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Abstract: In this paper, we define the concept of almost product Riemannian submersion between almost product

Riemannian manifolds. We introduce slant submersions from almost product Riemannian manifolds onto Riemannian

manifolds. We give examples and investigate the geometry of foliations that arise from the definition of a Riemannian

submersion. We also find necessary and sufficient conditions for a slant submersion to be totally geodesic.
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1. Introduction

Given a C∞−submersion π from a Riemannian manifold (M, g) onto a Riemannian manifold (B, g′), there

are several kinds of submersions according to the conditions on it: e.g., Riemannian submersion ([8], [14]),

slant submersion ([15],[16]), almost Hermitian submersion [18], or quaternionic submersion [10]. As we know,

Riemannian submersions are related to physics and have their applications in the Yang–Mills theory ([4],[19]),

Kaluza–Klein theory ([3],[11]), supergravity and superstring theories ([12],[13]), etc. On the other hand, the

geometry of slant submanifolds was initiated by B.Y. Chen as a generalization of both holomorphic and totally

real submanifolds in complex geometry ([5],[6]). Slant submanifolds of almost product manifolds were studied

in [17] and [1].

Riemannian submersions between almost Hermitian manifolds were studied by Watson in [18] under

the name of holomorphic submersions. One of the main results of this notion is that vertical and horizontal

distributions are invariant under almost complex structure. He showed that if the total manifold is a Kähler

manifold, the base manifold is also a Kähler manifold. Recently, Şahin [16] introduced slant submersions from

almost Hermitian manifolds to Riemannian manifolds. He showed that the geometry of slant submersions is

quite different from holomorphic submersions. Indeed, although every holomorphic submersion is harmonic,

slant submersions may not be harmonic. The paper is organized as follows. In Section 2 we recall some notions

needed for this paper. In section 3 we introduce the notion of almost product Riemannian submersions. We

obtain that if M is a locally product Riemannian manifold, then B is also a locally product manifold. In

section 4, we give the definition of slant Riemannian submersions and provide examples. We also investigate the

geometry of leaves of the distributions. Finally, we give necessary and sufficient conditions for such submersions

to be totally geodesic.
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2. Preliminaries

In this section, we define almost product Riemannian manifolds, recall the notion of Riemannian submersions

between Riemannian manifolds, and give a brief review of basic facts of Riemannian submersions.

Let M be an m -dimensional manifold with a tensor F of type (1, 1) such that

F 2 = I, (F ̸= I).

Then, we say that M is an almost product manifold with almost product structure F. We put

P =
1

2
(I + F ), Q =

1

2
(I − F ).

Then we get

P +Q = I, P 2 = P, Q2 = Q, PQ = QP = 0, F = P −Q.

Thus P and Q define 2 complementary distributions P and Q. We easily see that the eigenvalues of F are

+1 or −1.

If an almost product manifold M admits a Riemannian metric g such that

g(FX,FY ) = g(X,Y ) (1)

for any vector fields X and Y on M, then M is called an almost product Riemannian manifold, denoted by

(M, g, F ).

Denote the Levi–Civita connection on M with respect to g by ∇. Then, M is called a locally product

Riemannian manifold if F is parallel with respect to ∇, i.e.

∇XF = 0, X ∈ Γ(TM)[20].

Let (M, g) and (B, g′) be 2 Riemannian manifolds. A surjective C∞−map π : M → B is a

C∞−submersion if it has maximal rank at any point of M. Putting Vx = kerπ∗x, for any x ∈ M, we ob-

tain an integrable distribution V, which is called vertical distribution and corresponds to the foliation of M

determined by the fibers of π. The complementary distribution H of V, determined by the Riemannian metric

g, is called horizontal distribution. A C∞−submersion π : M → B between 2 Riemannian manifolds (M, g)

and (B, g′) is called a Riemannian submersion if, at each point x of M, π∗x preserves the length of the hori-

zontal vectors. A horizontal vector field X on M is said to be basic if X is π−related to a vector field X ′ on

B. It is clear that every vector field X ′ on B has a unique horizontal lift X to M and X is basic.

We recall that the sections of V, respectively H, are called the vertical vector fields, respectively horizontal

vector fields. A Riemannian submersion π : M → B determines 2 (1, 2) tensor fields T and A on M, by the

following formulas:

T (E,F ) = TEF = h∇vEvF + v∇vEhF (2)

and
A(E,F ) = AEF = v∇hEhF + h∇hEvF (3)

for any E,F ∈ Γ(TM), where v and h are the vertical and horizontal projections (see [7]). From (2) and (3),

one can obtain

∇UW = TUW + ∇̂UW ; (4)
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∇UX = TUX + h(∇UX); (5)

∇XU = v(∇XU) +AXU ; (6)

∇XY = AXY + h(∇XY ), (7)

for any X,Y ∈ Γ((kerπ∗)
⊥), U,W ∈ Γ(kerπ∗). Moreover, if X is basic then

h(∇UX) = h(∇XU) = AXU. (8)

We note that for U, V ∈ Γ(kerπ∗), TUV coincides with the second fundamental form of the immersion

of the fiber submanifolds and for X,Y ∈ Γ((kerπ∗)
⊥), AXY = 1

2v[X,Y ] reflecting the complete integrability of

the horizontal distribution H. It is known that A is alternating on the horizontal distribution: AXY = −AY X,

for X,Y ∈ Γ((kerπ∗)
⊥), and T is symmetric on the vertical distribution: TUV = TV U, for U, V ∈ Γ(kerπ∗).

We now recall the following result which will be useful for later.

Lemma 2.1 (See [7],[14]). If π : M → B is a Riemannian submersion and X,Y basic vector fields on M,

π−related to X ′ and Y ′ on B, then we have the following properties:

1. h[X,Y ] is a basic vector field and π∗h[X,Y ] = [X ′, Y ′] ◦ π;

2. h(∇XY ) is a basic vector field π−related to (∇′
X′Y ′), where ∇ and ∇′ are the Levi–Civita connection

on M and B;

3. [E,U ] ∈ Γ(kerπ∗), for any U ∈ Γ(kerπ∗) and for any basic vector field E.

Let (M, gM ) and (N, gN ) be Riemannian manifolds and π : M → N is a smooth map. Then the second

fundamental form of π is given by

(∇π∗)(X,Y ) = ∇π∗Xπ∗Y − π∗(∇XY ) (9)

for X,Y ∈ Γ(TM), where we denote conveniently by ∇ the Levi–Civita connections of the metrics gM and gN .

Recall that π is said to be harmonic if trace(∇π∗) = 0 and π is called a totally geodesic map if (∇π∗)(X,Y ) = 0

for X,Y ∈ Γ(TM) [2]. It is known that the second fundamental form is symmetric.

3. Almost product Riemannian submersions

In this section, we define the notion of almost product Riemannian submersion. We now define the almost

product map, which is similar to the notion of almost complex map between 2 almost Hermitian manifolds.

The results given in this section can be found in [9].

Definition 3.1 Let M and B be almost product Riemannian manifolds with almost product structures F and

F ′, respectively. A mapping π : M → B is said to be an almost product map if π∗ ◦ F = F ′ ◦ π∗. By using the

above definition, we are ready to give the following notion.

Definition 3.2 Let (M,F, g) and (B,F ′, g′) be almost product Riemannian manifolds. A Riemannian sub-

mersion π : M → B is called an almost product Riemannian submersion if π is an almost product map, i.e.

π∗ ◦ F = F ′ ◦ π∗.
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By using the almost product map, we have the following result.

Proposition 3.1 Let π : (M,F, g) → (B,F ′, g′) be an almost product Riemannian submersion from an almost

product manifold M onto an almost product manifold B , and let X be a basic vector field on M, π−related

to X ′ on B . Then, FX is also a basic vector field π−related to F ′X ′ .

The next proposition shows that an almost product submersion puts some restrictions on the distributions

V and H.

Proposition 3.2 Let π : (M,F, g) → (B,F ′, g′) be an almost product Riemannian submersion from an almost

product manifold M onto an almost product manifold B . Then, the horizontal and vertical distributions are

F− invariant.

Proof For any vertical vector field U , we have π∗(FU) = F ′(π∗U) = 0, and thus FU is vertical. Obviously,

for any horizontal vector field X and any vertical vector field U , we get g(FX,U) = g(X,FU) = 0, which

implies that FX is horizontal.

In the sequel, we show that the base manifold is a locally product manifold if the total manifold is a

locally product manifold. 2

Theorem 3.1 Let (M,F, g) be a locally product manifold and (B,F ′, g′) be an almost product manifold.

Suppose that π : (M,F, g) → (B,F ′, g′) be an almost product Riemannian submersion. Then (B,F ′, g′) is

a locally product Riemannian manifold.

Proof For X ′, Y ′ ∈ Γ(TB) such that π∗X = X ′, π∗Y = Y ′, where X,Y ∈ Γ(TM), since M is a locally

product manifold, for X,Y ∈ Γ(H), we have

0 = (∇XF )Y = ∇XFY − F∇XY.

Then, by using π∗F = F ′π∗, we get

π∗((∇XF )Y ) = π∗(∇XFY )− F ′π∗(∇XY ).

On the other hand, from Proposition 3.1, we know that if X is π−related to X ′, then FX is π−related to

F ′X ′. Also, from Lemma 2.1, it follows that h(∇XFY ) and h(∇XY ) are π−related to ∇′
X′F ′Y ′ and ∇′

X′Y ′.

Thus, we have

π∗((∇XF )Y ) = ∇′
X′F ′Y ′ − F ′∇′

X′Y ′.

Hence

π∗((∇XF )Y ) = (∇′
X′F ′)Y ′ = 0,

which proves the assertion. 2

As the fibers of an almost product submersion are an invariant submanifold of M with respect to F, we

have the following.

Corollary 3.1 Let π : (M,F, g) → (B,F ′, g′) be an almost product submersion from a locally product Rieman-

nian manifold M onto an almost product manifold B . Then, the fibers are locally product manifolds.
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4. Slant submersions

Definition 4.1 Let π be a Riemannian submersion from an almost product Riemannian manifold (M1, g1, F1)

onto a Riemannian manifold (M2, g2). If for any nonzero vector X ∈ (kerπ∗); p ∈ M1, the angle θ(X) between

FX and the space (kerπ∗) is a constant, i.e. it is independent of the choice of the point p ∈ M1 and choice of

the tangent vector X in (kerπ∗), then we say that π is a slant submersion. In this case, the angle θ is called

the slant angle of the slant submersion.

It is known that the distribution (kerπ∗) is integrable for a Riemannian submersion between Riemannian

manifolds. In fact, its leaves are π−1(p), p ∈ M1, i.e. fibers. Thus, it follows from the above definition that

the fibers of a slant submersion are slant submanifolds of M1, for slant submanifolds (see [17]).

We first give some examples of slant submersions.

Example 4.1 Define a map π : R4 → R2 by

π(x1, x2, x3, x4) = (
x1 + x2√

2
,
x3 + x4√

2
).

Then, the kernel of π∗ is

V = kerπ∗ = Span{V1 = − ∂

∂ x1
+

∂

∂ x2
, V2 = − ∂

∂ x3
+

∂

∂ x4
},

and the horizontal distribution is spanned by

H = (kerπ∗)
⊥ = Span{X =

∂

∂ x1
+

∂

∂ x2
, Y =

∂

∂ x3
+

∂

∂ x4
}.

Hence, we have

g(X,X) = g(Y, Y ) = 2, g′(π∗X,π∗X) = g′(π∗Y, π∗Y ) = 2.

Thus, π is a Riemannnian submersion. Moreover, we can easily obtain that π satisfies

π∗FX = F ′π∗X

and

π∗FY = F ′π∗Y.

Then, π is an almost product Riemannian submersion.

Thus the map π is a slant submersion with slant angle θ = 0.

Example 4.2 Every antiinvariant Riemannian submersion from an almost product Riemannian manifold onto

a Riemannian manifold is a slant submersion with θ = π
2 .

Example 4.3 Consider the following Riemannian submersion given by

π : R4 → R2

(x1, ..., x4) → (
x1 − x2√

2
, x4).

Then π is a slant submersion with slant angle θ = π
4 .
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GÜNDÜZALP/Turk J Math

Example 4.4 Define a map π : R4 → R2 by

π(x1, ..., x4) = (x2, x1 sinα− x4 cosα),

where 0 < α < π
2 . Then the map π is a slant submersion with the slant angle θ = α.

Example 4.5 Define a map π : R4 → R2 by

π(x1, ..., x4) = (x1 cosα− x2 sinα, x3 sinβ − x4 cosβ).

Then the map π is a slant submersion with the slant angle θ with cos θ = | sin(α+ β)|.

Let π be a Riemannian submersion from an almost product Riemannian manifold M1 with the structure

(g1, F ) onto a Riemannian manifold (M2, g2). Then forX ∈ Γ(kerπ∗), we write

FX = ϕX + ωX, (10)

where ϕX and ωX are vertical and horizontal parts of FX. From Eqs. (1) and (10), one can easily see that

g1(X,ϕY ) = g1(ϕX, Y ), (11)

for any X,Y ∈ Γ(kerπ∗).

Also, for Z ∈ Γ((kerπ∗)
⊥), we have

FZ = BZ + CZ, (12)

where BZ and CZ are vertical and horizontal component of FZ. From Eqs. (1) and (12), one can easily see

that
g1(Z1, CZ2) = g1(CZ1, Z2), (13)

for any Z1, Z2 ∈ Γ((kerπ∗)
⊥).

We define the covariant derivatives of ϕ and ω as follows:

(∇Xϕ)Y = ∇̂XϕY − ϕ∇̂XY (14)

and

(∇Xω)Y = h∇XωY − ω∇̂XY (15)

for X,Y ∈ Γ(kerπ∗), where ∇̂XY = v∇XY. Then we easily have

Lemma 4.1 Let (M1, g1, F ) be a locally product Riemannian manifold and (M2, g2) a Riemannian manifold.

Let π : (M1, g1, F ) → (M2, g2) be a slant submersion. Then we get

∇̂XϕY + TXωY = ϕ∇̂XY +BTXY

TXϕY + h∇XωY = ω∇̂XY + CTXY

for any X,Y ∈ Γ(kerπ∗).
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Let π be a slant submersion from an almost product Riemannian manifold (M1, g1, F1) onto a Riemannian

manifold (M2, g2) with the slant angle θ ∈ (0, π
2 ); then we say that ω is parallel with respect to the Levi–Civita

connection ∇ on (kerπ∗) if its covariant derivative with respect to ∇ vanishes, i.e. we have

(∇Xω)Y = h∇XωY − ω∇̂XY = 0 (16)

for X,Y ∈ Γ(kerπ∗).

Invariant and antiinvariant submanifolds are particular classes of slant submanifolds with slant angles

θ = 0 and θ = π
2 , respectively. A slant submanifold that is neither an invariant nor antiinvariant submanifold

is called a proper slant submanifold([1]).

Theorem 4.1 Let π be a Riemannian submersion from an almost product Riemannian manifold (M1, g1, F )

onto a Riemannian manifold (M2, g2). Then π is a proper slant submersion if and only if there exists a constant

λ ∈ [0, 1] such that

ϕ2X = λX

for X ∈ Γ(kerπ∗). If π is a proper slant submersion, then λ = cos2 θ.

Proof For any nonzero X ∈ Γ(kerπ∗), we can write

cos θ(X) =
∥ϕX∥
∥FX∥

, (17)

where θ(X) is the slant angle. By using Eqs. (11), (17), and (1), we get

g1(ϕ
2X,X) = g1(ϕX, ϕX)

= cos2 θ(X)g1(FX,FX)

= cos2 θ(X)g1(X,X) (18)

for all X ∈ Γ(kerπ∗). Since g1 is Riemannian metric, from Eq. (18) we have

ϕ2X = cos2 θ(X)X, X ∈ Γ(kerπ∗). (19)

Let λ = cos2 θ. Then it is obvious that λ ∈ [0, 1].

Conversely, let us assume that there exists a constant λ ∈ [0, 1] such that ϕ2 = λI is satisfied. From

Eqs. (10), (11), and (1) we get

cos θ(X) =
g1(FX, ϕX)

∥FX∥∥ϕX∥

=
λg1(FX,FX)

∥FX∥∥ϕX∥
,

for all X ∈ Γ(kerπ∗). Thus we have

cosθ(X) =
λ∥FX∥
∥ϕX∥

.
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Since cosθ(X) = ∥ϕX∥
∥FX∥ , then by using the last equation we obtain cos2θ(X) = λ, which implies that θ(X) is a

constant and π is a proper slant submersion. If π is a proper slant submersion, then λ = cos2 θ. 2

From Theorem 4.1 and Eq. (10) we have the following result.

Lemma 4.2 Let π be a slant submersion from an almost product Riemannian manifold (M1, g1, F1) onto a

Riemannian manifold (M2, g2) with slant angle θ ∈ (0, π
2 ). Then, for any X,Y ∈ Γ(kerπ∗), we have

g1(ϕX, ϕY ) = cos2 θg1(X,Y ) (20)

g1(ωX,ωY ) = sin2 θg1(X,Y ). (21)

Proposition 4.1 Let π be a slant submersion from a locally product Riemannian manifold onto a Riemannian

manifold with the slant angle θ ∈ (0, π
2 ). If ω is parallel with respect to ∇ on (kerπ∗), then we have

TϕXϕX = cos2 θTXX (22)

for X ∈ (kerπ∗).

Proof If ω is parallel, then from Lemma 4.1 we have CTXY = TXϕY for X,Y ∈ (kerπ∗). Interchanging the

role of X and Y, we get CTY X = TY ϕX. Thus we have

CTXY − CTY X = TXϕY − TY ϕX.

Since T is symmetric, we derive TXϕY = TY ϕX. Then substituting Y by ϕX, we get TXϕ2X = TϕXϕX.

Finally, using Theorem 4.1, we obtain Eq. (22). 2

We now investigate the geometry of the leaves of distributions (kerπ∗) and (kerπ∗)
⊥.

Theorem 4.2 Let π be a slant submersion from a locally product Riemannian manifold (M1, g1, F1) onto a

Riemannian manifold (M2, g2) with slant angle θ ∈ (0, π
2 ). Then the distribution (kerπ∗) defines a totally

geodesic foliation on M1 if and only if

g1(h∇XωϕY,Z) = −g1(h∇XωY,CZ)− g1(TXωY,BZ)

for X,Y ∈ Γ(kerπ∗) and Z ∈ Γ((kerπ∗)
⊥).

Proof For X,Y ∈ Γ(kerπ∗) and Z ∈ Γ((kerπ∗)
⊥), from Eqs. (1) and (10) we have

g1(∇XY,Z) = g1(∇XϕY, FZ) + g1(∇XωY, FZ).

Using Eqs. (1),(10), and (12) we get

g1(∇XY, Z) = g1(∇Xϕ2Y,Z) + g1(∇XωϕY,Z)

+ g1(∇XωY,BZ) + g1(∇XωY,CZ).

Then from Eq. (5) and Theorem 4.1 we obtain

g1(∇XY, Z) = cos2 θg1(∇XY, Z) + g1(h∇XωϕY,Z)

+ g1(TXωY,BZ) + g1(h∇XωY,CZ).
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Hence, we have

sin2 θg1(∇XY, Z) = g1(h∇XωϕY,Z)

+ g1(TXωY,BZ) + g1(h∇XωY,CZ),

which proves the assertion. 2

Theorem 4.3 Let π be a slant submersion from a locally product Riemannian manifold (M1, g1, F1) onto a

Riemannian manifold (M2, g2) with slant angle θ ∈ (0, π
2 ). Then the following conditions are equivalent:

(a) the distribution ((kerπ∗)
⊥) defines a totally geodesic foliation on M1,

(a) g1(h∇Z1
Z2, ωϕX) = −g1(h∇Z1

CZ2 +AZ1
BZ2, ωX)

for X ∈ Γ(kerπ∗) and Z1, Z2 ∈ Γ((kerπ∗)
⊥).

Proof For X ∈ Γ(kerπ∗) and Z1, Z2 ∈ Γ((kerπ∗)
⊥), we have

g1(∇Z1Z2, X) = g1(∇Z1FZ2, FX)

= g1(∇Z1FZ2, ϕX) + g1(∇Z1FZ2, ωX)

= cos2 θg1(∇Z1Z2, X) + g1(∇Z1Z2, ωϕX)

+ g1(h∇Z1CZ2, ωX) + g1(AZ1BZ2, ωX)

so that

sin2 θg1(∇Z1Z2, X) = g1(∇Z1Z2, ωϕX)

+ g1(h∇Z1CZ2 +AZ1BZ2, ωX).

Hence, we get (a) ⇔ (b).

Finally we give necessary and sufficient conditions for a slant submersion with slant angle θ ∈ (0, π
2 ) to

be totally geodesic. Recall that a differentiable map π between Riemannian manifolds (M1, g1) and (M2, g2)

is called a totally geodesic map if (∇π∗)(X,Y ) = 0 for all X,Y ∈ Γ(TM1). 2

Theorem 4.4 Let π be a slant submersion from a locally product Riemannian manifold (M1, g1, F1) onto a

Riemannian manifold (M2, g2) with slant angle θ ∈ (0, π
2 ). Then π is totally geodesic if and only if

g1(h∇XωϕY,Z) = −g1(h∇XωY,CZ)− g1(TXωY,CZ)

and

g1(h∇Z1ωϕX,Z2) = g1(AZ1BZ2 + h∇Z1CZ2, ωX)

for Z,Z1, Z2 ∈ Γ((kerπ∗)
⊥) and X,Y ∈ Γ(kerπ∗).
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Proof First of all, since π is a Riemannian submersion, we have

(∇π∗)(Z1, Z2) = 0

for Z1, Z2 ∈ Γ((kerπ∗)
⊥).

For X,Y ∈ Γ(kerπ∗) and Z,Z1, Z2 ∈ Γ((kerπ∗)
⊥), from Eqs. (1) and (10) we have

g2((∇π∗)(X,Y ), π∗Z) = −g1(∇XFϕY,Z)− g1(∇XωY, FZ).

Using Eqs. (10) and (12) we get

g2((∇π∗)(X,Y ), π∗Z) = −g1(∇Xϕ2Y, Z)− g1(∇XωϕY,Z)

− g1(∇XωY,BZ)− g1(∇XωY,CZ).

Then Theorem 3.1 and Eqs. (4) and (5) imply that

g2((∇π∗)(X,Y ), π∗Z) = − cos2 θg1(∇XY, Z)− g1(h∇XωϕY,Z)

− g1(TXωY,BZ)− g1(h∇XωY,CZ).

Hence, we obtain

sin2 θg2((∇π∗)(X,Y ), π∗Z) = −g1(h∇XωϕY,Z)− g1(TXωY,BZ)

− g1(h∇XωY,CZ). (23)

Similarly, we get

sin2 θg2((∇π∗)(X,Z1), π∗Z2) = g1(AZ1BZ2 + h∇Z1CZ2, ωX)

− g1(h∇Z1ωϕX,Z2). (24)

Then the proof follows from Eqs. (23) and (24). 2

Remark The geometry of almost product submersions is different from slant submersions defined on almost

product manifolds. For instance, the fibers of almost product submersions are almost product submanifolds,

but the fibers of slant submersions are slant submanifolds of almost product manifolds.
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GÜNDÜZALP/Turk J Math

[4] Bourguignon, J.P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79,

189–230 (1981).

[5] Chen, B.Y.: Geometry of Slant Submanifolds. Leuven. Katholieke Universiteit Leuven (1990).

[6] Chen, B.Y.: Slant immersions. Bull. Austral. Math. Soc. 41(1), 135–147 (1990).

[7] Falcitelli, M., Ianus, S., Pastore, A.M.: Riemannian Submersions and Related Topics. Singapore. World Scientific

(2004).

[8] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 715–737 (1967).
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