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doi:10.3906/mat-1109-14

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Complete cotorsion pairs in the category of complexes

Zhanping WANG,∗ Zhongkui LIU
Department of Mathematics, Northwest Normal University, Lanzhou 730070, P.R. China

Received: 09.09.2011 • Accepted: 09.09.2012 • Published Online: 26.08.2013 • Printed: 23.09.2013

Abstract: In this paper, we study completeness of cotorsion pairs in the category of complexes of R -modules. Let

(A,B) be a cotorsion pair in R -Mod. It is shown that the cotorsion pairs (Ã,dgB̃) and (A,A⊥
) are complete if A is

closed under pure submodules and cokernels of pure monomorphisms, where in Gillespie’s definitions Ã is the class of

exact complexes with cycles in A and dgB̃ is the class of complexes X with components in B such that the complex

Hom(A,X) is exact for every complex A ∈ Ã ; and A is the class of all complexes with components in A . Furthermore,

they are perfect. As an application, we get that every complex over a right coherent ring has a Gorenstein flat cover,

which generalizes the well-known results on the existence of Gorenstein flat covers.
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1. Introduction and preliminaries

In this paper, R denotes a ring with unity, R -Mod denotes the category of left R -modules, and C(R) denotes

the abelian category of complexes of left R -modules. A complex

· · · δ2−→ C1
δ1−→ C0

δ0−→ C−1
δ−1−→ · · ·

of left R-modules will be denoted (C, δ) or C . Given a left R -module M , we will denote by Dn(M) the

complex

· · · −→ 0 −→ M
id−→ M −→ 0 −→ · · ·

with the M in the n and (n−1)-th position. Also, by Sn(M) we mean the complex with M in the n -th place

and 0 in the other places, and the character module M+ = Hom(M,Q/Z). Given a complex C and an integer

i , ΣiC denotes the complex such that (ΣiC)n = Cn−i and whose boundary operators are (−1)iδCn−i . The n -th

homology module of C is the module Hn(C) = Zn(C)/Bn(C), where Zn(C) = Ker(δCn ), Bn(C) = Im(δCn+1);

we set Cn(C) = Coker(δCn+1).

Throughout the paper we use both the subscript notation for complexes and the superscript notation.

When we use superscripts for a complex we will use subscripts to distinguish complexes. For example, if (Ki)i∈I

is a family of complexes, then Ki
n denotes the n-th component of the complex Ki .
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For objects C and D of C(R), Hom(C,D) is the abelian group of morphisms from C to D in C(R)

and Exti(C,D) for i ≥ 1 will denote the groups we get from the right derived functor of Hom. Hom(C,D)

denotes the complex of abelian groups with n -th component Hom(C,D)n and boundary operator

δn((φi)i∈Z) = (δDn+iφi − (−1)nφi−1δ
C
i )i∈Z.

It is easy to see that Hom(C,D) = Z0(Hom(C,D)). We recall the notations introduced in [5]. Let Hom(C,D) =

Z(Hom(C,D)), we then see that Hom(C,D) can be made into a complex with Hom(C,D)n the abelian

group of morphisms from C to Σ−nD and with boundary operator given by δn(f) : C −→ Σ−(n−1)D with

δn(f)m = (−1)nδDfm , ∀m ∈ Z for f ∈ Hom(C,D)n , and note that the new functor Hom(C,D) will have right

derived functors whose values will be complexes. These values should certainly be denoted Exti(C,D). It is

not hard to see that Exti(C,D) is the complex

· · · −→ Exti(C,Σ−(n+1)D) −→ Exti(C,Σ−nD) −→ Exti(C,Σ−(n−1)D) −→ · · ·

with boundary operators induced by the boundary operators of D . Also we mean by C+ = Hom(C,D0(Q/Z))
the complex

· · · −→ Hom(C−1,Q/Z) −→ Hom(C0,Q/Z) −→ Hom(C1,Q/Z) −→ · · · .

If X is a complex of right R -modules and Y is a complex of left R -modules, the tensor product of

X and Y is the complex of abelian groups X ⊗ Y with (X ⊗ Y )n = ⊕t∈Z(Xt ⊗R Yn−t) and δ(x ⊗ y) =

δXt (x)⊗ y + (−1)tx⊗ δYn−t(y), ∀x ∈ Xt, y ∈ Y n−t . Define X⊗Y to be X⊗Y
B(X⊗Y ) . Then with the maps

(X⊗Y )n
Bn(X⊗Y ) −→

(X⊗Y )n−1

Bn−1(X⊗Y ) , x⊗ y 7→ δX(x)⊗ y,

where x⊗ y is used to denote the coset in (X⊗Y )n
Bn(X⊗Y ) , we get a complex of abelian groups.

Let A,B be classes of objects in an abelian category D . Let D be an object of D . We recall the

definition introduced in [2]. A morphism f : D → B is called a B -preenvelope of D if B ∈ B and

Hom(B,B′) → Hom(D,B′) → 0 is exact for all B′ ∈ B . If, moreover, any morphism g : B → B such

that gf = f is an automorphism of B then f : D → B is called a B -envelope. A monomorphism α : D −→ B

with B ∈ B is said to be a special B -preenvelope of D if Coker(α) ∈ ⊥B , where ⊥B = {A ∈ D : Ext1(A,B) =

0 for all B ∈ B} . Dually we have the concepts of a (special) B -precover and a B -cover. A pair of classes

of objects (A , B ) is called a cotorsion pair (or cotorsion theory) [15, 20] if A⊥ = B and ⊥B = A , where

A⊥ = {B ∈ D : Ext1(A,B) = 0 for all A ∈ A} . A cotorsion pair (A , B ) is called hereditary if whenever

0 −→ A′ −→ A −→ A′′ −→ 0 is exact with A,A′′ ∈ A then A′ is also in A . A cotorsion pair (A , B ) is

called complete if every D ∈ D has a special B -preenvelope and a special A -precover. A cotorsion pair (A ,

B ) is called perfect if every D ∈ D has a B -envelope and an A-cover. A cotorsion pair (A , B ) is said to be

cogenerated by a set X if X⊥ = A⊥ . It is well known that a perfect cotorsion pair is complete, but the converse

may be false in general. In [1], Eklof and Trlifaj proved that a cotorsion pair (A , B ) in R -Mod is complete when

it is cogenerated by a set. This result actually holds in any Grothendieck category with enough projectives, as

Hovey proved in [17]. For unexplained concepts and notations, we refer the reader to [4, 5, 6, 11, 15, 21].

In [12], Gillespie introduced the following definition.
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Definition 1.1 ([12, Definition 3.3]) Let (A,B) be a cotorsion pair on an abelian category C . Let X be a

complex.

(1) X is called an A complex if it is exact and Zn(X) ∈ A for all n ∈ Z .

(2) X is called a B complex if it is exact and Zn(X) ∈ B for all n ∈ Z .

(3) X is called a dg-A complex if Xn ∈ A for each n ∈ Z , and Hom(X,B) is exact whenever B is a

B complex.

(4) X is called a dg-B complex if Xn ∈ B for each n ∈ Z , and Hom(A,X) is exact whenever A is a

A complex.

In particular, if (A,B) = (Proj, R-Mod), then A complexes and dg-A complexes is just projective

complexes and DG-projective complexes, respectively. If (A,B) = (R-Mod, Inj) , then B complexes and dg-B
complexes are just injective complexes, and DG-injective complexes respectively.

We denote the class of A complexes by Ã and the class of dg-A complexes by dgÃ . Similarly, the

class of B complexes is denoted by B̃ and the class of dg-B complexes by dgB̃ . In [12], it was shown that

(Ã,dgB̃) and (dgÃ, B̃) are cotorsion pairs in C(R) if (A,B) is a cotorsion pair in R -Mod, and proven that

(A,B) is hereditary if and only if (Ã, dgB̃) is hereditary if and only if (dgÃ, B̃) is hereditary. In [13] and [14],

it was considered the question of whether or not the induced cotorsion pairs are complete when the original

cotorsion pair is complete, and shown that a cotorsion pair (A,B) in an abelian category C can induce two

natural homological model structures on Ch(C ) under certain conditions.

In section 2 of this article, the completeness of the cotorsion pair (Ã, dgB̃) is studied. It is given a

sufficient condition such that the cotorsion pair (Ã, dgB̃) is complete. As some applications, we get that every

complex over a right coherent ring has a G̃F -cover, every complex has a F̃n -cover, and every complex has a

M̃F -cover, where GF , Fn , and MF respectively denote the classes of all Gorenstein flat left R -modules, all

left R -modules with flat dimension less than or equal to a fixed nonnegative integer n , and all min-flat left

R -modules.

Section 3 is devoted to studying complexes in the class A⊥
, and completeness of the cotorsion pair

(A,A⊥
). We prove that a complex C is in A⊥

if and only if Cn is in A⊥ for all n ∈ Z and Hom(G,C) is

exact for any G ∈ A , and (A,A⊥
) is complete if A is closed under pure submodules and cokernels of pure

monomorphisms. As an application, we get that every complex over a right coherent ring has a Gorenstein flat

cover, which generalizes Theorem 5.4.8 in [11] and Theorem 2.12 in [10].

2. Ã-covers of complexes

First are given some characterizations of A complexes and B complexes.

Lemma 2.1 ([14, Lemma 4.2]) Let C be an abelian category, Ch(C ) be the category of complexes on C . For

each object C ∈ C and X, Y ∈ Ch(C ) , we have the following isomorphisms.

(1) If X is an exact complex, then Ext1C (Cn(X), C) ∼= Ext1Ch(C )
(X,Sn(C)) .

(2) If Y is an exact complex, then Ext1C (C,Zn(Y )) ∼= Ext1Ch(C )
(Sn(C), Y ) .
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Proposition 2.2 Let (A,B) be a cotorsion pair in R-Mod. Then the following assertions are equivalent.

(1) C is an A complex.

(2) For every dg-B complex G , Ext1(C,G) = 0 .

(3) For every bounded above complex G with each component in B , Ext1(C,G) = 0 .

(4) For every bounded complex G with each component in B , Ext1(C,G) = 0 .

(5) For any B ∈ B , and any n ∈ Z , Ext1(C, Sn(B)) = 0 .

Proof (1) ⇒ (2) It follows from the proof of [12, Proposition 3.6].

(2) ⇒ (3) It is clear since every bounded above complex with components in B is dg-B complex (see

[12, Lemma 3.4(2)]).

(3) ⇒ (4) and (4) ⇒ (5) are obvious.

(5) ⇒ (1) First, we show that C is exact. Let fn : Cn/Bn(C) −→ I be an injective homomorphism,

where I is an injective module. Then the induced morphism of complexes f : C −→ Sn(I) follows as

C = · · · // Cn+1

δn+1 //

��

Cn

fnη

��

δn // Cn−1
//

��

· · ·

Sn(I) = · · · // 0 // I // 0 //// · · · ,

where η : Cn −→ Cn/Bn(C) is the natural epimorphism. We get that f is homotopic to zero since

Ext1(C, Sn(I)) = 0. Let {Sn}n∈Z be homotopy, then Sn−1δn = fnη . Thus Zn(C) ⊆ Bn(C), and so C is

an exact complex. Next it is proven that Zn(C) ∈ A . By Lemma 2.1, Ext1R(Cn(C), B) ∼= Ext1(C, Sn(B)) for

any B ∈ B . But Ext1(C, Sn(B)) = 0, so Ext1R(Cn(C), B) = 0. Thus Cn(C) ∈ A . Since Zn(C) ∼= Cn+1(C),

we have Zn(C) ∈ A. Therefore C is A complex. 2

Proposition 2.3 Let (A,B) be a cotorsion pair in R-Mod. Then the following assertions are equivalent.

(1) C is a B complex.

(2) For every dg-A complex G , Ext1(G,C) = 0 .

(3) For every bounded below complex G with each component in A , Ext1(G,C) = 0 .

(4) For every bounded complex G with each component in A , Ext1(G,C) = 0 .

(5) For any A ∈ A , and any n ∈ Z , Ext1(Sn(A), C) = 0 .

Proof (1) ⇒ (2) It follows from the proof of [12, Proposition 3.6].

(2) ⇒ (3) is clear since every bounded below complex with each component in A is dg-A complex (see

[12, Lemma 3.4(1)]).

(3) ⇒ (4) and (4) ⇒ (5) are obvious.

(5) ⇒ (1) Note that Hom(S0(R), C) ∼= C for any complex, we obtain that Hn(C) ∼= Ext1(S1−n(R), C)

by [12, Lemma 2.1]. Since RR ∈ A , it follows that C is an exact complex by the assumption. By Lemma 2.1,

Ext1R(A,Zn(C)) ∼= Ext1(Sn(A), C) for all A ∈ A , which implies that Zn(C) ∈ B for all n ∈ Z . Thus C is B
complex. 2
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According to [11], a short exact sequence 0 −→ A −→ B −→ C −→ 0 in C(R) is called pure if

the sequence 0 −→ F⊗A −→ F⊗B is exact for any (or finitely presented) complex F of right R -modules.

Equivalently, Hom(F,B) −→ Hom(F,C) −→ 0 is surjective for all finitely presented complex F of left R -

modules. A subcomplex S ⊂ C is pure if 0 −→ S −→ C −→ C/S −→ 0 is a pure exact sequence.

Lemma 2.4 ([12, Lemma 4.6]) Let |R| ≤ ℵ , where ℵ is some infinite cardinal. Then for any C ∈ C(R) and

any element x ∈ C (by this we mean x ∈ Cn for some n), there exists a pure subcomplex P ⊆ C with x ∈ P

and |P | ≤ ℵ .

Lemma 2.5 Suppose S, T and C are complexes of left R -modules such that S ⊆ T ⊆ C . If S is pure in C

and T/S is pure in C/S , then T is pure in C .

Proof Let D be any complex of right R -modules. Then we get the following commutative diagram

0

��
D⊗S // D⊗T //

��

D⊗T/S //

��

0

0 // D⊗S // D⊗C // D⊗C/S // 0

where all of the maps are the obvious ones. Thus 0 → D⊗T → D⊗C is exact, and so T is pure in C . 2

Note that the similar result holds in R -Mod.

Lemma 2.6 If 0 → A → B → C → 0 is pure exact in C(R) , then 0 → Zn(A) → Zn(B) → Zn(C) → 0 is pure

exact in R-Mod for all n ∈ Z .

Proof By the hypothesis, we have an exact sequence 0 → Zn(A) → Zn(B) → Zn(C) → 0 in R -Mod. Let P

be any finitely presented module, and f : P → Zn(C) be any R -homomorphism. We define α : Sn(P ) −→ C
as

Sn(P ) = · · · // 0

��

// P

λf

��

// 0 //

��

· · ·

C = · · · // Cn+1
// Cn

// Cn−1
// · · · ,

where λ : Zn(C) −→ Cn is the natural inclusion. Since Sn(P ) is a finitely presented complex, there exists

β : Sn(P ) −→ B such that the diagram

Sn(P )

α

��

β

||yy
yy
yy
yy

0 // A // B // C // 0

commutes. Thus
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P

λf

��

βn

}}{{
{{
{{
{{

Bn
// Cn

// 0

commutes. Since β is a morphism of complexes from Sn(P ) to B , we get δBn βn = 0, and so Im(βn) ⊆ Zn(B),

which imply that βn : P −→ Zn(B) and

P

f

��

βn

zzttt
ttt

ttt
t

Zn(B) // Zn(C) // 0

commutes. 2

Lemma 2.7 If A is closed under pure submodules and cokernels of pure monomorphisms, then Ã is closed

under pure subcomplexes and cokernels of pure monomorphisms.

Proof Suppose 0 → S → C → C/S → 0 is a pure exact sequence in C(R) with C ∈ Ã . Then

0 → (C/S)+ → C+ → S+ → 0 is split, and so S+ and (C/S)+ are exact, which implies that S and

C/S are exact. By Lemma 2.6, Zn(S) and Zn(C/S) are in A for all n ∈ Z . Therefore, S and C/S are in Ã .

2

Next we prove that (Ã, dgB̃) is complete under additional conditions. The method of proof is learned

from [12, Proposition 4.9].

Theorem 2.8 Let (A,B) be a cotorsion pair in R -Mod. If A is closed under pure submodules and cokernels

of pure monomorphisms, then the cotorsion pair (Ã,dgB̃) is complete. Furthermore, it is perfect.

Proof Suppose G ∈ Ã , and |R| ≤ ℵ for some infinite cardinal ℵ . We will show that G is equal to the union

of a continuous chain (Pα)α<λ of pure subcomplexes of G with |P 0| ≤ ℵ and |Pα+1/Pα| ≤ ℵ for all α .

Set T =
⨿

n∈Z Gn . We may well order the set T so that for some ordinal λ ,

T = {x0, x1, x2, ..., xα, ...}α<λ.

For x0 , use Lemma 2.4 to find a pure subcomplex P 1 ⊆ G containing x0 with |P 1| ≤ ℵ . Then G/P 1 is in

Ã by Lemma 2.7. Now x1 ∈ G/P 1 . Therefore we can find a pure subcomplex P 2/P 1 ⊆ G/P 1 containing

x1 such that |P 2/P 1| ≤ ℵ . Then (G/P 1)/(P 2/P 1) ∼= G/P 2 is in Ã . By Lemma 2.5, we get P 2 is pure.

Note that P 1 ⊆ P 2 and x0, x1 ∈ P 2 . In general, given any ordinal α , and having constructed pure

subcomplexes P 1 ⊆ P 2 ⊆ ... ⊆ Pα where xγ ∈ Pα for all γ < α , we find a pure subcomplex Pα+1 ⊆ G

as follows: xα ∈ G/Pα , so by Lemma 2.4 we can find a pure subcomplex Pα+1/Pα ⊆ G/Pα containing xα

such that |Pα+1/Pα| ≤ ℵ . Thus (G/Pα)/(Pα+1/Pα) ∼= G/Pα+1 is in Ã , whence Pα+1 is pure. We now have

P 1 ⊆ P 2 ⊆ ... ⊆ Pα ⊆ Pα+1 and x0, x1, ..., xα ∈ Pα+1 . For the case when α is a limit ordinal we just define

Pα =
∪

γ<α P γ . Then as we noted above, Pα is pure, and xγ ∈ Pα for all γ < α . This construction gives us

the directed continuous chain (Pα)α<λ .
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If C is a complex such that Ext1(P 0, C) = 0 and Ext1(Pα+1/Pα, C) = 0 whenever α + 1 < λ , then

Ext1(G,C) = 0 by [12, Lemma 4.5]. Let X be a set of representatives of all complexes C ∈ Ã with |C| ≤ ℵ .

Then Ã⊥ = X⊥ . That is, (Ã, dgB̃) is cogenerated by X . Thus (Ã,dgB̃) is complete.

Since A is closed under direct sums, A is closed under direct limits by [15, Corollary 1.2.7]. Thus the

cotorsion pair (Ã, dgB̃) is automatically perfect. 2

According to [3], a module M is called Gorenstein flat if there exists an exact sequence in R -Mod

· · · −→ F1 −→ F0 −→ F−1 −→ · · ·

of flat R -modules such that M = Ker(F0 → F−1) and that remains exact whenever E ⊗− is applied for any

injective right R -module E . Let GF denote the class of all Gorenstein flat left R -modules. In [7, Theorem

3.1.9] (also, see [10]), it was proven that over a right coherent ring (GF ,GF⊥) is a perfect and hereditary

cotorsion pair. By Theorem 2.8, we get the following corollary.

Corollary 2.9 Every complex over a right coherent ring has a G̃F -cover.

Proof By [7, Corollary 2.1.9], we have that GF is closed under direct limits. Thus it is enough to prove that

GF is closed under pure submodules and cokernels of pure monomorphisms. Suppose 0 → P → M → M/P → 0

is pure exact in R -Mod with M ∈ GF . Then 0 → (M/P )+ → M+ → P+ → 0 is split, and M+ ∈ GI by [16,

Theorem 3.6], where GI denotes the class of Gorenstein injective modules. Thus (M/P )+ and P+ are in GI
by [16, Theorem 2.6], which implies that M/P and P are in GF . 2

The symbol Fn stands for the class of all left R -modules with flat dimension less than or equal to a fixed

nonnegative integer n . In [19, Theorem 3.4], it was proven that (Fn,F⊥
n ) is a perfect and hereditary cotorsion

pair. Note that Fn is closed under pure submodules, cokernels of pure monomorphisms and direct limits. Thus

we have the following result.

Corollary 2.10 Every complex has a F̃n -cover.

A left R -module M is called min-flat [18] if Tor1(R/I,M) = 0 for each simple right ideal I . Let MF

denote the class of all min-flat left R -modules. In [18, Theorem 3.4], it was proven that (MF ,MF⊥) is a

perfect cotorsion pair. Note that MF is closed under pure submodules, cokernels of pure monomorphisms and

direct limits.

Corollary 2.11 Every complex has a M̃F -cover.

Remark 2.12 It is well known that the class of modules closed under pure submodules and cokernels of pure

monomorphisms is Kaplansky class (see [8, Definition 2.1] and [9, Proposition 3.2.2]). In [13], Gillespie has

considered the completeness of the cotorsion pair (Ã, dgB̃) in the condition of Kaplansky classes in a locally

k -presentable Grothendieck category. But Theorem 2.8 is not a particular case of Theorem 4.12 in [13]. For

example, in general the cotorsion pair (MF ,MF⊥) is not hereditary. Thus MF does not satisfy condition 4

of Theorem 4.12 in [13].
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3. A-covers of complexes

Let A be the class of R -modules and A denote the class of all complexes with each component in A .

Lemma 3.1 ([12, Lemma 3.1]) Let C be abelian category, Ch(C ) be the category of complexes on C . For

each object C ∈ C and X, Y ∈ Ch(C ) , we have the following isomorphisms.

(1) Ext1C (Xn, C) ∼= Ext1Ch(C )
(X,Dn+1(C)) .

(2) Ext1C (C, Yn) ∼= Ext1Ch(C )(D
n(C), Y ) .

Proposition 3.2 Let C be a complex. Then C is in A⊥
if and only if Cn is in A⊥ for all n ∈ Z and

Hom(G,C) is exact for any G ∈ A .

Proof ⇒) Suppose (C, δ) is in A⊥
. By Lemma 3.1, we have Ext1(F,Cn) ∼= Ext1(Dn(F ), C) for each F ∈ A .

But Ext1(Dn(F ), C) = 0, so Ext1(F,Cn) = 0. Therefore, Cn is in A⊥ .

For any G ∈ A , Hom(G,C) is exact if and only if for each n each map of complexes f : G → Σ−nC

is homotopic to 0 if and only if for each n and each map of complexes f : G → Σ−nC the sequence

0 −→ Σ−nC −→ M(f) −→ Σ−1G −→ 0 splits if and only if for each n and each map of complexes

f : G → Σ−nC the sequence 0 −→ C −→ Σ−nM(f) −→ Σn−1G −→ 0 splits where M(f) denotes the

mapping cone of f . Since G is in A , Σn−1G is also in A . By the hypothesis, Ext1(Σn−1G,C) = 0. So the

sequence 0 −→ C −→ Σ−nM(f) −→ Σn−1G −→ 0 splits, and so Hom(G,C) is an exact complex.

⇐) Suppose Cn is in A⊥ for all n ∈ Z and Hom(G,C) is exact for any G ∈ A . Any exact se-

quence 0 −→ C −→ W −→ G −→ 0 of complexes with G ∈ A splits at the module level. So this sequence

is isomorphic to 0 −→ C −→ M(f) −→ G −→ 0, where f : Σ1G → C is a map of complexes. Since

Hom(Σ1G,C) is exact, the sequence 0 −→ C −→ M(f) −→ G −→ 0 splits in C(R) by [11, Lemma 2.3.2]. So

0 −→ C −→ W −→ G −→ 0 also splits. 2

Remark 3.3 If RR ∈ A , C ∈ A⊥
, then C is exact by Hn(C) ∼= Ext1(R[1− n], C) for all n ∈ Z .

Proposition 3.4 If (C, δ) is in A⊥
, then Zn(C) is in A⊥ for all n ∈ Z .

Proof For any F ∈ A , it is enough to prove that Ext1(F,Zn(C)) = 0. Consider the exact sequence

0 −→ K −→ P −→ F −→ 0 with P a projective module. It yields an exact sequence of complexes

0 −→ Sn(K) −→ Sn(P ) −→ Sn(F ) −→ 0.

By the hypothesis, Ext1(Sn(F ), C) = 0. So Hom(Sn(P ), C) −→ Hom(Sn(K), C) −→ 0 is exact. Let

f : K → Zn(C) be an R -homomorphism. We define αn : K → Cn as αn = λf where λ is the inclusion

map and αi = 0 for i ̸= n . In this way we obtain a map of complexes α : Sn(K) → C . Then there exists

β : Sn(P ) → C such that the diagram

Sn(K)

α

��

// Sn(P )

β
zz

C
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commutes. Hence we have the commutative diagram

K

λf

��

// P

βn~~
Cn

Since β is a morphism of complexes from Sn(P ) to C , we obtain δnβn = 0, which implies that Imβn ⊆ Zn(C).

So we define g : P → Zn(C) as g = βn . Thus Hom(P,Zn(C)) −→ Hom(K,Zn(C)) −→ 0 is exact. On the other

hand, we have an exact sequence Hom(P,Zn(C)) −→ Hom(K,Zn(C)) −→ Ext1(F,Zn(C)) −→ 0. Therefore,

Ext1(F,Zn(C)) = 0. 2

Lemma 3.5 If G is in A⊥ , then Dn(G) is in A⊥
for all n ∈ Z .

Proof By Lemma 3.1, we have Ext1(Fn−1, G) ∼= Ext1(F,Dn(G)) for each F ∈ A . But Ext1(Fn−1, G) = 0,

so Ext1(F,Dn(G)) = 0. Therefore, Dn(G) is in A⊥ . 2

Proposition 3.6 If (A,B) is a cotorsion pair in R -Mod, then (A,A⊥
) is a cotorsion pair in C(R) .

Proof It follows from Proposition 3.2 in [14]. 2

Lemma 3.7 If 0 → A → B → C → 0 is pure exact in C(R) , then 0 → An → Bn → Cn → 0 is pure exact in

R-Mod for all n ∈ Z .

Proof Suppose P is a finitely presented module and f : P → Cn . Then we have a commutative diagram

Dn(P )

α

��

β

||yy
yy
yy
yy
y

0 // A // B // C // 0,

since Dn(P ) is a finitely presented complex, where α : Dn(P ) → C follows as

Dn(P ) = · · · // 0

��

// P

f

��

// P

δCn f

��

// 0 //

��

· · ·

C = · · · // Cn+1
// Cn

// Cn−1
// Cn−2

// · · · ,

Thus

P

f

��

βn

}}{{
{{
{{
{{

Bn
// Cn

// 0

commutes. That is, 0 → An → Bn → Cn → 0 is pure. 2
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Lemma 3.8 If A is closed under pure submodules and cokernels of pure monomorphisms, then A is closed

under pure subcomplexes and cokernels of pure monomorphisms.

Proof It follows from Lemma 3.7. 2

Based on the preceding results, we get the following theorem by analogy with the proof of Theorem 2.8.

Theorem 3.9 Let (A,B) be a cotorsion pair in R -Mod. If A is closed under pure submodules and cokernels

of pure monomorphisms, then the cotorsion pair (A,A⊥
) is complete. Furthermore, it is perfect.

In [11], Garćıa Rozas defined Gorenstein flat complexes and characterized such complexes over Gorenstein

rings. A complex C is called Gorenstein flat if there exists an exact sequence of complexes · · · −→ F−1 −→
F 0 −→ F 1 −→ · · · such that each F i is flat, C = Ker(F 0 → F 1) and the sequence remains exact when I⊗−
is applied to it for any injective complex I . It was proven that every complex over a commutative Gorenstein

ring has a Gorenstein flat cover [11, Theorem 5.4.8]. We will show that the same result holds if R is a right

coherent ring.

The following lemma is due to Yang [22, Theorem 5].

Lemma 3.10 Let R be a right coherent ring, C a complex. Then C is Gorenstein flat if and only if Cn is

Gorenstein flat in R -Mod for all n ∈ Z .

According to the above lemma, it is shown that over a right coherent ring the class of Gorenstein flat

complexes coincides with GF . Thus we get the following corollary.

Corollary 3.11 Every complex over a right coherent ring has a Gorenstein flat cover.

According to [10, Theorem 2.12], all left modules over a right coherent ring have Gorenstein flat covers.

Corollary 3.11 shows that the corresponding result holds in the category of complexes of R -modules, and

generalizes Theorem 5.4.8 in [11].

Analogously, we have the following two corollaries.

Corollary 3.12 Every complex has a Fn -cover.

Corollary 3.13 Every complex has a MF -cover.
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[11] Garćıa Rozas, J. R.: Covers and envelopes in the category of complexes of modules. CRC Press. Boca Raton, FL,

1999.

[12] Gillespie, J.: The flat model structure on Ch(R). Tran. Amer. Math. Soc. 356, 3369–3390 (2004).

[13] Gillespie, J.: Kaplansky classes and derived categories. Math. Z. 257, 811–843 (2007).

[14] Gillespie, J.: Cotorsion pairs and degreewise homological model structures. Homology, Homotopy Appl. 10, 283–304

(2008).
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