Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $617-632$
(C) TÜBİTAK
doi:10.3906/mat-1103-25

Complex symplectic geometry with applications to vector differential operators

Chuan-Fu YANG*
Department of Applied Mathematics, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, P. R. China

Received: 12.03.2011 • Accepted: 05.07.2012 • Published Online: 12.06.2013 • Printed: 08.07 .2013

Abstract

Let $l(y)$ be a formally self-adjoint vector-valued differential expression of order n on an interval $(a, \infty)(-\infty \leq$ $a<\infty)$ with complex matrix-valued function coefficients and finite equal deficiency indices. In this paper, applying complex symplectic algebra, we give a reformulation for self-adjoint domains of the minimal operator associated with $l(y)$ and classify them.

Key words: Symplectic algebra, Lagrangian subspace, vector-valued differential operator, self-adjoint domains

1. Introduction

Let $l(y)$ be a formally self-adjoint vector-valued differential expression of order n on an interval $I=(a, \infty)(-\infty \leq$ $a<\infty)$ with complex matrix-valued coefficients and finite equal deficiency indices. It is well known from the general operator theory that the minimal operator associated with $l(y)$ can be extended to a self-adjoint operator in a Hilbert space. The study of boundary value problems involving linear differential equations is becoming a well-established area of analysis. Applying the extension theory of symmetric operators to concrete differential operators, a general characterization of self-adjoint extensions of symmetric differential operators is established. For details of some of this work we refer to [1]-[17], etc.

Recently, in [13] Wang, Sun and Zettl give a representation of self-adjoint conditions in terms of certain solutions for real parameter, which leads to a classification of solutions as limit-point or limit-circle in analogy with the celebrated Weyl classification in the second-order case. In [7] Hao, Sun, Wang and Zettl, applying results from [13], characterize self-adjoint domains of general even order linear ordinary differential operators in terms of real-parameter solutions of the differential equation, which is a follow up of [13].

In $[3,4,5]$, the complex symplecto-algebraic complete characterizations of self-adjoint extensions of symmetric operators are given. This paper presents a generalization to the case of vector-valued functions of the approach presented in [4]. This approach is based on the following idea. Let $l(y)$ be some ordinary formally self-adjoint differential operator considered in Hilbert space $L^{2}(I)$ on some interval I. We can define in the standard way the minimal and maximal operators T_{0} and T_{1} associated to $l(y)$, with domains denoted by $D\left(T_{0}\right), D\left(T_{1}\right)$. On the domain $D\left(T_{1}\right)$ we introduce skew-Hermitian form $[y: z]=\left(T_{1} y, z\right)-\left(y, T_{1} z\right)$, where (\cdot, \cdot) denotes the scalar product in $L^{2}(I)$. This form generates sympletic structure on the space $S=D\left(T_{1}\right) / D\left(T_{0}\right)$ and there is one-to-one correspondence between complete (maximal) Lagrangian space L in S and self-adjoint

[^0]extensions T of T_{0}. In this way study of self-adjoint extensions is reduced to study of Lagrangian subspace in the space S and one can try to find the relations between the geometric and algebra properties of L as subspace in S, and the structure of boundary conditions that define the self-adjoint extension T corresponding to L. Applying complex symplectic algebra, we present complete characterizations and classifications for self-adjoint domains associated with $l(y)$.

The layout of this paper is as follows. In Section 1 we summarize the results of symplectic algebra and vector-valued differential operators. In Section 2 complex symplecto-algebraic characterizations of self-adjoint boundary conditions of vector-valued differential operator are given at the case with a finite regular endpoint. Section 3 presents some results at the case with two singular endpoints.

2. Preliminaries

Definition 1 (Definition 1.1 of [4]) A complex symplectic space S is a complex linear space with a prescribed symplectic form $[\cdot: \cdot]$, namely a sesquilinear form
(i) $u, v \rightarrow[u: v], S \times S \rightarrow \mathbb{C}$, so for all vectors $u, v, \omega \in S$ and complex scalars $c_{1}, c_{2} \in \mathbb{C},\left[c_{1} u+c_{2} v\right.$: $\omega]=c_{1}[u: \omega]+c_{2}[v: \omega]$, which is skew-Hermitian;
(ii) $[u: v]=-\overline{[v: u]}$, so for all vectors $u, v, \omega \in S$ and complex scalars $c_{1}, c_{2} \in \mathbb{C},\left[u: c_{1} v+c_{2} \omega\right]=$ $\overline{c_{1}}[u: v]+\overline{c_{2}}[u: \omega]$, and which is also non-degenerate;
(iii) $[u: S]=0$ implies $u=0$, for all $u \in S$.

Definition 2 (Definition 1.2 of [4]) A linear subspace L in the complex symplectic space S is called Lagrangian in case $[L: L]=0$, that is, for all $u, v \in L,[u: v]=0$.

Definition 3 (Definition 1.2 of [4]) A Lagrangian space $L \subset S$ is complete in case $u \in S$ and $[u: L]=0$ imply $u \in L$.

Definition 4 (Definition 2.2 of [4]) Let S be a complex symplectic space with symplectic form $[\cdot: \cdot]$. Then linear subspace S_{+}and S_{-}are symplectic ortho-complements in S, written as

$$
S=S_{+} \oplus S_{-}
$$

in case
(i) $S=\operatorname{span}\left\{S_{+}, S_{-}\right\}$;
(ii) $\left[S_{-}: S_{+}\right]=0$.

Consider the formally self-adjoint vector-valued differential expression introduced by J. Weidmann [16]:

$$
\begin{align*}
l[y](x)= & r(x)^{-1}\left\{\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k}\left(p_{k}(x) y^{(k)}(x)\right)^{(k)}\right. \\
& \left.+\sum_{k=0}^{\left[\frac{n-1}{2}\right]}(-1)^{k}\left[\left(q_{k}(x) y^{(k)}(x)\right)^{(k+1)}-\left(q_{k}(x)^{*} y^{(k+1)}(x)\right)^{(k)}\right]\right\} \tag{1.1}
\end{align*}
$$

where $y(x)=\left(y_{1}(x), \ldots, y_{m}(x)\right)^{t}$ is defined in the interval $I=(a, \infty),-\infty \leq a<\infty ;[\alpha]$ denotes the greatest integer not greater than α. The $m \times m$ matrix-valued functions $r(x), p_{j}(x)\left(j=0,1, \ldots,\left[\frac{n}{2}\right]\right)$ and
$q_{j}(x)\left(j=0,1, \ldots,\left[\frac{n-1}{2}\right]\right)$ satisfy
(i) $r(x), p_{j}(x)$ and $q_{j}(x)$ are measurable over I;
(ii) $r(x)$ is a positive, definite matrix and $p_{j}(x)$ are Hermitian; and $p_{k}^{-1} \in A C_{\text {loc }}(I)$ if $n=2 k ; q_{k},\left(q_{k}-q_{k}^{*}\right)^{-1} \in$ $A C_{\text {loc }}(I)$ if $n=2 k+1$;
(iii) $p_{k}^{-1}, p_{k}^{-1} q_{k-1}, p_{k-1}-q_{k-1}^{*} p_{k}^{-1} q_{k-1}, p_{j}(j=0,1, \ldots, k-2), q_{j}(j=0,1, \ldots, k-2)$ and r are absolutely Lebesgue integrable on all compact subset of I if $n=2 k ;\left(q_{k}-q_{k}^{*}\right)^{-1},\left(q_{k}-q_{k}^{*}\right)^{-1}\left(p_{k}+q_{k}^{\prime}\right),\left(q_{k}-q_{k}^{*}\right)^{-1} q_{k-1}, p_{j}(j=$ $0,1, \ldots, k-1), q_{j}(j=0,1, \ldots, k-1)$ and r are absolutely Lebesgue integrable on all compact subsets of I if $n=2 k+1$.

Thus n is the order of $l(y)$. Define the quasi-derivatives $y^{[r]}(r=0,1, \ldots, n)$ as in pages 26-30 of [16], then the differential expression (1.1) can be rewritten as

$$
l[y](x)=r(x)^{-1} y^{[n]}(x)
$$

In the complex vector space $\mathbb{C}^{m}=\left\{\alpha: \alpha=\left(c_{1}, \ldots, c_{m}\right)^{t}, c_{i}(i=1,2, \ldots, m) \in \mathbb{C}\right\}$, define inner product

$$
(\xi, \eta)=\sum_{i=1}^{m} \xi_{i} \bar{\eta}_{i}, \xi=\left(\xi_{1}, \ldots, \xi_{m}\right)^{t}, \eta=\left(\eta_{1}, \ldots, \eta_{m}\right)^{t}
$$

A Hilbert space

$$
H=\left\{f: I \rightarrow \mathbb{C}^{m}, f \text { measurable } \mid \int_{I}(r(x) f(x), f(x)) d x<\infty\right\}
$$

with inner product

$$
\langle y, z\rangle=\int_{I}(r(x) y(x), z(x)) d x, \text { for all } y, z \in H
$$

denoting Hilbert space H as $L_{r}^{2}(I)$.
For the differential expression $l(y)$ defined as above, its maximal operator $T_{1}: T_{1} y=l(y)$ on

$$
\begin{equation*}
\mathcal{D}\left(T_{1}\right)=\left\{y: I \rightarrow \mathbb{C}^{m}, y^{[k]} \in A C_{\mathrm{loc}}(I)(k=0,1, \ldots, n-1), y \text { and } l(y) \in L_{r}^{2}(I)\right\} \tag{1.2}
\end{equation*}
$$

where $A C_{\text {loc }}(I)$ denotes a set of complex-vector valued functions which are absolutely continuous on all compact subintervals of I and its minimal operator T_{0} :

$$
\begin{equation*}
T_{0} y=l(y) \text { on } \mathcal{D}\left(T_{0}\right)=\left\{y \in D\left(T_{1}\right) \mid\left[y: \mathcal{D}\left(T_{1}\right)\right]=0\right\} \tag{1.3}
\end{equation*}
$$

Here, the skew-Hermitian form [•: •] on $\mathcal{D}\left(T_{1}\right)$ is given by

$$
\begin{equation*}
[y: z]=\left\langle T_{1} y, z\right\rangle-\left\langle y, T_{1} z\right\rangle, \text { for } y, z \in \mathcal{D}\left(T_{1}\right) \tag{1.4}
\end{equation*}
$$

where $[y: z]=\left\langle T_{1} y, z\right\rangle-\left\langle y, T_{1} z\right\rangle$ is the Lagrange bilinear form associated with $l(y)$.
It is known from Theorem 3.1 of [16] that $T_{0} \subset T_{1}$ on $\mathcal{D}\left(T_{0}\right) \subset \mathcal{D}\left(T_{1}\right) \subset L_{r}^{2}(I)$ satisfy
(i) $\mathcal{D}\left(T_{0}\right)$ is dense in $L_{r}^{2}(I)$, so also $\mathcal{D}\left(T_{1}\right)$ is dense in $L_{r}^{2}(I)$;
(ii) adjoints $T_{0}^{*}=T_{1}$ and $T_{1}^{*}=T_{0}$,
so both T_{0} and T_{1} are closed operators, T_{0} is symmetric.

For any $[c, d] \subset I, y, z \in \mathcal{D}\left(T_{1}\right)$, we have Green's formula (see pages $35-40$ in [16] or see equations (1.3) and (1.4) in [17]),

$$
\begin{equation*}
\int_{c}^{d}\{(r(x) l y(x), z(x))-(r(x) y(x), l z(x))\} d x=[y, z]_{n}(d)-[y, z]_{n}(c) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{gather*}
{[y, z]_{n}(x)=R_{n}(y)(x) A R_{n}^{*}(z)(x), \quad[y, z]_{n}(\infty)=\lim _{x \rightarrow \infty}[y, z]_{n}(x) \text { exists, }} \tag{1.6}\\
R_{n}(y)(x)=\left(y^{[0]}(x)^{t}, y^{[1]}(x)^{t}, \ldots, y^{[n-1]}(x)^{t}\right), \quad x \in I . \tag{1.7}
\end{gather*}
$$

Here, t denotes the transpose of matrix and

$$
A(x)=\left\{\begin{array}{cccccc}
0 & \cdots & 0 & 0 & \cdots & E_{m} \tag{1.8}\\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & E_{m} & \cdots & 0 \\
0 & \cdots & -E_{m} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
-E_{m} & \cdots & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where E_{m} denotes the identity matrix of size m.
Hereafter, $[\cdot, \cdot]_{n}(x)$ is called the Lagrange bi-linear form corresponding to $l(y)$ on I.
Since $l(y)$ is a formally self-adjoint differential expression on I, we easily get from (1.1) and (1.8) that

$$
\begin{equation*}
A^{*}=-A, \quad \operatorname{rank} A=n m \tag{1.9}
\end{equation*}
$$

In order to describe the self-adjoint boundary conditions of differential operator we introduce the deficiency indices of T_{0} : these are the integers

$$
d_{ \pm}=\operatorname{dim}\left(\operatorname{ker}\left(T_{1} \mp i\right)\right)
$$

In this paper, we assume $l(y)$ is a regular, formally self-adjoint differential expression with finite, equal deficiency indices (d, d). Obviously,

$$
0 \leq d \leq n m
$$

Define an endpoint space \mathbf{S}, for $l(y)$ on I, as the quotient or identification vector space

$$
\begin{equation*}
\mathbf{S}=\mathcal{D}\left(T_{1}\right) / \mathcal{D}\left(T_{0}\right) \tag{1.10}
\end{equation*}
$$

so there is a natural projection map

$$
\psi: \mathcal{D}\left(T_{1}\right) \rightarrow \mathbf{S}, f \mapsto \mathbf{f}=\left\{f+\mathcal{D}\left(T_{0}\right)\right\}, \text { for } \mathbf{f} \in S, f \in \mathcal{D}\left(T_{1}\right)
$$

Define the symplectic form [: : •] in \mathbf{S}, for $\mathbf{f}=\left\{f+\mathcal{D}\left(T_{0}\right)\right\}$ and $\mathbf{g}=\left\{g+\mathcal{D}\left(T_{0}\right)\right\}$,

$$
\begin{equation*}
[\mathbf{f}: \mathbf{g}]=[f: g] \tag{1.11}
\end{equation*}
$$

3. The case with a finite regular endpoint

The endpoint a is called regular if, for some $a<c<\infty, p_{k}^{-1}, p_{k}^{-1} q_{k-1}, p_{k-1}-q_{k-1}^{*} p_{k}^{-1} q_{k-1}, p_{j}(j=0,1, \ldots, k-$ 2), $q_{j}(j=0,1, \ldots, k-2)$ and r are Lebesgue integrable on (a, c) when $n=2 k$ or $\left(q_{k}-q_{k}^{*}\right)^{-1},\left(q_{k}-q_{k}^{*}\right)^{-1}\left(p_{k}+\right.$ $\left.q_{k}^{\prime}\right),\left(q_{k}-q_{k}^{*}\right)^{-1} q_{k-1}, p_{j}(j=0,1, \ldots, k-1), q_{j}(j=0,1, \ldots, k-1)$ and r are Lebesgue integrable on (a, c) when $n=2 k+1$; otherwise a is said to be singular. Without loss of generality we consider the case with a finite regular endpoint a. In this section, we apply the theory of complex symplectic spaces to the boundary value problems of linear vector-valued differential operators with order $n(\geq 1)$ and complex matrix valued coefficients defined on $[a, \infty)(-\infty<a<\infty)$ and equal deficiency indices (d, d) (obviously, $\left.\left[\frac{n m+1}{2}\right] \leq d \leq n m\right)$. This section treats the positioning of a Lagrangian subspace within S, and gives necessary and sufficient conditions for k-grade ($0 \leq k \leq d-\left[\frac{n m+1}{2}\right]$) complete Lagrangian subspaces.

Let

$$
\begin{equation*}
\widetilde{\mathcal{D}}(l)=\mathcal{D}\left(T_{0}\right) \oplus \operatorname{span}\left\{\chi_{11}, \chi_{12}, \ldots, \chi_{m n}\right\}, \tag{2.1}
\end{equation*}
$$

where the symbol \oplus denotes a direct sum and $\operatorname{span}\left\{\chi_{11}, \ldots, \chi_{m n}\right\}$ denotes the linear span of $\chi_{11}, \ldots, \chi_{m n}$ and $\chi_{i j}(i=1, \cdots, m ; j=1, \ldots, n)$ be a set of functions in $\mathcal{D}\left(T_{1}\right)$ which satisfy the following conditions:

$$
\chi_{i j}^{[k-1]}(a)=\left\{\begin{array}{cl}
0_{m \times 1} & \text { for } j \neq k ; \tag{2.2}\\
e_{i} & \text { for } j=k,
\end{array} \quad \chi_{i j}(t)=0 \text { for all } t \geq a+1,\right.
$$

where e_{i} is the i th canonical unit vector in \mathbb{C}^{m} and $0_{m \times 1}=(\overbrace{0, \ldots, 0}^{m})^{t}$. Clearly, $\chi_{i j} \bar{\in} D_{0}(l)$.
For any $\widetilde{z} \in \widetilde{D}(l)$, it is not difficult to see that

$$
\begin{equation*}
[y, \widetilde{z}]_{n}(\infty)=0, \text { for all } y \in D\left(T_{1}\right) \tag{2.3}
\end{equation*}
$$

Let $N=2 d-n m$, then $l(y)=\lambda y(\operatorname{Im} \lambda \neq 0)$ has N linearly independent square integrable solutions on $[a, \infty)$, denoted by $\theta_{1}, \ldots, \theta_{N}$, which satisfy

$$
\operatorname{rank} K=N, \quad \mathcal{D}\left(T_{1}\right)=\widetilde{\mathcal{D}}(l) \oplus \operatorname{span}\left\{\theta_{1}, \ldots, \theta_{N}\right\}
$$

where $K=\left(\left[\theta_{i}, \theta_{j}\right]_{n}(\infty)\right)_{1 \leq i, j \leq N}, K^{*}=-K$ (cf. Lemma 3 of $\left.[15]\right)$.
Since $K^{*}=-K,(i K)^{*}=i K$ (where $i^{2}=-1$), $i K$ is symmetric Hermitian, there exists some complex non-singular matrix T such that

$$
T(i K) T^{*}=\operatorname{diag}\left\{E_{q},-E_{p}\right\}
$$

where $p+q=N, p \geq 0, q \geq 0$. So $T K T^{*}=\operatorname{diag}\left\{-i E_{q}, i E_{p}\right\}$.
Define $\widetilde{\theta_{1}}, \ldots, \widetilde{\theta_{N}}$, such that

$$
\left(\begin{array}{c}
\tilde{\theta_{1}} \\
\vdots \\
\tilde{\theta_{N}}
\end{array}\right)=T\left(\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{N}
\end{array}\right),
$$

obviously, $\widetilde{\theta_{1}}, \ldots, \widetilde{\theta_{N}}$ are N linearly independent square integrable solutions of $l(y)=\lambda y$ on $[a, \infty)$, which satisfy

$$
\left(\left[\widetilde{\theta}_{i}, \widetilde{\theta}_{j}\right]_{n}(\infty)\right)_{1 \leq i, j \leq N}=\operatorname{diag}\left\{-i E_{q}, i E_{p}\right\}, \mathcal{D}\left(T_{1}\right)=\widetilde{\mathcal{D}}(l) \oplus \operatorname{span}\left\{\widetilde{\theta_{1}}, \ldots, \widetilde{\theta_{N}}\right\}
$$

Thus we have
Lemma 1 Let $N=2 d-n m$. Then $l(y)=\lambda y(\operatorname{Im} \lambda \neq 0)$ has N linearly independent square integrable solutions on $[a, \infty)$, denoted by $\theta_{1}, \ldots, \theta_{N}$, which satisfy

$$
\begin{equation*}
J \triangleq\left(\left[\theta_{i}, \theta_{j}\right]_{n}(\infty)\right)_{1 \leq i, j \leq N}=\operatorname{diag}\left\{-i E_{q}, i E_{p}\right\}, \mathcal{D}\left(T_{1}\right)=\widetilde{\mathcal{D}}(l) \oplus \operatorname{span}\left\{\theta_{1}, \ldots, \theta_{N}\right\} \tag{2.4}
\end{equation*}
$$

Obviously, $J^{*}=-J$ and $J=-J^{-1}$.

Lemma 2 The complex vector space

$$
\mathbf{S}=\mathcal{D}\left(T_{1}\right) / \mathcal{D}\left(T_{0}\right)
$$

with the Skew-Hermitian from $[\cdot: \cdot]$, as in (1.11), is a complex symplectic space and $\operatorname{dim} \mathbf{S}=2 d$.
Proof Since the operators T_{1} and T_{0} arise from the differential expression of order $n \geq 1$ on $[a, \infty)$, it follows from the theory of linear ordinary differential equation and von Neumann's formula (Theorem 4.3 of [16]) that \mathbf{S} has a finite dimension, and $\operatorname{dim} \mathbf{S}=2 d$. It is easy to verify by Definition 1 that \mathbf{S} is a complex symplectic space. Thus we have the following lemma.

Lemma 3 Let linear subspace of \mathbf{S}

$$
\begin{gathered}
\mathbf{S}_{-}=\left\{y \in \mathbf{S} \mid\left[y, \theta_{i}\right]_{n}(\infty)=0, i=1,2, \ldots, 2 d-n m\right\}, \\
\mathbf{S}_{+}=\left\{y \in \mathbf{S} \mid y^{[k]}(a)=0, k=0,1, \ldots, n-1\right\},
\end{gathered}
$$

then $\mathbf{S}=\mathbf{S}_{-} \oplus \mathbf{S}_{+}$and $\operatorname{dim} \mathbf{S}_{-}=n m$, $\operatorname{dim} \mathbf{S}_{+}=2 d-n m$.
Proof In fact, the definition of minimal operator (Theorem 3.12 of [16]) implies

$$
\mathcal{D}\left(T_{0}\right)=\left\{f \in \mathcal{D}\left(T_{1}\right) \mid f^{[k]}(a)=0, k=0,1, \ldots, n-1 ;\left[f, \theta_{i}\right]_{n}(\infty)=0,1 \leq i \leq 2 d-n m\right\}
$$

together with the decomposition of maximal operator domains $\mathcal{D}\left(T_{1}\right)$ and Definition 4 , it is easy to see that the results hold.

Applying GKN-Theorem (Corollary 1 of Appendix in [4]) and the balanced intersection principle (Theorem 2.4 in [4]) to the quotient vector space \mathbf{S}, we have this next lemma.

Lemma 4 (GKN-Theorem) (i) There exists a self-adjoint extension T of T_{0} if and only if there exists a complete Lagrangian subspace $\mathbf{L} \subseteq \mathbf{S}$;
(ii) A Lagrangian subspace $\mathbf{L} \subset \mathbf{S}$ is complete if and only if $\operatorname{dim} \mathbf{L}=d$, where (d, d) is the deficiency indices of $l(y)$;
(iii) For each self-adjoint operator T on domains $\mathcal{D}(T) \subset L_{r}^{2}(I)$, which is an extension of T_{0} on $\mathcal{D}\left(T_{0}\right)$, the corresponding complete Lagrangian subspace \mathbf{L} is defined by

$$
\mathbf{L}=\mathcal{D}(T) / \mathcal{D}\left(T_{0}\right)
$$

so $\mathcal{D}(T)=c_{1} f_{1}+\cdots+c_{d} f_{d}+\mathcal{D}\left(T_{0}\right)$. Here $\left\{f_{1}, \ldots, f_{d}\right\}$ is any basis of \mathbf{L}, with any corresponding representative functions $f_{1}, \ldots, f_{d} \in \mathcal{D}\left(T_{1}\right)$, and c_{1}, \ldots, c_{d} are arbitrary complex numbers.

Lemma 5 (Balanced intersection principle) For each complete Lagrangian space \mathbf{L} in \mathbf{S}, then

$$
0 \leq d-\left[\frac{n m+1}{2}\right]-\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{+}=\left[\frac{n m}{2}\right]-\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{-} \leq d-\left[\frac{n m+1}{2}\right]
$$

Definition 5 For each complete Lagrangian space \mathbf{L} in \mathbf{S}, let

$$
k=d-\left[\frac{n m+1}{2}\right]-\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{+}=\left[\frac{n m}{2}\right]-\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{-} .
$$

Then \mathbf{L} is called k-grade, or $\mathcal{D}\left(T_{L}\right)$ is called k-grade.
From Lemma 2, we see that $\operatorname{dim} \mathbf{S}=2 d$, so the complex symplectic space \mathbf{S} is linearly isomorphic to $\mathbb{C}^{2 d}=\left\{\alpha \mid \alpha=\left(c_{1}, c_{2}, \ldots, c_{2 d}\right)^{t}, c_{i} \in \mathbb{C}, i=1,2, \ldots, 2 d\right\}$. We can use the customary unit basis vectors in $\mathbb{C}^{2 d}$,

$$
\begin{aligned}
& e^{1}=(1,0, \ldots, 0)^{t}, e^{2}=(0,1,0, \ldots, 0)^{t}, \ldots, e^{n m}=(\overbrace{0, \ldots, 0,1}^{n m}, 0, \ldots, 0)^{t}, \\
& f^{1}=(\overbrace{0, \ldots, 0,1}^{n m+1}, 0, \ldots, 0)^{t}, f^{2}=(\overbrace{0, \ldots, 0,1}^{n m+2}, 0, \ldots, 0)^{t}, f^{2 d-n m}=(0, \ldots, 0,1)^{t},
\end{aligned}
$$

so

$$
\mathbf{S}=\operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}, f^{1}, f^{2}, \ldots, f^{2 d-n m}\right\}
$$

Lemma 6 Let the deficiency index of $l(y)$ on $[a, \infty)$, $\operatorname{def}(l)=(d, d)\left(\left[\frac{n m+1}{2}\right] \leq d \leq n m\right), N=2 d-n m$. For all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}^{m}, \beta_{1}, \beta_{2}, \ldots, \beta_{N} \in \mathbb{C}$, there exists $y \in \mathcal{D}\left(T_{1}\right)$, such that

$$
\begin{equation*}
y^{[i-1]}(a)=\alpha_{i}(i=1,2, \ldots, n) ;\left[y, \theta_{k}\right]_{n}(\infty)=\beta_{k}(k=1,2, \ldots, N), \tag{2.5}
\end{equation*}
$$

where $\theta_{k}(k=1,2, \ldots, N)$ defined in Lemma 1.
Proof By Lemma 1 and (2.1), for all $y \in \mathcal{D}\left(T_{1}\right)$, there exist $d_{i j} \in \mathbb{C}(1 \leq i \leq m ; 1 \leq j \leq n)$ and $c_{k}(1 \leq k \leq N) \in \mathbb{C}$, such that

$$
y=y_{0}+\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} \chi_{i j}+\sum_{k=1}^{N} c_{k} \theta_{k},
$$

where $y_{0} \in \mathcal{D}\left(T_{0}\right), \chi_{i j}$ defined in (2.2). Choose

$$
\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{N}
\end{array}\right)=-J^{t}\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{N}
\end{array}\right),\left(\begin{array}{c}
d_{11} \\
\vdots \\
d_{m 1} \\
\vdots \\
d_{1 n} \\
\vdots \\
d_{m n}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1}^{t} \\
\vdots \\
\alpha_{n}^{t}
\end{array}\right)+\Phi(a) J^{t}\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{N}
\end{array}\right)
$$

where J is defined in Lemma 1 and

$$
\Phi(a)=\left(\begin{array}{cccc}
\theta_{1}^{[0]}(a)^{t} & \theta_{2}^{[0]}(a)^{t} & \ldots & \theta_{N}^{[0]}(a)^{t} \\
\theta_{1}^{[1]}(a)^{t} & \theta_{2}^{[1]}(a)^{t} & \ldots & \theta_{N}^{[1]}(a)^{t} \\
\vdots & \vdots & \ddots & \vdots \\
\theta_{1}^{[n-1]}(a)^{t} & \theta_{2}^{[n-1]}(a)^{t} & \ldots & \theta_{N}^{[n-1]}(a)^{t}
\end{array}\right)
$$

Therefore $y \in \mathcal{D}\left(T_{1}\right)$, the fact that $\chi_{i j}$ satisfy (2.2) and a direct computation imply that y satisfies (2.5). This completes the proof of this Lemma.

From Lemma 6 we can introduce corresponding coordinates in \mathbf{S} by the convenient choice

$$
\begin{align*}
\mathbf{f} & =\left(f(a)^{t}, f^{[1]}(a)^{t}, \ldots, f^{[n-1]}(a)^{t},\left[f, \theta_{1}\right]_{n}(\infty), \ldots,\left[f, \theta_{2 d-n m}\right]_{n}(\infty)\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i}^{[j-1]}(a) e^{i+(j-1) m}+\left[f, \theta_{1}\right]_{n}(\infty) f^{1}+\ldots+\left[f, \theta_{2 d-n m}\right]_{n}(\infty) f^{2 d-n m}, \tag{2.6}
\end{align*}
$$

where $\mathbf{f}=\left\{f+\mathcal{D}\left(T_{0}\right)\right\}$, for $f=\left(f_{1}, \ldots, f_{m}\right)^{t} \in \mathcal{D}\left(T_{1}\right)$.
In terms of these coordinates, the symplectic form [.: •] in \mathbf{S} can be expressed as the following form as Theorem 1.

Theorem 1 For $\mathbf{f}, \mathbf{g} \in \mathbf{S}$, we have $[\mathbf{f}: \mathbf{g}]=\mathbf{f} H \mathbf{g}^{*}$, where \mathbf{f}, \mathbf{g} appearing in the right side of the equation take each corresponding coordinate in \mathbf{S} defined in (2.6),

$$
H=\left(\begin{array}{cc}
-A(a) & 0_{n m \times(2 d-n m)} \\
0_{(2 d-n m) \times n m} & J
\end{array}\right)_{2 d \times 2 d}
$$

and $A(a), J$ defined in (1.8) and (2.4), respectively.
Proof By (1.4), (1.5) and (1.11), we get for $\mathbf{f}, \mathbf{g} \in \mathbf{S}$,

$$
\begin{align*}
{[\mathbf{f}: \mathbf{g}] } & =[f: g]=\left\langle T_{1} f, g\right\rangle-\left\langle f, T_{1} g\right\rangle \tag{2.7}\\
& =\langle l f, g\rangle-\langle f, l g\rangle=[f, g]_{n}(\infty)-[f, g]_{n}(a) .
\end{align*}
$$

From (1.6), we have

$$
\begin{equation*}
[f, g]_{n}(a)=R_{n}(f)(a) A(a) R_{n}^{*}(g)(a) . \tag{2.8}
\end{equation*}
$$

Denotes

$$
r_{n}(f)(\infty)=\left(\left[f, \theta_{1}\right]_{n}(\infty), \ldots,\left[f, \theta_{N}\right]_{n}(\infty)\right.
$$

Now we prove

$$
[f, g]_{n}(\infty)=r_{n}(f)(\infty) J r_{n}^{*}(g)(\infty)
$$

By Lemma 1 , for $f, g \in \mathcal{D}\left(T_{1}\right)$, there exist $\widetilde{f}, \widetilde{g} \in \widetilde{\mathcal{D}}(l)$ and $c_{i}, d_{i}(i=1,2, \ldots, N) \in \mathbb{C}$, such that

$$
\begin{equation*}
f=\tilde{f}+\sum_{i=1}^{N} c_{i} \theta_{i}, g=\widetilde{g}+\sum_{i=1}^{N} d_{i} \theta_{i}, \tag{2.9}
\end{equation*}
$$

together with (2.3), we get

$$
\left[f, \theta_{i}\right]_{n}(\infty)=\left(c_{1}, \ldots, c_{N}\right)\left(\begin{array}{c}
{\left[\theta_{1}, \theta_{i}\right]_{n}(\infty)} \\
\vdots \\
{\left[\theta_{N}, \theta_{i}\right]_{n}(\infty)}
\end{array}\right)(i=1,2, \ldots, N)
$$

which can be written as

$$
r_{n}(f)(\infty)=\left(c_{1}, \ldots, c_{N}\right) J
$$

that is,

$$
\begin{equation*}
\left(c_{1}, \ldots, c_{N}\right)=r_{n}(f)(\infty) J^{-1} \tag{2.10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left(d_{1}, \ldots, d_{N}\right)^{*}=\left(J^{*}\right)^{-1} r_{n}^{*}(g)(\infty)=J r_{n}^{*}(g)(\infty) \tag{2.11}
\end{equation*}
$$

By (2.9), (2.10) and (2.11), we obtain

$$
\begin{align*}
{[f, g]_{n}(\infty) } & =\left(c_{1}, \ldots, c_{N}\right) J\left(d_{1}, \ldots, d_{N}\right)^{*} \tag{2.12}\\
& =r_{n}(f)(\infty) J r_{n}^{*}(g)(\infty) .
\end{align*}
$$

Equations (2.7), (2.8) and (2.12) imply

$$
\begin{aligned}
{[\mathbf{f}: \mathbf{g}] } & =r_{n}(f)(\infty) J r_{n}^{*}(g)(\infty)-R_{n}(f)(a) A(a) R_{n}^{*}(g)(a) \\
& =\left(R_{n}(f)(a), r_{n}(f)(\infty)\right) H\left(R_{n}(g)(a), r_{n}(g)(\infty)\right)^{*} \\
& =f H g^{*}
\end{aligned}
$$

and so the result follows.
By Theorem 1, we can introduce the corresponding symplectic form $[\cdot: \cdot]$ in $\mathbb{C}^{2 d}$ using the skew-Hermitian $2 d \times 2 d$ matrix H (it is easy to verify that H is a skew-Hermitian matrix from (1.9) and Lemma 1), thus the boundary value problem for the differential expression $l(y)$ on $[a, \infty)$ is reduced, via the GKN-Theorem, to the purely algebraic problem of determining all the complete Lagrangian subspaces L in the complex symplectic space $\mathbb{C}^{2 d}$, and a complete Lagrangian subspaces of $\mathbb{C}^{2 d}$ is of S by virtue of the symplectic isomorphism of S with $\mathbb{C}^{2 d}$.

Theorem 2 A complete Lagrangian subspace in S is 0 -grade, or 1 -grade, \ldots, or $\left(d-\left[\frac{n m+1}{2}\right]\right)$-grade.
Proof Lemma 5 and Definition 5 imply Theorem 2.

Theorem 3 For \mathbf{S}_{-}and \mathbf{S}_{+}defined in Lemma 3, we have

$$
\mathbf{S}_{-}=\operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}\right\}, \quad \mathbf{S}_{+}=\operatorname{span}\left\{f^{1}, f^{2}, \ldots, f^{2 d-n m}\right\}
$$

Proof First we prove $\mathbf{S}_{-}=\operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}\right\}$. For $\mathbf{f}=\left\{f+\mathcal{D}\left(T_{0}\right)\right\} \in \mathbf{S}_{-}$, then $f \in \mathcal{D}\left(T_{1}\right)$ and $\left[f, \theta_{i}\right]_{n}(\infty)=0(i=1,2, \ldots, 2 d-n m)$. By (2.6), we have

$$
\mathbf{f}=\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i}^{[j-1]}(a) e^{i+(j-1) m} \in \operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}\right\}
$$

that is,

$$
\begin{equation*}
S_{-} \subset \operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}\right\} \tag{2.13}
\end{equation*}
$$

Conversely, if $\mathbf{f} \in \operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}\right\}$, then $\mathbf{f}=\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i}^{[j-1]}(a) e^{i+(j-1) m}$, which implies $\left[f, \theta_{i}\right]_{n}(\infty)=0(i=1,2, \ldots, 2 d-n m)$, that is, $\mathbf{f} \in \mathbf{S}_{-}$, thus

$$
\begin{equation*}
\operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}\right\} \subset \mathbf{S}_{-} \tag{2.14}
\end{equation*}
$$

Equations (2.13) and (2.14) imply $\mathbf{S}_{-}=\operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{n m}\right\}$.
Similarly, $\mathbf{S}_{+}=\operatorname{span}\left\{f^{1}, f^{2}, \ldots, f^{2 d-n m}\right\}$. Therefore, Theorem 2 holds.

Theorem $4 \mathbf{L}$ is a k-grade $\left(0 \leq k \leq d-\left[\frac{n m+1}{2}\right]\right)$ complete Lagrangian subspace in \mathbf{S} if and only if there exist $a_{i j}, b_{i t} \in \mathbb{C}(i=1,2, \ldots, d ; j=1,2, \ldots, n m ; t=1,2, \ldots, 2 d-n m)$, such that

$$
\begin{align*}
\mathbf{L} & =\operatorname{span}\left\{a_{11} e^{1}+a_{12} e^{2}+\cdots+a_{1, n m} e^{n m}+b_{11} f^{1}+b_{12} f^{2}+\cdots+b_{1,2 d-n m} f^{2 d-n m},\right. \tag{2.15}\\
& \left.\ldots, a_{d 1} e^{1}+a_{d 2} e^{2}+\cdots+a_{d, n m} e^{n m}+b_{d 1} f^{1}+b_{d 2} f^{2}+\cdots+b_{d, 2 d-n m} f^{2 d-n m}\right\},
\end{align*}
$$

and (i) rank $A=\left[\frac{n m+1}{2}\right]+k$, rank $B=d-\left[\frac{n m}{2}\right]+k$, where $A=\left(a_{i j}\right)_{d \times n m}$ and $B=\left(b_{i t}\right)_{d \times(2 d-n m)}$;
(ii) $\alpha_{i} H \alpha_{j}^{*}=0(1 \leq i, j \leq d)$, where $\alpha_{i}=\left(a_{i 1}, \ldots, a_{i, n m}, b_{i 1}, b_{i 2}, \ldots, b_{i, 2 d-n m}\right)$ and H defined in Theorem 1.

Proof (Necessity) For all $\mathbf{f}, \mathbf{g} \in \mathbf{L}$, there exist $s_{1 i}, s_{2 i}(i=1,2, \ldots, d) \in \mathbb{C}$, such that

$$
\begin{align*}
\mathbf{f}= & \sum_{i=1}^{d} s_{1 i}\left(a_{i 1} e^{1}+\cdots+a_{i, n m} e^{n m}+b_{i 1} f^{1}+\cdots+b_{i, 2 d-n m} f^{2 d-n m}\right) \\
= & \left(\sum_{i=1}^{d} s_{1 i} a_{i 1}\right) e^{1}+\cdots+\left(\sum_{i=1}^{d} s_{1 i} a_{i, n m}\right) e^{n m}+\left(\sum_{i=1}^{d} s_{1 i} b_{i 1}\right) f^{1}+\cdots \tag{2.16}\\
& +\left(\sum_{i=1}^{d} s_{1 i} b_{i, 2 d-n m}\right) f^{2 d-n m},
\end{align*}
$$

and

$$
\begin{align*}
\mathbf{g} & =\left(\sum_{i=1}^{d} s_{2 i} a_{i 1}\right) e^{1}+\cdots+\left(\sum_{i=1}^{d} s_{2 i} a_{i, n m}\right) e^{n m}+\left(\sum_{i=1}^{d} s_{2 i} b_{i 1}\right) f^{1}+\cdots \tag{2.17}\\
& +\left(\sum_{i=1}^{d} s_{2 i} b_{i, 2 d-n m}\right) f^{2 d-n m} .
\end{align*}
$$

By Theorem 1 and (ii), we obtain

$$
\begin{align*}
{[\mathbf{f}: \mathbf{g}]=} & \left(\sum_{i=1}^{d} s_{1 i} a_{i, 1}, \ldots, \sum_{i=1}^{d} s_{1 i} a_{i, n m}, \sum_{i=1}^{d} s_{1 i} b_{i 1}, \ldots, \sum_{i=1}^{d} s_{1 i} b_{i, 2 d-n m}\right) H \\
& \left(\sum_{i=1}^{d} s_{2 i} a_{i 1}, \ldots, \sum_{i=1}^{d} s_{2 i} a_{i, n m}, \sum_{i=1}^{d} s_{2 i} b_{i 1}, \ldots, \sum_{i=1}^{d} s_{2 i} b_{i, 2 d-n m}\right)^{*} \tag{2.18}\\
= & \left(s_{11}, \ldots, s_{1 d}\right)(A \mid B) H\binom{A^{*}}{B^{*}}\left(s_{21}, \ldots, s_{2 d}\right)^{*}=0,
\end{align*}
$$

which implies $[\mathbf{L}: \mathbf{L}]=0$, that is, \mathbf{L} is a Lagrangian subspace in \mathbf{S}.
With the theory of matrices and (i), there exist matrices $\widetilde{A}_{\left(\left[\frac{n m}{2}\right]-k\right) \times n m}$,
$\widetilde{B}_{\left(d-\left[\frac{n m+1}{2}\right]-k\right) \times(2 d-n m)}, C_{\left(2 k+\left[\frac{n m+1}{2}\right]-\left[\frac{n m}{2}\right]\right) \times n m}, D_{\left(2 k+\left[\frac{n m+1}{2}\right]-\left[\frac{n m}{2}\right]\right) \times(2 d-n m)}$ satisfying $\operatorname{rank} \widetilde{A}=\left[\frac{n m}{2}\right]-k, \operatorname{rank} \widetilde{B}=d-\left[\frac{n m+1}{2}\right]-k, \operatorname{rank} C=\operatorname{rank} D=2 k+\left[\frac{n m+1}{2}\right]-\left[\frac{n m}{2}\right], \operatorname{rank}\binom{\widetilde{A}}{C}=\left[\frac{n m+1}{2}\right]+k$, $\operatorname{rank}\binom{D}{\widetilde{B}}=d-\left[\frac{n m}{2}\right]+k$, such that $(A \mid B)$ is equivalent to

$$
\left(\begin{array}{ll}
\widetilde{A}_{\left(\left[\frac{n m}{2}\right]-k\right) \times n m} & 0_{\left(\left[\frac{n m}{2}\right]-k\right) \times(2 d-n m)} \tag{2.19}\\
C_{\left(2 k+\left[\frac{n m+1}{2}\right]-\left[\frac{n m}{2}\right]\right) \times n m} & D_{\left(2 k+\left[\frac{n m+1}{2}\right]-\left[\frac{n m}{2}\right]\right) \times(2 d-n m)} \\
0_{\left(d-\left[\frac{n m+1}{2}\right]-k\right) \times n m} & \widetilde{B}_{\left(d-\left[\frac{n m+1}{2}\right]-k\right) \times(2 d-n m)}
\end{array}\right)
$$

From (2.19), we see that $\operatorname{rank}(A \mid B)=d$ which implies $\operatorname{dim} \mathbf{L}=d$, thus by Lemma 4 , we see that \mathbf{L} is a complete Lagrangian subspace in \mathbf{S}. Next we give the fact that \mathbf{L} is k-grade.

By (2.15) and (2.19), we see that there only exist $\left[\frac{n m}{2}\right]-k$ linearly independent vectors $f_{r}\left(1 \leq r \leq\left[\frac{n m}{2}\right]-\right.$ $k)$ in \mathbf{L} such that $\left[f_{r}, \theta_{i}\right]_{n}(\infty)=0\left(1 \leq r \leq\left[\frac{n m}{2}\right]-k ; i=1,2, \ldots, 2 d-n m\right)$, that is, $f_{r}\left(1 \leq r \leq\left[\frac{n m}{2}\right]-k\right) \in \mathbf{S}_{-}$, which implies

$$
\begin{equation*}
\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{-}=\left[\frac{n m}{2}\right]-k \tag{2.20}
\end{equation*}
$$

Similarly, there only exist $d-\left[\frac{n m+1}{2}\right]-k$ linearly independent vectors $g_{s}\left(1 \leq s \leq d-\left[\frac{n m+1}{2}\right]-k\right)$ in \mathbf{L} such that $g_{s}^{[i]}(a)=0\left(1 \leq s \leq d-\left[\frac{n m+1}{2}\right]-k ; i=0,1,2, \ldots, n-1\right)$, that is, $g_{s}\left(1 \leq s \leq d-\left[\frac{n m+1}{2}\right]-k\right) \in \mathbf{S}_{+}$, which implies

$$
\begin{equation*}
\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{+}=d-\left[\frac{n m+1}{2}\right]-k \tag{2.21}
\end{equation*}
$$

Together with Definition 5, (2.20) and (2.21), we obtain

$$
k=d-\left[\frac{n m+1}{2}\right]-\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{+}=\left[\frac{n m}{2}\right]-\operatorname{dim} \mathbf{L} \cap \mathbf{S}_{-},
$$

thus \mathbf{L} is k-grade.
(Sufficiency) Since \mathbf{L} is a k-grade complete Lagrangian subspace in \mathbf{S},

$$
\begin{equation*}
\operatorname{dim} \mathbf{L}=d, \operatorname{dim} \mathbf{L} \cap \mathbf{S}_{-}=\left[\frac{n m}{2}\right]-k, \operatorname{dim} \mathbf{L} \cap \mathbf{S}_{+}=d-\left[\frac{n m+1}{2}\right]-k \text { and }[\mathbf{L}: \mathbf{L}]=0 \tag{2.22}
\end{equation*}
$$

Since $\mathbf{S}=\operatorname{span}\left\{e^{1}, \ldots, e^{n m}, f^{1}, \ldots, f^{2 d-n m}\right\}$ and $\operatorname{dim} \mathbf{L}=d$, there exist $a_{i j}, b_{i t} \in \mathbb{C}(i=1,2, \ldots, d ; j=$ $1,2, \ldots, n m ; t=1,2, \ldots, 2 d-n m$), such that

$$
\begin{align*}
\mathbf{L} & =\operatorname{span}\left\{a_{11} e^{1}+a_{12} e^{2}+\cdots+a_{1, n m} e^{n m}+b_{11} f^{1}+b_{12} f^{2}+\cdots+b_{1,2 d-n m} f^{2 d-n m}\right. \tag{2.23}\\
& \left.\ldots, a_{d 1} e^{1}+a_{d 2} e^{2}+\cdots+a_{d, n m} e^{n m}+b_{d 1} f^{1}+b_{d 2} f^{2}+\cdots+b_{d, 2 d-n m} f^{2 d-n m}\right\}
\end{align*}
$$

by (2.23) and $[\mathbf{L}: \mathbf{L}]=0$, it is verified that (ii) is true.
By (2.22) and (2.23), we see that (i) is true. This completes the proof.

Corollary $1 \mathbf{L}$ is a k-grade $\left(0 \leq k \leq d-\left[\frac{n m+1}{2}\right]\right)$ complete Lagrangian subspace in S if and only if there exist $a_{i j}, b_{i t} \in \mathbb{C}(i=1,2, \ldots, d ; j=1,2, \ldots, n m ; t=1,2, \ldots, 2 d-n m)$, such that

$$
\begin{aligned}
\mathbf{L} \quad & =\left\{\mathbf{f} \in \mathbf{S} \mid \exists s_{i}(i=1,2, \ldots, d) \in \mathbb{C},\left(f(a)^{t}, f^{[1]}(a)^{t}, \ldots, f^{[n-1]}(a)^{t}\right)^{t}=\right. \\
& \left.A^{t}\left(s_{1}, s_{2}, \ldots, s_{d}\right)^{t},\left(\left[f, \theta_{1}\right]_{n}(\infty), \ldots,\left[f, \theta_{2 d-n m}\right]_{n}(\infty)\right)^{t}=B^{t}\left(s_{1}, \ldots, s_{d}\right)^{t}\right\}
\end{aligned}
$$

and (i) rank $A=\left[\frac{n m+1}{2}\right]+k$, rank $B=d-\left[\frac{n m}{2}\right]+k$, where $A=\left(a_{i j}\right)_{d \times n m}$ and $B=\left(b_{i t}\right)_{d \times(2 d-n m)}$;
(ii) $\alpha_{i} H \alpha_{j}^{*}=0(1 \leq i, j \leq d)$, where $\alpha_{i}=\left(a_{i 1}, \ldots, a_{i, n m}, b_{i 1}, b_{i 2}, \ldots, b_{i, 2 d-n m}\right)$ and H defined in Theorem 1.

Proof (Sufficiency) For all $\mathbf{f} \in \mathbf{L}$, by Theorem 4 , there exist $s_{i}(i=1,2, \ldots, d) \in \mathbb{C}$, such that

$$
\begin{align*}
\mathbf{f}= & \sum_{i=1}^{d} s_{i}\left(a_{i 1} e^{1}+\cdots+a_{i, n m} e^{n m}+b_{i 1} f^{1}+\cdots+b_{i, 2 d-n m} f^{2 d-n m}\right) \\
= & \left(\sum_{i=1}^{d} s_{i} a_{i 1}\right) e^{1}+\cdots+\left(\sum_{i=1}^{d} s_{i} a_{i, n m}\right) e^{n m}+\left(\sum_{i=1}^{d} s_{i} b_{i 1}\right) f^{1}+\cdots \tag{2.24}\\
& +\left(\sum_{i=1}^{d} s_{i} b_{i, 2 d-n m}\right) f^{2 d-n m} .
\end{align*}
$$

By (2.6), we obtain

$$
\begin{gather*}
\sum_{i=1}^{d} s_{i} a_{i 1}=f_{1}(a), \ldots, \sum_{i=1}^{d} s_{i} a_{i, m}=f_{m}(a), \ldots, \\
\sum_{i=1}^{d} s_{i} a_{i, n m-m+1}=f_{1}^{[n-1]}(a), \ldots, \sum_{i=1}^{d} s_{i} a_{i, n m}=f_{m}^{[n-1]}(a) \tag{2.25}\\
\sum_{i=1}^{d} s_{i} b_{i 1}=\left[f, \theta_{1}\right]_{n}(\infty), \ldots, \sum_{i=1}^{d} s_{i} b_{i, 2 d-n m}=\left[f, \theta_{2 d-n m}\right]_{n}(\infty),
\end{gather*}
$$

that is,

$$
\begin{align*}
& \left(f(a)^{t}, f^{[1]}(a)^{t}, \ldots, f^{[n-1]}(a)^{t}\right)^{t}=A^{t}\left(s_{1}, s_{2}, \ldots, s_{d}\right)^{t} \\
& \left(\left[f, \theta_{1}\right]_{n}(\infty), \ldots,\left[f, \theta_{2 d-n m}\right]_{n}(\infty)\right)^{t}=B^{t}\left(s_{1}, \ldots, s_{d}\right)^{t} . \tag{2.26}
\end{align*}
$$

Obviously, (i) and (ii) hold.
(Necessity) For arbitrary $\mathbf{f} \in \mathbf{L}$, equation (2.26) implies that (2.25) holds. By (2.6), we see that (2.24) is true. From Theorem 4, we get that \mathbf{L} is a k-grade complete Lagrangian subspace in \mathbf{S}. This completes the proof of Corollary.

4. The case with two singular endpoints

Theorem 4 can be generalized to the case when $l(y)$ is singular at the endpoint a. For this we need Kodaira's deficiency index formula for vector-valued symmetric differential operators.

Let T_{0} be the minimal operator associated with $l(y)$ and $\mathcal{D}\left(T_{0}\right)$ is the domain of T_{0}. Choose c to be a fixed point between a and ∞, and write T_{0}^{-}and T_{0}^{+}as the minimal operators generated by $l(y)$ in $L_{r}^{2}(a, c]$ and $L_{r}^{2}[c, \infty)$, respectively; $\mathcal{D}\left(T_{0}^{-}\right)$and $\mathcal{D}\left(T_{0}^{+}\right)$are the domains associated with them. We use T_{1}, T_{1}^{-} and T_{1}^{+}to denote the maximal operators generated in $L_{r}^{2}(a, \infty), L_{r}^{2}(a, c]$ and $L_{r}^{2}[c, \infty)$ by $l(y)$, respectively; $\mathcal{D}\left(T_{1}\right), \mathcal{D}\left(T_{1}^{-}\right), \mathcal{D}\left(T_{1}^{+}\right)$are the domains associated with them. Denote the deficiency indices of T_{0}^{-}and T_{0}^{+}as $\left(d_{1}^{+}, d_{1}^{-}\right)$and $\left(d_{2}^{+}, d_{2}^{-}\right)$, respectively, then we see from Theorem 4.3 of [16] that

$$
\begin{equation*}
\left[\frac{n m+1}{2}\right] \leq d_{i}^{+}, d_{i}^{-} \leq n m(i=1,2) \tag{3.1}
\end{equation*}
$$

Letting $\left(d^{+}, d^{-}\right)$be the deficiency index of T_{0}, we have the following Kodaira's formula.
Lemma 7 (Kodaira's formula, Theorem 4.2 of [16])

$$
d^{+}=d_{1}^{+}+d_{2}^{+}-n m, d^{-}=d_{1}^{-}+d_{2}^{-}-n m
$$

According to the definition of deficiency index, equations $l(y)=i y$ and $l(y)=-i y$ have d_{1}^{+}linearly independent solutions $\phi_{1}, \ldots, \phi_{d_{1}^{+}}$in $L_{r}^{2}(a, c]$ and d_{1}^{-}linearly independent solutions $\phi_{d_{1}^{+}+1}, \ldots, \phi_{d_{1}^{+}+d_{1}^{-}}$in $L_{r}^{2}(a, c]$, respectively.

Similarly, equations $l(y)=i y$ and $l(y)=-i y$ have d_{2}^{+}linearly independent solutions $\psi_{1}, \ldots, \psi_{d_{2}^{+}}$in $L_{r}^{2}[c, \infty)$ and d_{2}^{-}linearly independent solutions $\psi_{d_{2}^{+}+1}, \ldots, \psi_{d_{2}^{+}+d_{2}^{-}}$in $L_{r}^{2}[c, \infty)$, respectively.

Denote

$$
\begin{equation*}
N_{1} \triangleq d_{1}^{+}+d_{1}^{-}-n m, \quad N_{2} \triangleq d_{2}^{+}+d_{2}^{-}-n m \tag{3.2}
\end{equation*}
$$

By Lemma 1, there exist $\phi_{i}\left(i=1,2, \ldots, N_{1}\right)$ and $\psi_{i}\left(i=1,2, \ldots, N_{2}\right)$ as above satisfying

$$
\begin{equation*}
\operatorname{rank} J^{-}=N_{1}, \quad \operatorname{rank} J^{+}=N_{2} \tag{3.3}
\end{equation*}
$$

where $J^{-}=\left(\left[\phi_{r}, \phi_{s}\right]_{n}(a)\right)_{1 \leq r, s \leq N_{1}}=\operatorname{diag}\left\{-i E_{q_{1}}, i E_{p_{1}}\right\}\left(p_{1}+q_{1}=N_{1}, p_{1} \geq 0, q_{1} \geq 0\right)$,
$J^{+}=\left(\left[\psi_{r}, \psi_{s}\right]_{n}(\infty)\right)_{1 \leq r, s \leq N_{2}}=\operatorname{diag}\left\{-i E_{q_{2}}, i E_{p_{2}}\right\}\left(p_{2}+q_{2}=N_{2}, p_{2} \geq 0, q_{2} \geq 0\right) \quad$ and $\left(J^{-}\right)^{*}=-J^{-}$, $\left(J^{+}\right)^{*}=-J^{+}$.

Assume $d_{1}^{+}+d_{2}^{+}-n m=d_{1}^{-}+d_{2}^{-}-n m=d$, i.e., $d^{+}=d^{-}=d$, it is well known from the general operator theory that the minimal operator associated with $l(y)$ can be extended to a self-adjoint differential operator in $L_{r}^{2}(a, \infty)$. Similar to the case with a finite regular endpoint a in Section 2, we obtain following results.

Lemma 8 The complex vector space

$$
\mathbf{S}=\mathcal{D}\left(T_{1}\right) / \mathcal{D}\left(T_{0}\right)
$$

with the skew-Hermitian from [•: •], as in (1.11), is a complex symplectic space and dim $\mathbf{S}=2 d$.
Lemma 9 Suppose the linearly subspace of \mathbf{S}

$$
\begin{aligned}
& \mathbf{S}_{-}=\left\{y \in \mathbf{S} \mid\left[y, \psi_{i}\right]_{n}(\infty)=0, i=1,2, \ldots, N_{2}\right\} \\
& \mathbf{S}_{+}=\left\{y \in \mathbf{S} \mid\left[y, \phi_{i}\right]_{n}(a)=0, i=1,2, \ldots, N_{1}\right\}
\end{aligned}
$$

then $\mathbf{S}=\mathbf{S}_{-} \oplus \mathbf{S}_{+}$, and $\operatorname{dim} \mathbf{S}_{-}=N_{1}, \operatorname{dim} \mathbf{S}_{+}=N_{2}$.
Lemma 10 (Balanced intersection principle) For each complete Lagrangian space \mathbf{L} in \mathbf{S}, then

$$
0 \leq\left[\frac{N_{2}}{2}\right]-\operatorname{dim} L \cap S_{+}=\left[\frac{N_{1}}{2}\right]-\operatorname{dim} L \cap S_{-} \leq \min \left\{\left[\frac{N_{2}}{2}\right],\left[\frac{N_{1}}{2}\right]\right\} \triangleq \nu
$$

Lemma 11 Let $\operatorname{def}\left(T_{0}^{-}\right)=\left(d_{1}^{+}, d_{1}^{-}\right)$, $\operatorname{def}\left(T_{0}^{+}\right)=\left(d_{2}^{+}, d_{2}^{-}\right), N_{1}=d_{1}^{+}+d_{1}^{-}-n m, N_{2}=d_{2}^{+}+d_{2}^{-}-n m$. For all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N_{1}}, \beta_{1}, \beta_{2}, \ldots, \beta_{N_{2}} \in \mathbb{C}$, there exists $y \in \mathcal{D}\left(T_{1}\right)$, such that

$$
\begin{equation*}
\left[y, \phi_{r}\right]_{n}(a)=\alpha_{r}\left(r=1,2, \ldots, N_{1}\right),\left[y, \psi_{s}\right]_{n}(\infty)=\beta_{s}\left(s=1,2, \ldots, N_{2}\right) \tag{3.4}
\end{equation*}
$$

where ϕ_{r}, ψ_{s} is defined as above.
Proof By von Neumann's decomposition in [10], for all $y \in \mathcal{D}\left(T_{1}\right), y$ has unique representation

$$
y= \begin{cases}y_{0}+\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} \chi_{i j}+\sum_{k=1}^{N_{1}} c_{k} \phi_{k} & \left(y_{0} \in \mathcal{D}\left(T_{0}^{-}\right), x \in(a, c]\right), \\ y_{0}^{\prime}+\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j}^{\prime} \chi_{i j}^{\prime}+\sum_{k=1}^{N_{2}} c_{s}^{\prime} \Psi_{s} & \left(y_{0}^{\prime} \in \mathcal{D}\left(T_{0}^{+}\right), x \in[c, \infty)\right),\end{cases}
$$

where $\chi_{i j} \in \mathcal{D}\left(T_{1}^{-}\right)$satisfy

$$
\chi_{i j}^{[k-1]}(a)=\left\{\begin{array}{cc}
0_{m \times 1} & \text { for } j \neq k ; \\
e_{i} & \text { for } j=k,
\end{array} \quad \chi_{i j}(t)=0 \text { for all } t \leq a-1(1 \leq i \leq m ; 1 \leq j \leq n)\right.
$$

and $\chi_{i j}^{\prime} \in \mathcal{D}\left(T_{1}^{+}\right)$satisfy

$$
\chi_{i j}^{[k-1]}(a)^{\prime}=\left\{\begin{array}{cc}
0_{m \times 1} & \text { for } j \neq k ; \\
e_{i} & \text { for } j=k,
\end{array} \quad \chi_{i j}(t)=0 \text { for all } t \geq a+1(1 \leq i \leq m ; 1 \leq j \leq n)\right.
$$

and $d_{i j}, d_{i j}^{\prime}, c_{1}, \ldots, c_{N_{1}}, c_{1}^{\prime}, \ldots, c_{N_{2}}^{\prime} \in \mathbb{C}$. Choose

$$
\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{N_{1}}
\end{array}\right)=-\left(J^{-}\right)^{t}\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{N_{1}}
\end{array}\right),\left(\begin{array}{c}
c_{1}^{\prime} \\
\vdots \\
c_{N_{2}}^{\prime}
\end{array}\right)=-\left(J^{+}\right)^{t}\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{N_{2}}
\end{array}\right)
$$

Then $y \in \mathcal{D}\left(T_{1}\right)$, and it is easy to verify that y satisfies (3.4), and so the results follow.
From Lemma 8, we see that $\operatorname{dim} \mathbf{S}=2 d$, so the complex symplectic space \mathbf{S} is linearly isomorphic to $\mathbb{C}^{2 d}$. We can use the customary unit basis vectors in $\mathbb{C}^{2 d}$,

$$
\begin{aligned}
& e^{1}=(1,0, \ldots, 0)^{t}, e^{2}=(0,1,0, \ldots, 0)^{t}, \ldots, e^{N_{1}}=(\overbrace{0, \ldots, 0,1}^{N_{1}}, 0, \ldots, 0)^{t} \\
& f^{1}
\end{aligned}=(\overbrace{0, \ldots, 0,1}^{N_{1}+1}, 0, \ldots, 0)^{t}, f^{2}=(\overbrace{0, \ldots, 0,1}^{N_{1}+2}, 0, \ldots, 0)^{t}, f^{N_{2}}=(0, \ldots, 0,1)^{t}, ~ l
$$

so

$$
\mathbf{S}=\operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{N_{1}}, f^{1}, f^{2}, \ldots, f^{N_{2}}\right\}
$$

From Lemma 2, we can introduce corresponding coordinates in \mathbf{S} by the convenient choice

$$
\begin{align*}
\mathbf{f}= & \left(\left[f, \phi_{1}\right]_{n}(a), \ldots,\left[f, \phi_{N_{1}}\right]_{n}(a),\left[f, \psi_{1}\right]_{n}(\infty), \ldots,\left[f, \psi_{N_{2}}\right]_{n}(\infty)\right) \\
= & {\left[f, \phi_{1}\right]_{n}(a) e^{1}+\cdots+\left[f, \phi_{N_{1}}\right]_{n}(a) e^{N_{1}}+\left[f, \psi_{1}\right]_{n}(\infty) f^{1} } \tag{3.5}\\
& +\left[f, \psi_{N_{2}}\right]_{n}(\infty) f^{N_{2}}
\end{align*}
$$

where $\mathbf{f}=\left\{f+\mathcal{D}\left(T_{0}\right)\right\}$, for $f \in \mathcal{D}\left(T_{1}\right)$.
In terms of these coordinates, the symplectic form $[\cdot: \cdot]$ in \mathbf{S} can be expressed as the following form.

Theorem 5 For $\mathbf{f}, \mathbf{g} \in \mathbf{S}$, we have $[\mathbf{f}: \mathbf{g}]=\mathbf{f} H^{\prime} \mathbf{g}^{*}$, where

$$
H^{\prime}=\left(\begin{array}{cc}
-J^{-} & 0_{N_{1} \times N_{2}} \\
0_{N_{2} \times N_{1}} & J^{+}
\end{array}\right)_{2 d \times 2 d}
$$

J^{-}and J^{+}defined in (3.3).

Theorem 6 A complete Lagrangian subspace in \mathbf{S} is 0-grade, or 1-grade, ..., or ν-grade, where $\nu=\min \left\{\left[\frac{N_{1}}{2}\right],\left[\frac{N_{2}}{2}\right]\right\}$.

Theorem 7 For \mathbf{S}_{-}and \mathbf{S}_{+}defined in Lemma 9, we have

$$
\mathbf{S}_{-}=\operatorname{span}\left\{e^{1}, e^{2}, \ldots, e^{N_{1}}\right\}, \mathbf{S}_{+}=\operatorname{span}\left\{f^{1}, f^{2}, \ldots, f^{N_{2}}\right\}
$$

Theorem $8 \mathbf{L}$ is a k-grade $(0 \leq k \leq \nu)$ complete Lagrangian subspace in \mathbf{S} if and only if there exist $a_{i j}^{\prime}, b_{i s}^{\prime} \in \mathbb{C}\left(i=1,2, \ldots, d ; j=1,2, \ldots, N_{1} ; s=1,2, \ldots, N_{2}\right)$, such that

$$
\begin{aligned}
\mathbf{L}= & \operatorname{span}\left\{a_{11}^{\prime} e^{1}+\cdots+a_{1, N_{1}}^{\prime} e^{N_{1}}+b_{11}^{\prime} f^{1}+\cdots+b_{1, N_{2}}^{\prime} f^{N_{2}}, \ldots,\right. \\
& \left.a_{d, 1}^{\prime} e^{1}+\cdots+a_{d, N_{1}}^{\prime} e^{N_{1}}+b_{d, 1}^{\prime} f^{1}+\cdots+b_{d, N_{2}}^{\prime} f^{N_{2}}\right\},
\end{aligned}
$$

and
(i) $\operatorname{rank} A^{\prime}=d-\left[\frac{N_{2}}{2}\right]+k$, rank $B^{\prime}=d-\left[\frac{N_{1}}{2}\right]+k$;
(ii) $\alpha_{i} H^{\prime} \alpha_{j}^{*}=0(1 \leq i, j \leq d)$, where $\alpha_{i}=\left(a_{i 1}^{\prime}, \ldots, a_{i, N_{1}}^{\prime}, b_{i 1}^{\prime}, \ldots, b_{i, N_{2}}^{\prime}\right)(1 \leq i \leq d)$, and H^{\prime} defined in Theorem 5 and $A^{\prime}=\left(a_{i j}^{\prime}\right)_{d \times N_{1}}, B^{\prime}=\left(b_{i s}^{\prime}\right)_{d \times N_{2}}$.

Corollary $2 \mathbf{L}$ is a k-grade $(0 \leq k \leq \nu)$ complete Lagrangian subspace in \mathbf{S} if and only if there exist $a_{i j}^{\prime}, b_{i t}^{\prime} \in \mathbb{C}\left(i=1,2, \ldots, d ; j=1,2, \ldots, N_{1} ; t=1,2, \ldots, N_{2}\right)$, such that

$$
\begin{aligned}
\mathbf{L}= & \left\{f \in S \mid \exists s_{i}(i=1,2, \ldots, d) \in \mathbb{C},\left(\left[f, \phi_{1}\right]_{n}(a), \ldots,\left[f, \phi_{N_{1}}\right]_{n}(a)\right)^{t}=\right. \\
& \left.A^{\prime t}\left(s_{1}, s_{2}, \ldots, s_{d}\right)^{t},\left(\left[f, \psi_{1}\right]_{n}(\infty), \ldots,\left[f, \psi_{N_{2}}\right]_{n}(\infty)\right)^{t}=B^{t}\left(s_{1}, \ldots, s_{d}\right)^{t}\right\},
\end{aligned}
$$

and
(i) $\operatorname{rank} A^{\prime}=d-\left[\frac{N_{2}}{2}\right]+k$, rank $B^{\prime}=d-\left[\frac{N_{1}}{2}\right]+k$;
(ii) $\alpha_{i} H^{\prime} \alpha_{j}^{*}=0(1 \leq i, j \leq d)$, where $\alpha_{i}=\left(a_{i 1}^{\prime}, \ldots, a_{i, N_{1}}^{\prime}, b_{i 1}^{\prime}, \ldots, b_{i, N_{2}}^{\prime}\right)(1 \leq i \leq d)$, and H^{\prime} defined in Theorem 5 and $A^{\prime}=\left(a_{i j}^{\prime}\right)_{d \times N_{1}}, B^{\prime}=\left(b_{i s}^{\prime}\right)_{d \times N_{2}}$.

Acknowledgments

The author would like to thank the referees for valuable comments. This work was supported by the National Natural Science Foundation of China (11171152/A010602), Natural Science Foundation of Jiangsu Province of China (BK 2010489) and the Outstanding Plan-Zijin Star Foundation of Nanjing University of Science and Technology (AB 41366).

References

[1] Coddington, E. A.: The spectral representation of ordinary self-adjoint differential operators. Ann. Math. 60, 192-211 (1954).
[2] Dunford, N., Schwartz, J. T.: Linear operators II. New York, Wiley 1963.
[3] Everitt, W. N., Markus, L.: Boundary value problem and symplectic algebra for ordinary differential and quasidifferential operators. Math. Surveys and Monographs 61, Amer. Math. Soc. 1999.
[4] Everitt, W. N., Markus, L.: Complex symplectic geometry with applications to ordinary differential operators. Trans. Amer. Math. Soc. 351, 4905-4945 (1999).
[5] Everitt, W. N., Markus, L.: Complex symplectic spaces and boundary value problems. Bulletin Amer. Math. Soc. (New Series) 42, 461-500 (2005).
[6] Fu, S. Z.: On the self-adjoint extensions of symmetric ordinary differential operators in direct sum spaces. J. Diff. Equa. 100, 269-291 (1992).
[7] Hao, X. L, Sun, J., Wang, A. P., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators II. Results in Mathematics, Springer Basel AG, 2011. See also DOI 10.1007/s00025-011-0096-y.
[8] Möller, M., Zettl, A.: Symmetric differential operators and their Friedrichs extension. J. Differential Equations 115, 50-69 (1995).
[9] Naimark, M. A.: Linear differential operators II. London Harrap 1968.
[10] Shang, Z. J., Zhu, R. Y.: The domains of self-adjoint extensions of ordinary symmetric differential operator over $(-\infty, \infty)$. Acta Sci. Natur. Univ. NeiMongGol 17, 17-28 (1986) (In Chinese).
[11] Sun, J.: On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices. Acta Math. Sinica 2, 152-167 (1986).
[12] Sun, J., Wang, W. Y., Zheng, Z. M.: Complex sympletic geometric characterization of self-adjoint domains of singular differential operators. J. Spectral Math. Appl. 2006.
[13] Wang, A., Sun, J., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators. J. Differential Equations 246, 1600-1622 (2009).

YANG/Turk J Math

[14] Wang, W. Y., Sun, J.: Complex J-symplectic geometry characterization for J-symmectric extensions of Jsymmectric differential operators. Beijing: Adv. in Math. 32, 481-484 (2003).
[15] Wei, G. S., Xu, Z. B., Sun, J.: Self-adjoint domains of products of differential expressions. J. Diff. Equa. 174, 75-90 (2001).
[16] Weidmann, J.: Spectral theory of ordinary differential operators. Lecture Notes in Math. 1258, Berlin/New York, Springer-Verlag 1987.
[17] Zhang, H. K.: On self-adjointness of the product of two limit-circle differential operators in vector-function spaces. Acta Scientiarum Naturalium Universitatis NeiMongol 28, 585-591 (1997) (In Chinese).

[^0]: *Correspondence: chuanfuyang@tom.com
 2000 AMS Mathematics Subject Classification: 34B20, 34L05, 47E05.

