

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2013) 37: 852 – 862 © TÜBİTAK doi:10.3906/mat-1109-14

Complete cotorsion pairs in the category of complexes

Zhanping WANG,* Zhongkui LIU

Department of Mathematics, Northwest Normal University, Lanzhou 730070, P.R. China

Received: 09.09.2011 • Accepted: 09.09.2012 • Published Online: 26.08.2013 • Printed: 23.09.2013

Abstract: In this paper, we study completeness of cotorsion pairs in the category of complexes of R-modules. Let $(\mathcal{A},\mathcal{B})$ be a cotorsion pair in R-Mod. It is shown that the cotorsion pairs $(\widetilde{\mathcal{A}}, \mathrm{dg}\widetilde{\mathcal{B}})$ and $(\overline{\mathcal{A}}, \overline{\mathcal{A}}^{\perp})$ are complete if \mathcal{A} is closed under pure submodules and cokernels of pure monomorphisms, where in Gillespie's definitions $\widetilde{\mathcal{A}}$ is the class of exact complexes with cycles in \mathcal{A} and $\mathrm{dg}\widetilde{\mathcal{B}}$ is the class of complexes X with components in \mathcal{B} such that the complex $\mathcal{H}om(A,X)$ is exact for every complex $A \in \widetilde{\mathcal{A}}$; and $\overline{\mathcal{A}}$ is the class of all complexes with components in \mathcal{A} . Furthermore, they are perfect. As an application, we get that every complex over a right coherent ring has a Gorenstein flat cover, which generalizes the well-known results on the existence of Gorenstein flat covers.

Key words: Complete, cotorsion pair, cover, Gorenstein flat complex

1. Introduction and preliminaries

In this paper, R denotes a ring with unity, R-Mod denotes the category of left R-modules, and C(R) denotes the abelian category of complexes of left R-modules. A complex

$$\cdots \xrightarrow{\delta_2} C_1 \xrightarrow{\delta_1} C_0 \xrightarrow{\delta_0} C_{-1} \xrightarrow{\delta_{-1}} \cdots$$

of left R-modules will be denoted (C, δ) or C. Given a left R-module M, we will denote by $\mathrm{D}^n(M)$ the complex

$$\cdots \longrightarrow 0 \longrightarrow M \stackrel{id}{\longrightarrow} M \longrightarrow 0 \longrightarrow \cdots$$

with the M in the n and (n-1)-th position. Also, by $S^n(M)$ we mean the complex with M in the n-th place and 0 in the other places, and the character module $M^+ = \text{Hom}(M, \mathbb{Q}/\mathbb{Z})$. Given a complex C and an integer i, $\Sigma^i C$ denotes the complex such that $(\Sigma^i C)_n = C_{n-i}$ and whose boundary operators are $(-1)^i \delta_{n-i}^C$. The n-th homology module of C is the module $H_n(C) = Z_n(C)/B_n(C)$, where $Z_n(C) = \text{Ker}(\delta_n^C)$, $B_n(C) = \text{Im}(\delta_{n+1}^C)$; we set $C_n(C) = \text{Coker}(\delta_{n+1}^C)$.

Throughout the paper we use both the subscript notation for complexes and the superscript notation. When we use superscripts for a complex we will use subscripts to distinguish complexes. For example, if $(K^i)_{i\in I}$ is a family of complexes, then K_n^i denotes the n-th component of the complex K^i .

 $2000\ AMS\ Mathematics\ Subject\ Classification:\ 18G35,\ 55U15,\ 03C35.$

^{*}Correspondence: wangzp@nwnu.edu.cn

For objects C and D of C(R), $\operatorname{Hom}(C,D)$ is the abelian group of morphisms from C to D in C(R) and $\operatorname{Ext}^i(C,D)$ for $i\geq 1$ will denote the groups we get from the right derived functor of $\operatorname{Hom}(C,D)$ denotes the complex of abelian groups with n-th component $\operatorname{Hom}(C,D)_n$ and boundary operator

$$\delta_n((\varphi_i)_{i\in\mathbb{Z}}) = (\delta_{n+i}^D \varphi_i - (-1)^n \varphi_{i-1} \delta_i^C)_{i\in\mathbb{Z}}.$$

It is easy to see that $\operatorname{Hom}(C,D) = Z_0(\operatorname{\mathcal{H}om}(C,D))$. We recall the notations introduced in [5]. Let $\operatorname{\underline{Hom}}(C,D) = Z(\operatorname{\mathcal{H}om}(C,D))$, we then see that $\operatorname{\underline{Hom}}(C,D)$ can be made into a complex with $\operatorname{\underline{Hom}}(C,D)_n$ the abelian group of morphisms from C to $\Sigma^{-n}D$ and with boundary operator given by $\delta_n(f): C \longrightarrow \Sigma^{-(n-1)}D$ with $\delta_n(f)_m = (-1)^n \delta^D f_m$, $\forall m \in \mathbb{Z}$ for $f \in \operatorname{\underline{Hom}}(C,D)_n$, and note that the new functor $\operatorname{\underline{Hom}}(C,D)$ will have right derived functors whose values will be complexes. These values should certainly be denoted $\operatorname{\underline{Ext}}^i(C,D)$. It is not hard to see that $\operatorname{\underline{Ext}}^i(C,D)$ is the complex

$$\cdots \longrightarrow \operatorname{Ext}^i(C, \Sigma^{-(n+1)}D) \longrightarrow \operatorname{Ext}^i(C, \Sigma^{-n}D) \longrightarrow \operatorname{Ext}^i(C, \Sigma^{-(n-1)}D) \longrightarrow \cdots$$

with boundary operators induced by the boundary operators of D. Also we mean by $C^+ = \underline{\mathrm{Hom}}(C, D^0(\mathbb{Q}/\mathbb{Z}))$ the complex

$$\cdots \longrightarrow \operatorname{Hom}(C_{-1}, \mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{Hom}(C_0, \mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{Hom}(C_1, \mathbb{Q}/\mathbb{Z}) \longrightarrow \cdots$$

If X is a complex of right R-modules and Y is a complex of left R-modules, the tensor product of X and Y is the complex of abelian groups $X \otimes Y$ with $(X \otimes Y)_n = \bigoplus_{t \in \mathbb{Z}} (X_t \otimes_R Y_{n-t})$ and $\delta(x \otimes y) = \delta_t^X(x) \otimes y + (-1)^t x \otimes \delta_{n-t}^Y(y)$, $\forall x \in X^t, y \in Y^{n-t}$. Define $X \otimes Y$ to be $\frac{X \otimes Y}{B(X \otimes Y)}$. Then with the maps

$$\frac{(X \otimes Y)_n}{B_n(X \otimes Y)} \longrightarrow \frac{(X \otimes Y)_{n-1}}{B_{n-1}(X \otimes Y)}, \quad x \otimes y \mapsto \delta_X(x) \otimes y,$$

where $x \otimes y$ is used to denote the coset in $\frac{(X \otimes Y)_n}{B_n(X \otimes Y)}$, we get a complex of abelian groups.

Let \mathcal{A},\mathcal{B} be classes of objects in an abelian category \mathcal{D} . Let D be an object of \mathcal{D} . We recall the definition introduced in [2]. A morphism $f:D\to B$ is called a \mathcal{B} -preenvelope of D if $B\in\mathcal{B}$ and $\mathrm{Hom}(B,B')\to\mathrm{Hom}(D,B')\to 0$ is exact for all $B'\in\mathcal{B}$. If, moreover, any morphism $g:B\to B$ such that gf=f is an automorphism of B then $f:D\to B$ is called a \mathcal{B} -envelope. A monomorphism $\alpha:D\to B$ with $B\in\mathcal{B}$ is said to be a special \mathcal{B} -preenvelope of D if $\mathrm{Coker}(\alpha)\in{}^\perp\mathcal{B}$, where ${}^\perp\mathcal{B}=\{A\in\mathcal{D}:\mathrm{Ext}^1(A,B)=0$ for all $B\in\mathcal{B}\}$. Dually we have the concepts of a (special) \mathcal{B} -precover and a \mathcal{B} -cover. A pair of classes of objects $(\mathcal{A},\mathcal{B})$ is called a cotorsion pair (or cotorsion theory) [15, 20] if $\mathcal{A}^\perp=\mathcal{B}$ and ${}^\perp\mathcal{B}=\mathcal{A}$, where $\mathcal{A}^\perp=\{B\in\mathcal{D}:\mathrm{Ext}^1(A,B)=0$ for all $A\in\mathcal{A}\}$. A cotorsion pair $(\mathcal{A},\mathcal{B})$ is called hereditary if whenever $0\to A'\to A\to A''\to 0$ is exact with $A,A''\in\mathcal{A}$ then A' is also in \mathcal{A} . A cotorsion pair $(\mathcal{A},\mathcal{B})$ is called complete if every $D\in\mathcal{D}$ has a \mathcal{B} -envelope and a special \mathcal{A} -precover. A cotorsion pair $(\mathcal{A},\mathcal{B})$ is called perfect if every $D\in\mathcal{D}$ has a \mathcal{B} -envelope and an \mathcal{A} -cover. A cotorsion pair $(\mathcal{A},\mathcal{B})$ is said to be cogenerated by a set X if $X^\perp=\mathcal{A}^\perp$. It is well known that a perfect cotorsion pair is complete, but the converse may be false in general. In [1], Eklof and Trlifaj proved that a cotorsion pair $(\mathcal{A},\mathcal{B})$ in R-Mod is complete when it is cogenerated by a set. This result actually holds in any Grothendieck category with enough projectives, as Hovey proved in [17]. For unexplained concepts and notations, we refer the reader to [4, 5, 6, 11, 15, 21].

In [12], Gillespie introduced the following definition.

Definition 1.1 ([12, Definition 3.3]) Let (A, B) be a cotorsion pair on an abelian category C. Let X be a complex.

- (1) X is called an A complex if it is exact and $Z_n(X) \in A$ for all $n \in \mathbb{Z}$.
- (2) X is called a \mathcal{B} complex if it is exact and $Z_n(X) \in \mathcal{B}$ for all $n \in \mathbb{Z}$.
- (3) X is called a $\operatorname{dg-}\mathcal{A}$ complex if $X_n \in \mathcal{A}$ for each $n \in \mathbb{Z}$, and $\mathcal{H}om(X,B)$ is exact whenever B is a \mathcal{B} complex.
- (4) X is called a dg- \mathcal{B} complex if $X_n \in \mathcal{B}$ for each $n \in \mathbb{Z}$, and $\mathcal{H}om(A,X)$ is exact whenever A is a \mathcal{A} complex.

In particular, if $(\mathcal{A}, \mathcal{B}) = (\text{Proj}, R\text{-}Mod)$, then \mathcal{A} complexes and $\text{dg-}\mathcal{A}$ complexes is just projective complexes and DG-projective complexes, respectively. If $(\mathcal{A}, \mathcal{B}) = (R\text{-}Mod, \text{Inj})$, then \mathcal{B} complexes and $\text{dg-}\mathcal{B}$ complexes are just injective complexes, and DG-injective complexes respectively.

We denote the class of \mathcal{A} complexes by $\widetilde{\mathcal{A}}$ and the class of dg - \mathcal{A} complexes by $\mathrm{dg}\widetilde{\mathcal{A}}$. Similarly, the class of \mathcal{B} complexes is denoted by $\widetilde{\mathcal{B}}$ and the class of dg - \mathcal{B} complexes by $\mathrm{dg}\widetilde{\mathcal{B}}$. In [12], it was shown that $(\widetilde{\mathcal{A}},\mathrm{dg}\widetilde{\mathcal{B}})$ and $(\mathrm{dg}\widetilde{\mathcal{A}},\widetilde{\mathcal{B}})$ are cotorsion pairs in $\mathcal{C}(R)$ if $(\mathcal{A},\mathcal{B})$ is a cotorsion pair in R-Mod, and proven that $(\mathcal{A},\mathcal{B})$ is hereditary if and only if $(\widetilde{\mathcal{A}},\mathrm{dg}\widetilde{\mathcal{B}})$ is hereditary. In [13] and [14], it was considered the question of whether or not the induced cotorsion pairs are complete when the original cotorsion pair is complete, and shown that a cotorsion pair $(\mathcal{A},\mathcal{B})$ in an abelian category \mathcal{C} can induce two natural homological model structures on $\mathrm{Ch}(\mathscr{C})$ under certain conditions.

In section 2 of this article, the completeness of the cotorsion pair $(\widetilde{\mathcal{A}}, \operatorname{dg}\widetilde{\mathcal{B}})$ is studied. It is given a sufficient condition such that the cotorsion pair $(\widetilde{\mathcal{A}}, \operatorname{dg}\widetilde{\mathcal{B}})$ is complete. As some applications, we get that every complex over a right coherent ring has a $\widetilde{\mathcal{GF}}$ -cover, every complex has a $\widetilde{\mathcal{F}}_n$ -cover, and every complex has a $\widetilde{\mathcal{MF}}$ -cover, where \mathcal{GF} , \mathcal{F}_n , and \mathcal{MF} respectively denote the classes of all Gorenstein flat left R-modules, all left R-modules with flat dimension less than or equal to a fixed nonnegative integer n, and all min-flat left R-modules.

Section 3 is devoted to studying complexes in the class $\overline{\mathcal{A}}^{\perp}$, and completeness of the cotorsion pair $(\overline{\mathcal{A}}, \overline{\mathcal{A}}^{\perp})$. We prove that a complex C is in $\overline{\mathcal{A}}^{\perp}$ if and only if C_n is in \mathcal{A}^{\perp} for all $n \in \mathbb{Z}$ and $\mathcal{H}om(G, C)$ is exact for any $G \in \overline{\mathcal{A}}$, and $(\overline{\mathcal{A}}, \overline{\mathcal{A}}^{\perp})$ is complete if \mathcal{A} is closed under pure submodules and cokernels of pure monomorphisms. As an application, we get that every complex over a right coherent ring has a Gorenstein flat cover, which generalizes Theorem 5.4.8 in [11] and Theorem 2.12 in [10].

2. $\widetilde{\mathcal{A}}$ -covers of complexes

First are given some characterizations of \mathcal{A} complexes and \mathcal{B} complexes.

Lemma 2.1 ([14, Lemma 4.2]) Let \mathscr{C} be an abelian category, $Ch(\mathscr{C})$ be the category of complexes on \mathscr{C} . For each object $C \in \mathscr{C}$ and X, $Y \in Ch(\mathscr{C})$, we have the following isomorphisms.

- (1) If X is an exact complex, then $\operatorname{Ext}^1_{\mathscr{C}}(\operatorname{C}_n(X), C) \cong \operatorname{Ext}^1_{\operatorname{Ch}(\mathscr{C})}(X, \operatorname{S}^n(C))$.
- (2) If Y is an exact complex, then $\operatorname{Ext}^1_{\mathscr{C}}(C,\operatorname{Z}_n(Y)) \cong \operatorname{Ext}^1_{\operatorname{Ch}(\mathscr{C})}(\operatorname{S}^n(C),Y)$.

Proposition 2.2 Let (A, B) be a cotorsion pair in R-Mod. Then the following assertions are equivalent.

- (1) C is an A complex.
- (2) For every $\operatorname{dg} \mathcal{B}$ complex G, $\operatorname{Ext}^1(C, G) = 0$.
- (3) For every bounded above complex G with each component in \mathcal{B} , $\operatorname{Ext}^1(C,G)=0$.
- (4) For every bounded complex G with each component in \mathcal{B} , $\operatorname{Ext}^1(C,G)=0$.
- (5) For any $B \in \mathcal{B}$, and any $n \in \mathbb{Z}$, $\operatorname{Ext}^{1}(C, \operatorname{S}^{n}(B)) = 0$.

Proof $(1) \Rightarrow (2)$ It follows from the proof of [12, Proposition 3.6].

- $(2) \Rightarrow (3)$ It is clear since every bounded above complex with components in \mathcal{B} is dg- \mathcal{B} complex (see [12, Lemma 3.4(2)]).
 - $(3) \Rightarrow (4)$ and $(4) \Rightarrow (5)$ are obvious.
- $(5) \Rightarrow (1)$ First, we show that C is exact. Let $f_n : C_n/B_n(C) \longrightarrow I$ be an injective homomorphism, where I is an injective module. Then the induced morphism of complexes $f: C \longrightarrow S^n(I)$ follows as

$$C = \cdots \longrightarrow C_{n+1} \xrightarrow{\delta_{n+1}} C_n \xrightarrow{\delta_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow f_n \eta \qquad \qquad \downarrow$$

$$S^n(I) = \cdots \longrightarrow 0 \longrightarrow I \longrightarrow 0 \longrightarrow \cdots,$$

where $\eta: C_n \longrightarrow C_n/B_n(C)$ is the natural epimorphism. We get that f is homotopic to zero since $\operatorname{Ext}^1(C, \operatorname{S}^n(I)) = 0$. Let $\{S_n\}_{n \in \mathbb{Z}}$ be homotopy, then $S_{n-1}\delta_n = f_n\eta$. Thus $\operatorname{Z}_n(C) \subseteq \operatorname{B}_n(C)$, and so C is an exact complex. Next it is proven that $\operatorname{Z}_n(C) \in \mathcal{A}$. By Lemma 2.1, $\operatorname{Ext}^1_R(\operatorname{C}_n(C), B) \cong \operatorname{Ext}^1(C, \operatorname{S}^n(B))$ for any $B \in \mathcal{B}$. But $\operatorname{Ext}^1(C, \operatorname{S}^n(B)) = 0$, so $\operatorname{Ext}^1_R(\operatorname{C}_n(C), B) = 0$. Thus $\operatorname{C}_n(C) \in \mathcal{A}$. Since $\operatorname{Z}_n(C) \cong \operatorname{C}_{n+1}(C)$, we have $\operatorname{Z}_n(C) \in \mathcal{A}$. Therefore C is \mathcal{A} complex.

Proposition 2.3 Let (A, B) be a cotorsion pair in R-Mod. Then the following assertions are equivalent.

- (1) C is a \mathcal{B} complex.
- (2) For every $\operatorname{dg} \mathcal{A}$ complex G, $\operatorname{Ext}^1(G, C) = 0$.
- (3) For every bounded below complex G with each component in A, $\operatorname{Ext}^1(G,C)=0$.
- (4) For every bounded complex G with each component in A, $\operatorname{Ext}^1(G,C)=0$.
- (5) For any $A \in \mathcal{A}$, and any $n \in \mathbb{Z}$, $\operatorname{Ext}^{1}(S^{n}(A), C) = 0$.

Proof $(1) \Rightarrow (2)$ It follows from the proof of [12, Proposition 3.6].

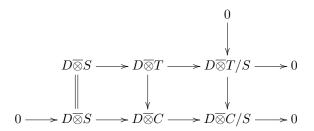
- $(2) \Rightarrow (3)$ is clear since every bounded below complex with each component in \mathcal{A} is dg- \mathcal{A} complex (see [12, Lemma 3.4(1)]).
 - $(3) \Rightarrow (4)$ and $(4) \Rightarrow (5)$ are obvious.
- $(5) \Rightarrow (1)$ Note that $\mathcal{H}om(S^0(R), C) \cong C$ for any complex, we obtain that $H^n(C) \cong \operatorname{Ext}^1(S^{1-n}(R), C)$ by [12, Lemma 2.1]. Since ${}_RR \in \mathcal{A}$, it follows that C is an exact complex by the assumption. By Lemma 2.1, $\operatorname{Ext}^1_R(A, \operatorname{Z}_n(C)) \cong \operatorname{Ext}^1(S^n(A), C)$ for all $A \in \mathcal{A}$, which implies that $\operatorname{Z}_n(C) \in \mathcal{B}$ for all $n \in \mathbb{Z}$. Thus C is \mathcal{B} complex.

According to [11], a short exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ in $\mathcal{C}(R)$ is called pure if the sequence $0 \longrightarrow F \overline{\otimes} A \longrightarrow F \overline{\otimes} B$ is exact for any (or finitely presented) complex F of right R-modules. Equivalently, $\underline{\mathrm{Hom}}(F,B) \longrightarrow \underline{\mathrm{Hom}}(F,C) \longrightarrow 0$ is surjective for all finitely presented complex F of left R-modules. A subcomplex $S \subset C$ is pure if $0 \longrightarrow S \longrightarrow C \longrightarrow C/S \longrightarrow 0$ is a pure exact sequence.

Lemma 2.4 ([12, Lemma 4.6]) Let $|R| \leq \aleph$, where \aleph is some infinite cardinal. Then for any $C \in \mathcal{C}(R)$ and any element $x \in C$ (by this we mean $x \in C_n$ for some n), there exists a pure subcomplex $P \subseteq C$ with $x \in P$ and $|P| \leq \aleph$.

Lemma 2.5 Suppose S,T and C are complexes of left R-modules such that $S \subseteq T \subseteq C$. If S is pure in C and T/S is pure in C/S, then T is pure in C.

Proof Let D be any complex of right R-modules. Then we get the following commutative diagram



where all of the maps are the obvious ones. Thus $0 \to D \overline{\otimes} T \to D \overline{\otimes} C$ is exact, and so T is pure in C.

Note that the similar result holds in R-Mod.

Lemma 2.6 If $0 \to A \to B \to C \to 0$ is pure exact in C(R), then $0 \to Z_n(A) \to Z_n(B) \to Z_n(C) \to 0$ is pure exact in R-Mod for all $n \in \mathbb{Z}$.

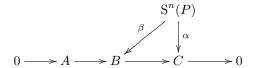
Proof By the hypothesis, we have an exact sequence $0 \to Z_n(A) \to Z_n(B) \to Z_n(C) \to 0$ in R-Mod. Let P be any finitely presented module, and $f: P \to Z_n(C)$ be any R-homomorphism. We define $\alpha: S^n(P) \to C$ as

$$S^{n}(P) = \cdots \longrightarrow 0 \longrightarrow P \longrightarrow 0 \longrightarrow \cdots$$

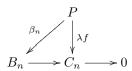
$$\downarrow \qquad \qquad \downarrow^{\lambda f} \qquad \downarrow$$

$$C = \cdots \longrightarrow C_{n+1} \longrightarrow C_{n} \longrightarrow C_{n-1} \longrightarrow \cdots,$$

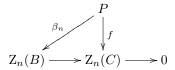
where $\lambda: \mathbf{Z}_n(C) \longrightarrow C_n$ is the natural inclusion. Since $\mathbf{S}^n(P)$ is a finitely presented complex, there exists $\beta: \mathbf{S}^n(P) \longrightarrow B$ such that the diagram



commutes. Thus



commutes. Since β is a morphism of complexes from $S^n(P)$ to B, we get $\delta_n^B \beta_n = 0$, and so $\text{Im}(\beta_n) \subseteq \mathbf{Z}_n(B)$, which imply that $\beta_n : P \longrightarrow \mathbf{Z}_n(B)$ and



commutes. \Box

Lemma 2.7 If \mathcal{A} is closed under pure submodules and cokernels of pure monomorphisms, then $\widetilde{\mathcal{A}}$ is closed under pure subcomplexes and cokernels of pure monomorphisms.

Proof Suppose $0 \to S \to C \to C/S \to 0$ is a pure exact sequence in $\mathcal{C}(R)$ with $C \in \widetilde{\mathcal{A}}$. Then $0 \to (C/S)^+ \to C^+ \to S^+ \to 0$ is split, and so S^+ and $(C/S)^+$ are exact, which implies that S and C/S are exact. By Lemma 2.6, $Z_n(S)$ and $Z_n(C/S)$ are in \mathcal{A} for all $n \in \mathbb{Z}$. Therefore, S and C/S are in $\widetilde{\mathcal{A}}$. \square

Next we prove that $(\widetilde{\mathcal{A}}, dg\widetilde{\mathcal{B}})$ is complete under additional conditions. The method of proof is learned from [12, Proposition 4.9].

Theorem 2.8 Let (A, B) be a cotorsion pair in R-Mod. If A is closed under pure submodules and cokernels of pure monomorphisms, then the cotorsion pair $(\widetilde{A}, \operatorname{dg}\widetilde{B})$ is complete. Furthermore, it is perfect.

Proof Suppose $G \in \widetilde{\mathcal{A}}$, and $|R| \leq \aleph$ for some infinite cardinal \aleph . We will show that G is equal to the union of a continuous chain $(P^{\alpha})_{\alpha < \lambda}$ of pure subcomplexes of G with $|P^{0}| \leq \aleph$ and $|P^{\alpha+1}/P^{\alpha}| \leq \aleph$ for all α .

Set $T = \coprod_{n \in \mathbb{Z}} G_n$. We may well order the set T so that for some ordinal λ ,

$$T = \{x_0, x_1, x_2, ..., x_{\alpha}, ...\}_{\alpha < \lambda}.$$

For x_0 , use Lemma 2.4 to find a pure subcomplex $P^1 \subseteq G$ containing x_0 with $|P^1| \leq \aleph$. Then G/P^1 is in $\widetilde{\mathcal{A}}$ by Lemma 2.7. Now $\overline{x_1} \in G/P^1$. Therefore we can find a pure subcomplex $P^2/P^1 \subseteq G/P^1$ containing $\overline{x_1}$ such that $|P^2/P^1| \leq \aleph$. Then $(G/P^1)/(P^2/P^1) \cong G/P^2$ is in $\widetilde{\mathcal{A}}$. By Lemma 2.5, we get P^2 is pure. Note that $P^1 \subseteq P^2$ and $x_0, x_1 \in P^2$. In general, given any ordinal α , and having constructed pure subcomplexes $P^1 \subseteq P^2 \subseteq \ldots \subseteq P^\alpha$ where $x_\gamma \in P^\alpha$ for all $\gamma < \alpha$, we find a pure subcomplex $P^{\alpha+1} \subseteq G$ as follows: $\overline{x_\alpha} \in G/P^\alpha$, so by Lemma 2.4 we can find a pure subcomplex $P^{\alpha+1}/P^\alpha \subseteq G/P^\alpha$ containing $\overline{x_\alpha}$ such that $|P^{\alpha+1}/P^\alpha| \leq \aleph$. Thus $(G/P^\alpha)/(P^{\alpha+1}/P^\alpha) \cong G/P^{\alpha+1}$ is in $\widetilde{\mathcal{A}}$, whence $P^{\alpha+1}$ is pure. We now have $P^1 \subseteq P^2 \subseteq \ldots \subseteq P^\alpha \subseteq P^{\alpha+1}$ and $x_0, x_1, \ldots, x_\alpha \in P^{\alpha+1}$. For the case when α is a limit ordinal we just define $P^\alpha = \bigcup_{\gamma < \alpha} P^\gamma$. Then as we noted above, P^α is pure, and $x_\gamma \in P^\alpha$ for all $\gamma < \alpha$. This construction gives us the directed continuous chain $(P^\alpha)_{\alpha < \lambda}$.

If C is a complex such that $\operatorname{Ext}^1(P^0,C)=0$ and $\operatorname{Ext}^1(P^{\alpha+1}/P^\alpha,C)=0$ whenever $\alpha+1<\lambda$, then $\operatorname{Ext}^1(G,C)=0$ by [12, Lemma 4.5]. Let X be a set of representatives of all complexes $C\in\widetilde{\mathcal{A}}$ with $|C|\leq\aleph$. Then $\widetilde{\mathcal{A}}^\perp=X^\perp$. That is, $(\widetilde{\mathcal{A}},\operatorname{dg}\widetilde{\mathcal{B}})$ is complete.

Since \mathcal{A} is closed under direct sums, \mathcal{A} is closed under direct limits by [15, Corollary 1.2.7]. Thus the cotorsion pair $(\widetilde{\mathcal{A}}, \mathrm{dg}\widetilde{\mathcal{B}})$ is automatically perfect.

According to [3], a module M is called Gorenstein flat if there exists an exact sequence in R-Mod

$$\cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow F_{-1} \longrightarrow \cdots$$

of flat R-modules such that $M = \text{Ker}(F_0 \to F_{-1})$ and that remains exact whenever $E \otimes -$ is applied for any injective right R-module E. Let \mathcal{GF} denote the class of all Gorenstein flat left R-modules. In [7, Theorem 3.1.9] (also, see [10]), it was proven that over a right coherent ring $(\mathcal{GF}, \mathcal{GF}^{\perp})$ is a perfect and hereditary cotorsion pair. By Theorem 2.8, we get the following corollary.

Corollary 2.9 Every complex over a right coherent ring has a $\widetilde{\mathcal{GF}}$ -cover.

Proof By [7, Corollary 2.1.9], we have that \mathcal{GF} is closed under direct limits. Thus it is enough to prove that \mathcal{GF} is closed under pure submodules and cokernels of pure monomorphisms. Suppose $0 \to P \to M \to M/P \to 0$ is pure exact in R-Mod with $M \in \mathcal{GF}$. Then $0 \to (M/P)^+ \to M^+ \to P^+ \to 0$ is split, and $M^+ \in \mathcal{GI}$ by [16, Theorem 3.6], where \mathcal{GI} denotes the class of Gorenstein injective modules. Thus $(M/P)^+$ and P^+ are in \mathcal{GI} by [16, Theorem 2.6], which implies that M/P and P are in \mathcal{GF} .

The symbol \mathcal{F}_n stands for the class of all left R-modules with flat dimension less than or equal to a fixed nonnegative integer n. In [19, Theorem 3.4], it was proven that $(\mathcal{F}_n, \mathcal{F}_n^{\perp})$ is a perfect and hereditary cotorsion pair. Note that \mathcal{F}_n is closed under pure submodules, cokernels of pure monomorphisms and direct limits. Thus we have the following result.

Corollary 2.10 Every complex has a $\widetilde{\mathcal{F}}_n$ -cover.

A left R-module M is called min-flat [18] if $\operatorname{Tor}_1(R/I, M) = 0$ for each simple right ideal I. Let \mathcal{MF} denote the class of all min-flat left R-modules. In [18, Theorem 3.4], it was proven that $(\mathcal{MF}, \mathcal{MF}^{\perp})$ is a perfect cotorsion pair. Note that \mathcal{MF} is closed under pure submodules, cokernels of pure monomorphisms and direct limits.

Corollary 2.11 Every complex has a $\widetilde{\mathcal{MF}}$ -cover.

Remark 2.12 It is well known that the class of modules closed under pure submodules and cokernels of pure monomorphisms is Kaplansky class (see [8, Definition 2.1] and [9, Proposition 3.2.2]). In [13], Gillespie has considered the completeness of the cotorsion pair $(\widetilde{\mathcal{A}}, dg\widetilde{\mathcal{B}})$ in the condition of Kaplansky classes in a locally k-presentable Grothendieck category. But Theorem 2.8 is not a particular case of Theorem 4.12 in [13]. For example, in general the cotorsion pair $(\mathcal{MF}, \mathcal{MF}^{\perp})$ is not hereditary. Thus \mathcal{MF} does not satisfy condition 4 of Theorem 4.12 in [13].

3. \overline{A} -covers of complexes

Let \mathcal{A} be the class of R-modules and $\overline{\mathcal{A}}$ denote the class of all complexes with each component in \mathcal{A} .

Lemma 3.1 ([12, Lemma 3.1]) Let \mathscr{C} be abelian category, $Ch(\mathscr{C})$ be the category of complexes on \mathscr{C} . For each object $C \in \mathscr{C}$ and X, $Y \in Ch(\mathscr{C})$, we have the following isomorphisms.

- (1) $\operatorname{Ext}^1_{\mathscr{C}}(X_n, C) \cong \operatorname{Ext}^1_{\operatorname{Ch}(\mathscr{C})}(X, \operatorname{D}^{n+1}(C))$.
- (2) $\operatorname{Ext}^1_{\mathscr{C}}(C, Y_n) \cong \operatorname{Ext}^1_{Ch(\mathscr{C})}(\operatorname{D}^n(C), Y)$.

Proposition 3.2 Let C be a complex. Then C is in \overline{A}^{\perp} if and only if C_n is in A^{\perp} for all $n \in \mathbb{Z}$ and $\mathcal{H}om(G,C)$ is exact for any $G \in \overline{A}$.

Proof \Rightarrow) Suppose (C, δ) is in $\overline{\mathcal{A}}^{\perp}$. By Lemma 3.1, we have $\operatorname{Ext}^1(F, C_n) \cong \operatorname{Ext}^1(\operatorname{D}^n(F), C)$ for each $F \in \mathcal{A}$. But $\operatorname{Ext}^1(\operatorname{D}^n(F), C) = 0$, so $\operatorname{Ext}^1(F, C_n) = 0$. Therefore, C_n is in \mathcal{A}^{\perp} .

For any $G \in \overline{\mathcal{A}}$, $\mathcal{H}om(G,C)$ is exact if and only if for each n each map of complexes $f: G \to \Sigma^{-n}C$ is homotopic to 0 if and only if for each n and each map of complexes $f: G \to \Sigma^{-n}C$ the sequence $0 \to \Sigma^{-n}C \to M(f) \to \Sigma^{-1}G \to 0$ splits if and only if for each n and each map of complexes $f: G \to \Sigma^{-n}C$ the sequence $0 \to C \to \Sigma^{-n}M(f) \to \Sigma^{n-1}G \to 0$ splits where M(f) denotes the mapping cone of f. Since G is in $\overline{\mathcal{A}}$, $\Sigma^{n-1}G$ is also in $\overline{\mathcal{A}}$. By the hypothesis, $\operatorname{Ext}^1(\Sigma^{n-1}G,C) = 0$. So the sequence $0 \to C \to \Sigma^{-n}M(f) \to \Sigma^{n-1}G \to 0$ splits, and so $\mathcal{H}om(G,C)$ is an exact complex.

 \Leftarrow) Suppose C_n is in \mathcal{A}^{\perp} for all $n \in \mathbb{Z}$ and $\mathcal{H}om(G,C)$ is exact for any $G \in \overline{\mathcal{A}}$. Any exact sequence $0 \longrightarrow C \longrightarrow W \longrightarrow G \longrightarrow 0$ of complexes with $G \in \overline{\mathcal{A}}$ splits at the module level. So this sequence is isomorphic to $0 \longrightarrow C \longrightarrow \mathrm{M}(f) \longrightarrow G \longrightarrow 0$, where $f : \Sigma^1 G \to C$ is a map of complexes. Since $\mathcal{H}om(\Sigma^1 G,C)$ is exact, the sequence $0 \longrightarrow C \longrightarrow \mathrm{M}(f) \longrightarrow G \longrightarrow 0$ splits in $\mathcal{C}(R)$ by [11, Lemma 2.3.2]. So $0 \longrightarrow C \longrightarrow W \longrightarrow G \longrightarrow 0$ also splits.

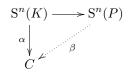
Remark 3.3 If $_RR \in \mathcal{A}$, $C \in \overline{\mathcal{A}}^{\perp}$, then C is exact by $H^n(C) \cong \operatorname{Ext}^1(\underline{R}[1-n], C)$ for all $n \in \mathbb{Z}$.

Proposition 3.4 If (C, δ) is in \overline{A}^{\perp} , then $Z_n(C)$ is in A^{\perp} for all $n \in \mathbb{Z}$.

Proof For any $F \in \mathcal{A}$, it is enough to prove that $\operatorname{Ext}^1(F, \operatorname{Z}_n(C)) = 0$. Consider the exact sequence $0 \longrightarrow K \longrightarrow P \longrightarrow F \longrightarrow 0$ with P a projective module. It yields an exact sequence of complexes

$$0 \longrightarrow S^n(K) \longrightarrow S^n(P) \longrightarrow S^n(F) \longrightarrow 0.$$

By the hypothesis, $\operatorname{Ext}^1(\operatorname{S}^n(F),C)=0$. So $\operatorname{Hom}(\operatorname{S}^n(P),C)\longrightarrow \operatorname{Hom}(\operatorname{S}^n(K),C)\longrightarrow 0$ is exact. Let $f:K\to\operatorname{Z}_n(C)$ be an R-homomorphism. We define $\alpha_n:K\to C_n$ as $\alpha_n=\lambda f$ where λ is the inclusion map and $\alpha_i=0$ for $i\neq n$. In this way we obtain a map of complexes $\alpha:\operatorname{S}^n(K)\to C$. Then there exists $\beta:\operatorname{S}^n(P)\to C$ such that the diagram



commutes. Hence we have the commutative diagram

$$K \longrightarrow P$$

$$\lambda f \Big|_{\mathcal{L}} \beta_n$$

$$C_n$$

Since β is a morphism of complexes from $S^n(P)$ to C, we obtain $\delta_n\beta_n=0$, which implies that $\mathrm{Im}\beta_n\subseteq \mathrm{Z}_n(C)$. So we define $g:P\to\mathrm{Z}_n(C)$ as $g=\beta_n$. Thus $\mathrm{Hom}(P,Z_n(C))\longrightarrow\mathrm{Hom}(K,\mathrm{Z}_n(C))\longrightarrow 0$ is exact. On the other hand, we have an exact sequence $\mathrm{Hom}(P,\mathrm{Z}_n(C))\longrightarrow\mathrm{Hom}(K,\mathrm{Z}_n(C))\longrightarrow\mathrm{Ext}^1(F,\mathrm{Z}_n(C))\longrightarrow 0$. Therefore, $\mathrm{Ext}^1(F,\mathrm{Z}_n(C))=0$.

Lemma 3.5 If G is in \mathcal{A}^{\perp} , then $D^{n}(G)$ is in $\overline{\mathcal{A}}^{\perp}$ for all $n \in \mathbb{Z}$.

Proof By Lemma 3.1, we have $\operatorname{Ext}^1(F_{n-1},G) \cong \operatorname{Ext}^1(F,\operatorname{D}^n(G))$ for each $F \in \overline{\mathcal{A}}$. But $\operatorname{Ext}^1(F_{n-1},G) = 0$, so $\operatorname{Ext}^1(F,\operatorname{D}^n(G)) = 0$. Therefore, $\operatorname{D}^n(G)$ is in \mathcal{A}^{\perp} .

Proposition 3.6 If (A, B) is a cotorsion pair in R-Mod, then $(\overline{A}, \overline{A}^{\perp})$ is a cotorsion pair in C(R).

Proof It follows from Proposition 3.2 in [14].

Lemma 3.7 If $0 \to A \to B \to C \to 0$ is pure exact in C(R), then $0 \to A_n \to B_n \to C_n \to 0$ is pure exact in R-Mod for all $n \in \mathbb{Z}$.

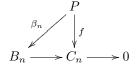
Proof Suppose P is a finitely presented module and $f: P \to C_n$. Then we have a commutative diagram

since $D^n(P)$ is a finitely presented complex, where $\alpha: D^n(P) \to C$ follows as

$$D^{n}(P) = \cdots \longrightarrow 0 \longrightarrow P \longrightarrow P \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ C = \cdots \longrightarrow C_{n+1} \longrightarrow C_{n} \longrightarrow C_{n-1} \longrightarrow C_{n-2} \longrightarrow \cdots,$$

Thus



commutes. That is, $0 \to A_n \to B_n \to C_n \to 0$ is pure.

Lemma 3.8 If A is closed under pure submodules and cokernels of pure monomorphisms, then \overline{A} is closed under pure subcomplexes and cokernels of pure monomorphisms.

Proof It follows from Lemma 3.7.

Based on the preceding results, we get the following theorem by analogy with the proof of Theorem 2.8.

Theorem 3.9 Let (A, B) be a cotorsion pair in R-Mod. If A is closed under pure submodules and cokernels of pure monomorphisms, then the cotorsion pair $(\overline{A}, \overline{A}^{\perp})$ is complete. Furthermore, it is perfect.

In [11], García Rozas defined Gorenstein flat complexes and characterized such complexes over Gorenstein rings. A complex C is called Gorenstein flat if there exists an exact sequence of complexes $\cdots \longrightarrow F^{-1} \longrightarrow F^0 \longrightarrow F^1 \longrightarrow \cdots$ such that each F^i is flat, $C = \operatorname{Ker}(F^0 \to F^1)$ and the sequence remains exact when $I \otimes -$ is applied to it for any injective complex I. It was proven that every complex over a commutative Gorenstein ring has a Gorenstein flat cover [11, Theorem 5.4.8]. We will show that the same result holds if R is a right coherent ring.

The following lemma is due to Yang [22, Theorem 5].

Lemma 3.10 Let R be a right coherent ring, C a complex. Then C is Gorenstein flat if and only if C_n is Gorenstein flat in R-Mod for all $n \in \mathbb{Z}$.

According to the above lemma, it is shown that over a right coherent ring the class of Gorenstein flat complexes coincides with $\overline{\mathcal{GF}}$. Thus we get the following corollary.

Corollary 3.11 Every complex over a right coherent ring has a Gorenstein flat cover.

According to [10, Theorem 2.12], all left modules over a right coherent ring have Gorenstein flat covers. Corollary 3.11 shows that the corresponding result holds in the category of complexes of R-modules, and generalizes Theorem 5.4.8 in [11].

Analogously, we have the following two corollaries.

Corollary 3.12 Every complex has a $\overline{\mathcal{F}}_n$ -cover.

Corollary 3.13 Every complex has a $\overline{\mathcal{MF}}$ -cover.

Acknowledgement

The authors would like to thank the referee for valuable suggestions and helpful corrections. This paper was supported by the National Natural Science Foundation of China (No. 11201377; 11261050).

References

- [1] Eklof, P.C., Trlifaj, J.: How to make Ext vanish. Bull. London Math. Soc. 33, 41–51 (2001).
- [2] Enochs, E.E.: Injective and flat covers, envelopes and resolvents. Israel J. Math. 39, 189–209 (1981).
- [3] Enochs, E.E., Jenda, O.M.G., Torrecillas, B.: Gorenstein flat modules. Journal of Nanjing University-Math. Biquarterly, 1, 1–9 (1993).

WANG and LIU/Turk J Math

- [4] Enochs, E.E., Jenda, O.M.G., Xu, J.: Orthogonality in the category of complexes. Math. J. Okayama Univ. 38, 25–46 (1996).
- [5] Enochs, E.E., García Rozas, J.R.: Tensor products of complexes. Math. J. Okayama Univ. 39, 17–39 (1997).
- [6] Enochs, E.E., Jenda, O.M.G.: Relative Homological Algebra. de Gruyter Exp. Math. vol. 30, de Gruyter, Berlin. 2000.
- [7] Enochs, E.E., López Ramos, J.A.: Gorenstein flat modules. Nova Science Publishers, Inc. Huntington, New York. 2001.
- [8] Enochs, E.E., López Ramos, J.A.: Kaplansky classes, Rend. Sem. Mat. Univ. Padova 107, 67–79 (2002).
- [9] Enochs, E.E., Oyonarte, L.: Covers, envelopes and cotorsion theories. Nova Science Publishers, Inc., New York, 2002.
- [10] Enochs, E.E., Jenda, O.M.G., Lopez Ramos, J.A.: The existence of Gorenstein flat covers. Math. Scand. 94, 46–62 (2004).
- [11] García Rozas, J. R.: Covers and envelopes in the category of complexes of modules. CRC Press. Boca Raton, FL,
- [12] Gillespie, J.: The flat model structure on Ch(R). Tran. Amer. Math. Soc. 356, 3369–3390 (2004).
- [13] Gillespie, J.: Kaplansky classes and derived categories. Math. Z. 257, 811–843 (2007).
- [14] Gillespie, J.: Cotorsion pairs and degreewise homological model structures. Homology, Homotopy Appl. 10, 283–304 (2008).
- [15] Göbel, R., Trlifaj, J.: Approximations and endomorphism algebras of modules. Berlin, New York: Walter de Gruyter, 2006.
- [16] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra. 189, 167–193 (2004).
- [17] Hovey, M.: Cotorsion theories, model category structures and representation theory. Math. Z. 241, 553-592 (2002).
- [18] Mao, L.X.: Min-flat modules and min-coherent rings. Comm. Algebra. 35, 635–650 (2007).
- [19] Mao, L.X., Ding, N.Q.: Envelopes and covers by modules of finite FP-injective and flat dimensions. Comm. Algebra. 35, 833–849 (2007).
- [20] Salce, L.: Cotorsion theories for abelian groups. Symposia Math. 23, 11–32 1979.
- [21] Xu, J.Z.: Flat covers of modules. Lecture Notes in Math. Vol. 1634, Berlin, Heidelberg, New York: Springer-verlag, 1996.
- [22] Yang, G.: Gorenstein projective, injective and flat complexes. Acta Math. Sinica(Chin. Ser.). 54, 451–460 (2011).