Turkish Journal of Mathematics Turk J Math
(2013) 37: 617 — 632

© TUBITAK
T U B | TAK Research Article doi:10.3906/mat-1103-25

http://journals.tubitak.gov.tr/math/

Complex symplectic geometry with applications to vector differential operators

Chuan-Fu YANG™
Department of Applied Mathematics, Nanjing University of Science and Technology,
210094, Nanjing, Jiangsu, P. R. China

Received: 12.03.2011 . Accepted: 05.07.2012 ° Published Online: 12.06.2013 . Printed: 08.07.2013

Abstract: Let [(y) be a formally self-adjoint vector-valued differential expression of order n on an interval (a, c0)(—oco <
a < oo0) with complex matrix-valued function coefficients and finite equal deficiency indices. In this paper, applying
complex symplectic algebra, we give a reformulation for self-adjoint domains of the minimal operator associated with

l(y) and classify them.
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1. Introduction

Let I(y) be a formally self-adjoint vector-valued differential expression of order n on an interval I = (a, 00)(—o0 <
a < 0o0) with complex matrix-valued coefficients and finite equal deficiency indices. It is well known from the
general operator theory that the minimal operator associated with I(y) can be extended to a self-adjoint opera-
tor in a Hilbert space. The study of boundary value problems involving linear differential equations is becoming
a well-established area of analysis. Applying the extension theory of symmetric operators to concrete differential
operators, a general characterization of self-adjoint extensions of symmetric differential operators is established.
For details of some of this work we refer to [1]-[17], etc.

Recently, in [13] Wang, Sun and Zettl give a representation of self-adjoint conditions in terms of certain
solutions for real parameter, which leads to a classification of solutions as limit-point or limit-circle in analogy
with the celebrated Weyl classification in the second-order case. In [7] Hao, Sun, Wang and Zettl, applying
results from [13], characterize self-adjoint domains of general even order linear ordinary differential operators
in terms of real-parameter solutions of the differential equation, which is a follow up of [13].

In [3, 4, 5], the complex symplecto-algebraic complete characterizations of self-adjoint extensions of
symmetric operators are given. This paper presents a generalization to the case of vector-valued functions
of the approach presented in [4]. This approach is based on the following idea. Let I(y) be some ordinary
formally self-adjoint differential operator considered in Hilbert space L?(I) on some interval I. We can define
in the standard way the minimal and maximal operators Ty and T associated to I(y), with domains denoted by
D(Ty), D(T1). On the domain D(7T}) we introduce skew-Hermitian form [y : z] = (Thy, 2) — (y, T1z), where (-, ")
denotes the scalar product in L?(I). This form generates sympletic structure on the space S = D(Ty)/D(Tp)

and there is one-to-one correspondence between complete (maximal) Lagrangian space L in S and self-adjoint
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extensions T of Ty. In this way study of self-adjoint extensions is reduced to study of Lagrangian subspace in
the space S and one can try to find the relations between the geometric and algebra properties of L as subspace
in S, and the structure of boundary conditions that define the self-adjoint extension 7' corresponding to L.
Applying complex symplectic algebra, we present complete characterizations and classifications for self-adjoint
domains associated with I(y).

The layout of this paper is as follows. In Section 1 we summarize the results of symplectic algebra and
vector-valued differential operators. In Section 2 complex symplecto-algebraic characterizations of self-adjoint
boundary conditions of vector-valued differential operator are given at the case with a finite regular endpoint.

Section 3 presents some results at the case with two singular endpoints.

2. Preliminaries
Definition 1 (Definition 1.1 of [4]) A complex symplectic space S is a complex linear space with a prescribed
symplectic form [ : -], namely a sesquilinear form

(i) u,v — [u:v],S xS — C, so for all vectors u,v,w € S and complex scalars ci,ca € C, [cru + cav :
w] = c1fu : w] + ealv : W], which is skew-Hermitian;

(i) [u: v] = —[v:u], so for all vectors u,v,w € S and complex scalars c1,ca € C, [u: c1v + cow] =
crlu: v] + Clu : w], and which is also non-degenerate;

(i4i) [u:S] =0 implies u=0, forall ue S.

Definition 2 (Definition 1.2 of [4]) A linear subspace L in the complex symplectic space S is called La-
grangian in case [L: L] =0, that is, for all u,v € L, [u:v] =0.

Definition 3 (Definition 1.2 of [4]) A Lagrangian space L C S is complete in case w € S and [u: L] =0
imply w € L.

Definition 4 (Definition 2.2 of [4]) Let S be a complex symplectic space with symplectic form [-:-]. Then

linear subspace Sy and S_ are symplectic ortho-complements in S, written as
S=5.d5_,

(Z) S = span{5’+,5’_};
(ii) [S_: S4] = 0.

Consider the formally self-adjoint vector-valued differential expression introduced by J. Weidmann [16]:

(]
@) = @) 30 o)™ (@)@
iy (1.1)

£ 2 DM@y ® @)Y (gule) y ™ @) M
k=0

where y(z) = (y1(x),...,ym(x))! is defined in the interval I = (a,0), —oo < a < oo; [a] denotes the

greatest integer not greater than a. The m x m matrix-valued functions r(x),p;(z)(j = 0,1,...,[5]) and
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qj(z)(j =0,1,...,[21]) satisfy
(i) r(z),pj(x) and ¢;(x) are measurable over I;
(i) r(z) is a positive, definite matrix and p;(z) are Hermitian; and p; ' € ACioc(I) if n = 2k; q, (qr—q}) ™' €
ACoe(I) if n =2k +1;
(i) pp 'y pp Gh-1,Ph-1 — 41 "@r-1,0; (G = 0,1,...,k —2),¢; (j = 0,1,...,k —2) and r are absolutely
Lebesgue integrable on all compact subset of I if n = 2k; (gx—q;) ™", (qe—q}) " (pr+4})s (as—a}) qr—1.p; (j =
0,1,...,k—1),q; (j=0,1,...,k—1) and r are absolutely Lebesgue integrable on all compact subsets of I if
n=2k+1.

Thus n is the order of I(y). Define the quasi-derivatives yl"!(r = 0,1,...,n) as in pages 26-30 of [16],

then the differential expression (1.1) can be rewritten as

Iy)(x) = r(z) 'y (2).

In the complex vector space C™ = {a: a = (c1,...,¢m)t ci(i =1,2,...,m) € C}, define inner product

(5777) = Zfim» f = (617 .- -7§m)t777 = (7717 .- -777m)t-
i=1
A Hilbert space

H={f:I— C™, f measurable |/(r(w)f(w),f(w))dw < oo}
I
with inner product
(y,2z) = /(T(m)y(x),z(x))dx, forally,z € H,
I

denoting Hilbert space H as L2(I).

For the differential expression I(y) defined as above, its maximal operator Ty: Tiy = l(y) on
D(Ty) ={y: T —C™, yl € AC)oe(I)(k =0,1,...,n— 1),y and I(y) € L2(I)}, (1.2)

where AC)oc(I) denotes a set of complex-vector valued functions which are absolutely continuous on all compact

subintervals of I and its minimal operator Tj:

Toy = U(y) on D(Ty) = {y € D(T1) | [y : D(T1)] = 0} (1.3)
Here, the skew-Hermitian form [-: -] on D(T}) is given by
ly: 2] =Ty, 2y — (y,T1z), fory,z € D(T1), (1.4)

where [y: z] = (T1y, z) — (y,T1z) is the Lagrange bilinear form associated with I(y).

It is known from Theorem 3.1 of [16] that Ty C T on D(Ty) C D(T1) C L3(I) satisfy
(i) D(Tp) is dense in L2(I), so also D(T1) is dense in L2(I);
(ii) adjoints T§ =Ty and Ty =Ty,

so both Ty and Tj are closed operators, Ty is symmetric.
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For any [¢,d] C I,y,z € D(T1), we have Green’s formula (see pages 35—40 in [16] or see equations (1.3)
and (1.4) in [17)),

d
/ {(r(@)ly(@), 2(x)) — (r(2)y(x), l12(z)) }dz = [y, 2]n(d) — [y, 2]n(c), (1.5)

where
[9:21n(®) = Ralg) @) AR, ()0, [9: n(o0) = lim [y, 2Jo() exists, (1.6
Ru(y)(z) = )", yM(2)', ...y (@), 2 el (1.7)

Here, t denotes the transpose of matrix and

0 0 0 En
0 0 Em 0 if n is even ;
0 —En 0 0 ’

_E,, 0 0o .- 0

Alz) = 0 0 0 0 Enm (1.8)

0 0 0 En 0
0 0 gn(x) —qe(z) O 0 if n is odd,
0 —En 0 0 0

B - 0 0 0o --- 0

where FE,, denotes the identity matrix of size m.
Hereafter, [-, -]n(x) is called the Lagrange bi-linear form corresponding to I(y) on I.

Since l(y) is a formally self-adjoint differential expression on I, we easily get from (1.1) and (1.8) that
A* = —A, rank A = nm. (1.9)

In order to describe the self-adjoint boundary conditions of differential operator we introduce the defi-

ciency indices of Tj: these are the integers
dy = dim (ker(T} F1)).

In this paper, we assume [(y) is a regular, formally self-adjoint differential expression with finite, equal
deficiency indices (d,d). Obviously,
0<d<nm.

Define an endpoint space S, for I(y) on I, as the quotient or identification vector space
S =D(Ty)/D(Ty), (1.10)
so there is a natural projection map
Y:DT) =S, f—f={f+D)}, forf €S, feDT).
Define the symplectic form [-: -] in S, for f = {f + D(Tp)} and g = {9+ D(Tp)},

[f:g]=1[f: 4l (1.11)
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3. The case with a finite regular endpoint

The endpoint a is called regular if, for some a < ¢ < o0, pgl,pglqk_l,pk_l —q,’;_lp,zlqk_l,pj (j=0,1,....k—
2),q; (=0,1,...,k—2) and r are Lebesgue integrable on (a,c) when n =2k or (gx —q})~ ', (g — ;) " (px +
a), (ax—a;) ‘qe—1,p; (=0,1,...,k—1),q; ( =0,1,...,k—1) and r are Lebesgue integrable on (a, c) when
n = 2k+1; otherwise a is said to be singular. Without loss of generality we consider the case with a finite regular

endpoint a. In this section, we apply the theory of complex symplectic spaces to the boundary value problems

of linear vector-valued differential operators with order n(> 1) and complex matrix valued coefficients defined

on [a,00)(—00 < a < 00) and equal deficiency indices (d,d) (obviously, [22+l] < d < nm). This section treats
the positioning of a Lagrangian subspace within S, and gives necessary and sufficient conditions for k-grade

(0 <k < d—[22H]) complete Lagrangian subspaces.

Let
D(1) = D(Ty) & span{x11, X12: - - - Xmn }» (2.1)
where the symbol & denotes a direct sum and span{xi1, ..., Xmn} denotes the linear span of x11, ..., Xmn and
xij(i=1,---,m;j=1,...,n) be aset of functions in D(T7) which satisfy the following conditions:
k=11, \ _ ) Omx1 forj#k; o
Xi; (@) = { o for j = k. xij(t)=0forallt>a+1, (2.2)

where e; is the ith canonical unit vector in C™ and 0,,x1 = (0,...,0)". Clearly, x;;€EDo(1l).

For any z € ﬁ(l), it is not difficult to see that
[y, Z]n(00) = 0, for all y € D(Ty). (2.3)

Let N = 2d— nm, then I(y) = Ay (ImX # 0) has N linearly independent square integrable solutions on
[a,00), denoted by 61, ..., 60N, which satisfy

rank K = N, D(Ty) =D(l) ®span{b,...,0n},

where K = ([0;,0;]n(00))1<ij<n, K* = —K (cf. Lemma 3 of [15]).
Since K* = —K, (iK)* = iK (where i2 = —1), iK is symmetric Hermitian, there exists some complex
non-singular matrix 7' such that
TGK)T* = diag{E,, —E,},
where p+¢=N,p>0,9g>0. So TKT* = diag{—iE,,iE,}.
Define 9~1, e, é;/v, such that

01 01
. _T . 7
Oy O
obviously, 9~1, .. .,éjvv are N linearly independent square integrable solutions of I(y) = Ay on [a,00), which

satisfy

([6:,0](00))1<1,j< v = diag{—iEq,iE,}, D(T1) = D(l) @ span{fy, ..., 0x}.

621



YANG/Turk J Math

Thus we have

Lemma 1 Let N = 2d —nm. Then l(y) = Ay (Im A # 0) has N linearly independent square integrable

solutions on [a,0), denoted by 01, ...,60N , which satisfy
J 2 ([05,0;]n(00))1<i.j<n = diag{—iE,,iE,}, D(T1) = D(l) & span{bs,...,0n}. (2.4)
Obviously, J* = —J and J = —J .
Lemma 2 The complex vector space
S = D(T1)/D(To)

with the Skew-Hermitian from [-:-], as in (1.11), is a complex symplectic space and dim S = 2d.

Proof Since the operators Ti and Tj arise from the differential expression of order n > 1 on [a, 00), it follows
from the theory of linear ordinary differential equation and von Neumann’s formula (Theorem 4.3 of [16]) that
S has a finite dimension, and dimS = 2d. It is easy to verify by Definition 1 that S is a complex symplectic

space. Thus we have the following lemma.

Lemma 3 Let linear subspace of S
S_={yeS|[ybin(x)=0,i=1,2,...,2d — nm},

S, ={yes|y*a)=0,k=0,1,...,n -1},
then S=S_® S; and dim S_ =nm, dim Sy = 2d — nm.

Proof In fact, the definition of minimal operator (Theorem 3.12 of [16]) implies
D(Tp) = {f € D(TV)|f¥(a) =0,k =0,1,...,n— 1;[f, 0;]n(00) = 0,1 < i < 2d — nm},

together with the decomposition of maximal operator domains D(T}) and Definition 4, it is easy to see that
the results hold. O

Applying GKN-Theorem (Corollary 1 of Appendix in [4]) and the balanced intersection principle (The-

orem 2.4 in [4]) to the quotient vector space S, we have this next lemma.

Lemma 4 (GKN-Theorem) (i) There exists a self-adjoint extension T of To if and only if there exists a
complete Lagrangian subspace L C'S;

(ii) A Lagrangian subspace L C S is complete if and only if dim L = d, where (d,d) is the deficiency
indices of 1(y);

(iii) For each self-adjoint operator T on domains D(T) C L2(I), which is an extension of Ty on D(Ty),

the corresponding complete Lagrangian subspace L is defined by
L =D(T)/D(To),

so D(T)=c1fi+--+cifa+D(To). Here {f1,..., fa} is any basis of L, with any corresponding representative

functions fi,...,fa € D(T1), and c1,...,cq are arbitrary complex numbers.
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Lemma 5 (Balanced intersection principle) For each complete Lagrangian space L in S, then

1 1
mg+]—mmLms+=ﬂgﬁ—mmLms_gd—fm+

0<d-—| !

Definition 5 For each complete Lagrangian space L in S, let

nm + 1

h=d—[—

]—mmLms+=ﬁgﬁ—mmLms_
Then L is called k-grade, or D(Ty) is called k-grade.

From Lemma 2, we see that dim S = 2d, so the complex symplectic space S is linearly isomorphic to

C?? = {ala = (c1,¢2,...,c2q),¢c;i € Coi =1,2,...,2d}. We can use the customary unit basis vectors in C?¢,
nm
———
el = (1,0,...,0)}, €2 = (0,1,0,...,0),...,e" = ( 0,...,0,1, 0,...,0),
nm+ 1 nm, 4 2

ff=(0,...,0,1, 0,...,0),, f2=(0,...,0,1, 0,...,0), f24="m =(0,...,0,1),
SO

S =span{el,e?, ... "™, f1f2, ..., fRArmy,

Lemma 6 Let the deficiency index of l(y) on [a,00), def(l) = (d,d) ([2%] < d < nm), N =2d—nm. For
all ay, ag, ..., anp € C™, B1, Pa, ..., Bn € C, there exists y € D(T1), such that
yiUa) =a; (1=1,2,...,n); [y,0k]n(c0) =Bk (k=1,2,...,N), (2.5)

where O, (k=1,2,...,N) defined in Lemma 1.
Proof By Lemma 1 and (2.1), for all y € D(T3), there exist d;; € C(1 < i < m;1 < j < n) and
ck(1 <k < N) €C, such that
m n N
y=vo+ > > dijxij+ Y kb,
i=1 j=1 k=1

where yo € D(Tp), xi; defined in (2.2). Choose

di1
c1 B dm1 al B
= s e @t
CN BN din o, BN
dmn
where J is defined in Lemma 1 and
950] a)t 9%0] a)t 958] a)t
9[1] a)t 9[1] a)t 9[1] a)t
po| @ A (@
ne1 n—1 n—1
o @)t 0 a) o (a)!
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Therefore y € D(T1), the fact that x;; satisfy (2.2) and a direct computation imply that y satisfies (2.5). This
completes the proof of this Lemma. O

From Lemma 6 we can introduce corresponding coordinates in S by the convenient choice

f = (f(a)tv f[l](a)tv SRER) f[n_l](a)tv [fv el]n(oo)v SERR) [fv 62d—nm]n(oo))

m " i e _ 2.6
= Zi:l ijl fz[J 1](a)ez+(J Dm 4 [fs Ql]n(oo)fl +.. 41, 92d—nm]n(oo)f2d nm, (2.6)
where f = {f +D(Tp)}, for f = (f1,...,fm)t € D(T1).

In terms of these coordinates, the symplectic form [-: -] in S can be expressed as the following form as

Theorem 1.

Theorem 1 For f,g €S, we have [f : g] = fHg*, where £, g appearing in the right side of the equation take

each corresponding coordinate in S defined in (2.6),

— _A(a) 0nm><(2d—nm)
= >

0(2d—nm)><nm 2dx2d

and A(a),J defined in (1.8) and (2.4), respectively.
Proof By (1.4), (1.5) and (1.11), we get for f,g € S,

[f:g] =1[f:91=(Tif,9)—(f,Trg) 2.7)

From (1.6), we have
[£: 9ln(a) = Rn(f)(a)A(a) R;, (9)(a)- (2.8)

Denotes

T‘n(f)(OO) = ([f? 91]”(00)7 sy [f? eN]n(OO)
Now we prove

[£; gln(00) = ra(f)(00) I 17, (g)(00).

By Lemma 1, for f,g € D(T}), there exist f@ € 15(1) and ¢;,d; (i=1,2,...,N) € C, such that

N N
F=F+) cibig=3+>_ dib;, (2.9)
i=1 i=1
together with (2.3), we get
[elvei]n(oo)
[f,ei]n(oo):(cl,...,cN) (i:1,2,...,N),
[On, 0i]n(00)

which can be written as

that is,
(c1,...,en) = ra(f)(00)J L. (2.10)
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Similarly,
(d1,...,dn)" = (J*) " (g)(00) = Jr7i(g)(00). (2.11)
By (2.9), (2.10) and (2.11), we obtain

[f, gln(o0) = (c1,...,en)I(dr, ... dN)*

= ra(F)(00) T4 (9)(o0). (212
Equations (2.7), (2.8) and (2.12) imply
[f:8] =ra(f)(00)Jr7(g)(00) — Rn(f)(a)Ala) Ry, (g)(a)
= (Rn(f)(a), rn(f)(00)) H(Rn(g)(a), rn(g)(c0))"
= fHy",
and so the result follows. O
By Theorem 1, we can introduce the corresponding symplectic form [- : -] in C2¢ using the skew-Hermitian

2d x 2d matrix H (it is easy to verify that H is a skew-Hermitian matrix from (1.9) and Lemma 1), thus the
boundary value problem for the differential expression I(y) on [a,00) is reduced, via the GKN-Theorem, to the
purely algebraic problem of determining all the complete Lagrangian subspaces L in the complex symplectic
space C2?, and a complete Lagrangian subspaces of C2¢ is of S by virtue of the symplectic isomorphism of S
with C2¢.

Theorem 2 A complete Lagrangian subspace in S is 0-grade, or 1-grade, ..., or (d — [%’H])-gmde.

Proof Lemma 5 and Definition 5 imply Theorem 2. a

Theorem 3 For S_ and Sy defined in Lemma 3, we have

S_ = span{et,e?, ..., e"™}, Sy = span{ft, f3,..., f24 "My,

Proof First we prove S_ = span{el,e? ..., e"}. For f = {f + D(Tp)} € S_, then f € D(T}) and
[f,0i]n(00) =0 (i =1,2,...,2d — nm). By (2.6), we have

f= Z Z fi[j_l] (a)ettU=Um ¢ span{el, e?,.. ., e"™},
i=1 j=1
that is,

S_ Cspan{e',e?, ..., e"™}. (2.13)

Conversely, if f € span{e’,e?,...,e"™}, then f=3"1", die fi[j_l] (a)e’t@ =™ which implies
[f,0i]n(c0) =0 (i =1,2,...,2d —nm), that is, f € S_, thus

span{e’,e?,...,e"m} CS_. (2.14)

Equations (2.13) and (2.14) imply S_ = span{e',e?, ..., e"™}.
Similarly, Sy = span{f!, f2,..., f2¢="™}. Therefore, Theorem 2 holds. O
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Theorem 4 L is a k-grade (0 <k <d— [%ﬂ]) complete Lagrangian subspace in S if and only if there exist
aij, bu€C (1=1,2,...,d;5=1,2,...,nm;t =1,2,...,2d — nm ), such that

L = span{aiie! + a12€® + -+ + a1 nme™™ + bir f1 4+ biof? + -+ + b1 2d—nm f2477,

1
o agiet + age? + -+ agnme™™ + bar f1+ basf? + -+ ba2d—nm 2, (2.15)
and (i) rank A= [22E] + &, rank B =d — 2] + k, where A = (ai)dxnm and B = (bit)ax (2d—nm)
(i) aiHal =0 (1<i,j<d),where a; =(ai1,-.,0inm,bi1,bi2,..., bi2d—nm ) and H defined in Theorem 1.

Proof (Necessity) For all f,g € L, there exist s14,52; (¢ =1,2,...,d) € C, such that

f= Zf:l stilainel + - 4 @ nme™™ + b f1 4+ bisd—nm f2™)
= (Ciy suan)e! + -4 (01 $10ainm)e™ + (i s1bin) S + -+ (2.16)
d —nm
+(Zi:1 Slibi,2d—nm)f2d N

and

g = (2(;:1 s2itin)e! + -+ 4 (0 82100 mm)e™™ + (X saibin) f1 4+ (2.17)
+(325 82ibi 2d—nm) £,

By Theorem 1 and (ii), we obtain

f:g] = (25:1 S14Qi 1y -« s de:l 51404 nm de:l 514bi1, - - ',dezl s1ibi 2d—nm)H
(D i1 82i@its -y Y iq S2iQimmy Dy 52iDits -5 Y iq 52ibi2d—nm)* (2.18)
*

A
= (811,...,81d)(A|B)H< B* ) (821,...,82(1)* = 0,

which implies [L : L] = 0, that is, L is a Lagrangian subspace in S.

With the theory of matrices and (i), there exist matrices g([%]_k)xnm,

B(d_[7mr;+1 ]—k) x (2d—nm) > C(2k+[nw;+1]_[%])><nm, D(2k+[""§+1]—[%])X@d—nm) satisfying

rank A = [%2]—Fk, rank B= d—[22tl)—k, rank C = rank D = 2k+[22E] - [22] rank ( g ) = (2ot

D
rank ( ~ ) =d — [""] + k, such that (A|B) is equivalent to

B
A([mm)—k)xnm O((22] k) x (2d—nm)
Clon+zmt)-(2p)xnm  Deekt(2m)- [2p))x 2d-nm) | - (2.19)
O(d—[%]—k)mm B(d—[%]—kw@d—nm)

From (2.19), we see that rank(A|B) = d which implies dim L = d, thus by Lemma 4, we see that L is a
complete Lagrangian subspace in S. Next we give the fact that L is k-grade.
By (2.15) and (2.19), we see that there only exist [%*] —k linearly independent vectors f, (1 <r < [22]—

k) in L such that [f, 0;],(c0) =0 (1 <7 < [BR]—k;i=1,2,...,2d—nm), that is, f. (1 <r < [ZP]-k)€S_,

which implies
dmLNS_ = [?] — k. (2.20)
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Similarly, there only exist d — [22+] — k linearly independent vectors g, (1 < s <d— [22+] — k) in L such

that gLi](a)zo (1<s<d—[2mH]—k;i=0,1,2,...,n—1), that is, gs(1 < s <d—[22] k) € S, , which

implies

1
dimLNS, =d— [”m;r | — k. (2.21)
Together with Definition 5, (2.20) and (2.21), we obtain
nm+ 1 nm

2

thus L is k-grade.

(Sufficiency) Since L is a k-grade complete Lagrangian subspace in S,

1
dimL:d,dimLﬂS_:[?]—k,dimLﬂSJr:d—[nm—i_

]—kand [L:L]=0. (2.22)

Since S = span{e!,...,e"™, f1 ..., f24""m} and dim L = d, there exist a;j,b;y € C (i = 1,2,...,d;j =
1,2,...,nm;t=1,2,...,2d — nm), such that

L =span{aiie’ + ajze? + -+ a1 nme™™ + b1 fr +biaf? + -+ b1 2a_pm f24T,

2.23
o agiet +age® + -+ agnme™™ +bar f1+bazf? + - 4 baga—nm 2, (2.23)

by (2.23) and [L : L] = 0, it is verified that (ii) is true.
By (2.22) and (2.23), we see that (i) is true. This completes the proof. O

Corollary 1 L is a k-grade (0 < k < d — ["’”2—“]) complete Lagrangian subspace in S if and only if there
exist a;;,04 €C (1=1,2,...,d;5=1,2,...,nm;t =1,2,...,2d — nm ), such that

L ={fecS|3s(i=1,2,...,d) € C,(fla)t, f(a)t,..., fr=U(a)t) =
At(s1,82,...,84)% ([f,01]n(00), . o, [f, O2da—nm)n(00))t = Bt(s1,...,s4)t},

and (i) rank A= [22E] + k., rank B =d — 2] + k, where A = (ai)dxnm and B = (bit)ax (2d—nm)
(i) aiHal =0 (1<i,j<d), where a; = (a1, -, nm,bi1,bi2,- .., bi2d—nm) and H defined in Theorem 1.

Proof (Sufficiency) For all f € L, by Theorem 4, there exist s; (i = 1,2,...,d) € C, such that

£ =50 silane + -+ ainme™™ + b U+ bisdmnm 2
= (Zle siai)et + -+ (Zle 8iQ;nm)e"™ + (Zle sibin ) ft+ - (2.24)
+(Z;i:1 Sibi,2d—nm)f2d_nm-

By (2.6), we obtain

J Z;i:1 $iA31 = fl(a)7 1 x Z;i:1 Si?ii,m = fm(a)7 REE) L
;izl 8i0i nm—m+1 = 1[n_ ](a)d, ey D iy SiGim = In- ](a); (2.25)
Zizl Sibil = [f» el]n(oo)v ceey Zi:l Sibi,2d—nm = [fv 92d—nm]n(oo)7

627



YANG/Turk J Math

that is,
(f(a)', f(aY,..., [P U(@)) = Af(sn a5, 220
([f, Ol]n(oo), ceey [f, 92d_nm]n(oo))t = Bt(sl, ey Sd)t. ’
Obviously, (i) and (ii) hold.
(Necessity) For arbitrary f € L, equation (2.26) implies that (2.25) holds. By (2.6), we see that (2.24)

is true. From Theorem 4, we get that L is a k-grade complete Lagrangian subspace in S. This completes the
proof of Corollary. O

4. The case with two singular endpoints
Theorem 4 can be generalized to the case when [(y) is singular at the endpoint a. For this we need Kodaira’s
deficiency index formula for vector-valued symmetric differential operators.

Let Ty be the minimal operator associated with I(y) and D(Tp) is the domain of Tp. Choose ¢ to
be a fixed point between a and oo, and write 7, and T0+ as the minimal operators generated by I(y) in
L%(a, c] and L2[e,00), respectively; D(T, ) and D(T,") are the domains associated with them. We use 71,7},
and T;" to denote the maximal operators generated in LZ(a,0),L?(a,c] and L2[c,00) by I(y), respectively;
D(Ty),D(Ty ), D(T}") are the domains associated with them. Denote the deficiency indices of T, and T, as
(df,dy) and (dj,d; ), respectively, then we see from Theorem 4.3 of [16] that

nm—+ 1 "

[ | <d

d; <nm (i=1,2). (3.1)

Letting (d*,d™) be the deficiency index of Ty, we have the following Kodaira’s formula.
Lemma 7 (Kodaira’s formula, Theorem 4.2 of [16])
dt =df +df —nm,d” =d; +d; —nm.

According to the definition of deficiency index, equations I(y) = iy and I(y) = —iy have d linearly

independent solutions ¢1,...,¢ at in L?(a,c] and d; linearly independent solutions ¢ df 10 ) dfdo in

L2(a, c], respectively.

Similarly, equations I(y) = iy and I(y) = —iy have d; linearly independent solutions 1, ..., af in
L2[c,00) and d; linearly independent solutions 1 FIREIRERS P & +dy in L2[c,c0), respectively.
Denote
Ny £df +dy —nm, Ny 2dy +d;, —nm. (3.2)

By Lemma 1, there exist ¢; (i =1,2,...,N7) and ¢; (i =1,2,..., Na) as above satisfying
rank J~ = Ny, rank JT = Ny, (3.3)

where J© = ([¢r7¢s]n(a))1§T,S§N1 = diag{—iqu,iEpl} (pl +q = N17p1 > 0»(11 > 0)7
Jt = ([w“ws]n(oo))lﬁﬂsifvz = diag{_ithviEPz} (p2 +q2 = Noyp2 > 0,q2 > 0) and (J_)* = —-J,
(Jt)* = —J+.
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Assume df —i—déIr —nm =dj] +dy —mm =d, i.e., d" =d~ = d, it is well known from the general operator
theory that the minimal operator associated with I(y) can be extended to a self-adjoint differential operator in

L2(a,00). Similar to the case with a finite regular endpoint a in Section 2, we obtain following results.

Lemma 8 The complex vector space
S =D(Ty)/D(Ty),

with the skew-Hermitian from [ : -], as in (1.11), is a complex symplectic space and dim S = 2d.
Lemma 9 Suppose the linearly subspace of S
S_={yeS| [y, i]n(cc)=0,i=1,2,..., Na},

S+ :{yES | [y,(bi]n(a):0,2':1,2,...,]\]1},
then S=S_® S, and dim S_ = Ny, dim Sy = Ns.

Lemma 10 (Balanced intersection principle) For each complete Lagrangian space L in S, then

0< [%] —dim LNSy = [%] —dim LNS_ Smin{[%],[%]}éu.

Lemma 11 Let def(T, ) = (df,dy), def(T;") = (df ,dy), N1 =df +d; —nm, Ny =df +d;, —nm. For
all ay,a9,...,an,, B1,B2,...,0n, € C, there exists y € D(T1), such that

[y7¢r]n(a) = Qp (T =12,.. '7N1)7 [vas]n(oo) = Bs (S =12,.. ->N2)7 (34)

where ¢, s is defined as above.

Proof By von Neumann’s decomposition in [10], for all y € D(T}), y has unique representation

oo+ X S digxay + Xty erdk (yo € D(Ty ), @ € (a,d]),
- m n N:
Yo+ 2 iss Zj:l diiXi; + 2 k21 Vs (Yo € D(Ty ), x € [¢, 0)),

where x;; € D(T] ) satisfy

k=1, v _ ) Omx1 forj#ky ~ _ ; : ’
Xij (a)—{ o for j = k. xij(t)=0forallt<a—1(1<i<m; 1<j<n)

and xj; € D(T}") satisfy

k=1, v _ | Omx1  forj#k = . ] .
Xij (a)—{ o for j = k. xij(t)=0forallt >a+1(1<i<m; 1<j<n),

! / /
and dij, d;;, c1y. .. 0Ny, €Y, Oy, € €. Choose

= ] =y
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Then y € D(T1), and it is easy to verify that y satisfies (3.4), and so the results follow. O

From Lemma 8, we see that dim S = 2d, so the complex symplectic space S is linearly isomorphic to

C2??. We can use the customary unit basis vectors in C??,

N1
el =(1,0,...,0)% €2 =(0,1,0,...,0),...,eNM = (0,...,0,1, 0,...,0),
Ny +1 Ny +2
——N— ———
f1=(0,...,0,1,0,...,0), f2=(0,...,0,1, 0,...,0)", fN = (0,...,0,1)",

so
S =span{e',e?, ..., e fL 2 V)

From Lemma 2, we can introduce corresponding coordinates in S by the convenient choice

£ = ([f ¢lnla), ... [f, o ]n(a), [f, ¢a]n(o0), .., [f, ¥, n(00))
= [f7 (bl]n(a e! +o [f7 ¢N1]n(a)eN1 + [f7 1pl]n(oo)fl (35)
+[f»¢Nz]n(00 szv

where £ = {f +D(Ty)}, for f e D(T1).

In terms of these coordinates, the symplectic form [-: -] in S can be expressed as the following form.

Theorem 5 For f,g € S, we have [f:g]|=fH'g*, where

HI _ ( _J_ 0N1 X No )
= i R
Oz Ny J 2dx2d

J~ and J* defined in (3.3).

Theorem 6 A complete Lagrangian subspace in S is 0-grade, or 1-grade,. .. ,or v-grade, where v = min{[%], [22

Theorem 7 For S_ and Sy defined in Lemma 9, we have
S_ = span{e',e?, ..., M}, Sy = span{ft, f%, ..., fN2).

Theorem 8 L is a k-grade (0 < k < v) complete Lagrangian subspace in S if and only if there exist
a0, €eCi=1,2,...,d;5=1,2,...,N1;5=1,2,..., Ny ), such that

159

L :span{a'uel—i—---—i—a'lNleNl +b'11f1+---+b’1N2fN2,...,
@laet o N R P

and
(i) rank A’ =d — 2]+ k, rank B =d —[t] + k;
(i) a;H'aj =0 (1 < 4,5 < d), where o = (ajy,...,a; n,big,- -5 0; n,) (1 <@ < d), and H' defined in

Theorem 5 and A’ = (agj)deuBl = (bis)dx N -
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Corollary 2 L is a k-grade (0 < k < v) complete Lagrangian subspace in S if and only if there exist
aj;, b, €C (i=1,2,...,d;j=1,2,...,Ni;t =1,2,..., N2 ), such that

L ={fe83si(i=1,2,...,d) € C,([f, p1]n(a), ..., [f, dn]n(a))’ =
Alt(51»527 . ->5d)t» ([f» wl]n(oo)v SRRE) [fv wNz]n(oo))t = Bt(slv .. '>Sd)t}7

and

(i) rank A’ =d —[2] +k, rank B =d —[Tt] + k;

(i) a;H'al = 0(1 <4, j <d), where a; = (ajy, .., @y Yigs 305 ) (1< @< d), and H' defined in Theorem
5 and A" = (aj;)axny, B' = (bi)axn,-

Acknowledgments

The author would like to thank the referees for valuable comments. This work was supported by the National
Natural Science Foundation of China (11171152/A010602), Natural Science Foundation of Jiangsu Province
of China (BK 2010489) and the Outstanding Plan-Zijin Star Foundation of Nanjing University of Science and
Technology (AB 41366).

References

[1] Coddington, E. A.: The spectral representation of ordinary self-adjoint differential operators. Ann. Math. 60,
192-211 (1954).

[2] Dunford, N., Schwartz, J. T.: Linear operators II. New York, Wiley 1963.

[3] Everitt, W. N., Markus, L.: Boundary value problem and symplectic algebra for ordinary differential and quasi-
differential operators. Math. Surveys and Monographs 61, Amer. Math. Soc. 1999.

[4] Everitt, W. N., Markus, L.: Complex symplectic geometry with applications to ordinary differential operators.
Trans. Amer. Math. Soc. 351, 49054945 (1999).

[5] Everitt, W. N., Markus, L.: Complex symplectic spaces and boundary value problems. Bulletin Amer. Math.
Soc. (New Series) 42, 461-500 (2005).

[6] Fu, S. Z.: On the self-adjoint extensions of symmetric ordinary differential operators in direct sum spaces. J.
Diff. Equa. 100, 269-291 (1992).

[7] Hao, X. L, Sun, J., Wang, A. P., Zettl, A.: Characterization of domains of self-adjoint ordinary differential
operators II. Results in Mathematics, Springer Basel AG, 2011. See also DOI 10.1007/s00025-011-0096-y.

[8] Moller, M., Zettl, A.: Symmetric differential operators and their Friedrichs extension. J. Differential Equations
115, 50-69 (1995).

[9] Naimark, M. A.: Linear differential operators II. London Harrap 1968.

[10] Shang, Z. J., Zhu, R. Y.: The domains of self-adjoint extensions of ordinary symmetric differential operator over
(—00,00). Acta Sci. Natur. Univ. NeiMongGol 17, 17-28 (1986) (In Chinese).

[11] Sun, J.: On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices.
Acta Math. Sinica 2, 152-167 (1986).

[12] Sun, J., Wang, W. Y., Zheng, Z. M.: Complex sympletic geometric characterization of self-adjoint domains of
singular differential operators. J. Spectral Math. Appl. 2006.

[13] Wang, A., Sun, J., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators. J.
Differential Equations 246, 1600-1622 (2009).

631



632

YANG/Turk J Math

[14] Wang, W. Y., Sun, J.: Complex J-symplectic geometry characterization for J-symmectric extensions of J-
symmectric differential operators. Beijing: Adv. in Math. 32, 481-484 (2003).

[15] Wei, G. S., Xu, Z. B., Sun, J.: Self-adjoint domains of products of differential expressions. J. Diff. Equa. 174,
75-90 (2001).

[16] Weidmann, J.: Spectral theory of ordinary differential operators. Lecture Notes in Math. 1258, Berlin/New York,
Springer-Verlag 1987.

[17] Zhang, H. K.: On self-adjointness of the product of two limit-circle differential operators in vector-function
spaces. Acta Scientiarum Naturalium Universitatis NeiMongol 28, 585-591 (1997) (In Chinese).



