(T1).

In terms of these coordinates, the symplectic form [· : ·] in S can be expressed as the following form.

Theorem 5 For f , g ∈ S , we have [f : g] = fH ′g∗ , where

H ′ =
(

−J− 0N1×N2

0N2×N1 J+

)
2d×2d

,

J− and J+ defined in (3.3).

Theorem 6 A complete Lagrangian subspace in S is 0-grade, or 1-grade, . . .,or ν -grade, where ν = min{[N1
2 ], [N2

2 ]} .

Theorem 7 For S− and S+ defined in Lemma 9, we have

S− = span{e1, e2, . . . , eN1}, S+ = span{f1, f2, . . . , fN2}.

Theorem 8 L is a k -grade (0 ≤ k ≤ ν ) complete Lagrangian subspace in S if and only if there exist

a′
ij , b

′
is ∈ C(i = 1, 2, . . . , d; j = 1, 2, . . . , N1; s = 1, 2, . . . , N2 ), such that

L = span{a′
11e

1 + · · ·+ a′
1,N1

eN1 + b′11f
1 + · · ·+ b′1,N2

fN2 , . . . ,

a′
d,1e

1 + · · ·+ a′
d,N1

eN1 + b′d,1f
1 + · · ·+ b′d,N2

fN2},

and
(i) rank A′ = d − [N2

2 ] + k , rank B′ = d − [N1
2 ] + k ;

(ii) αiH
′α∗

j = 0 (1 ≤ i, j ≤ d) , where αi = (a′
i1, . . . , a

′
i,N1

, b′i1, . . . , b
′
i,N2

) (1 ≤ i ≤ d) , and H ′ defined in

Theorem 5 and A′ = (a′
ij)d×N1 , B

′ = (b′is)d×N2 .
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Corollary 2 L is a k -grade (0 ≤ k ≤ ν ) complete Lagrangian subspace in S if and only if there exist

a′
ij , b

′
it ∈ C (i = 1, 2, . . . , d; j = 1, 2, . . . , N1; t = 1, 2, . . . , N2 ), such that

L = {f ∈ S|∃si(i = 1, 2, . . . , d) ∈ C, ([f, φ1]n(a), . . . , [f, φN1 ]n(a))t =
A′t(s1, s2, . . . , sd)t, ([f, ψ1]n(∞), . . . , [f, ψN2 ]n(∞))t = Bt(s1, . . . , sd)t},

and
(i) rank A′ = d − [N2

2 ] + k , rank B′ = d − [N1
2 ] + k ;

(ii) αiH
′α∗

j = 0(1 ≤ i, j ≤ d) , where αi = (a′
i1, . . . , a

′
i,N1

, b′i1, . . . , b
′
i,N2

) (1 ≤ i ≤ d) , and H ′ defined in Theorem

5 and A′ = (a′
ij)d×N1 , B

′ = (b′is)d×N2 .
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