Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(C) TÜBITAK

Remarks on the paper "On some new inequalities for convex functions" by

M. Tunç

Alfred WITKOWSKI*

Institute of Mathematics and Physics, University of Technology and Life Sciences, Al. Prof. Kaliskiego 7, 85-796 Bydgoszcz, Poland

Abstract: In this note, we slightly generalize Theorem 2 in the paper by M. Tunç and point out that the assumption of Theorem 3 is not sufficient.

A misuse of the term 'mean' is also discussed.
Key words: Convex function, mean
In the paper [3] the author proves the following theorem:
Theorem 1 (Theorem 2, [3]) If $f, g:[a, b] \rightarrow \mathbb{R}$ are convex, then

$$
\begin{align*}
& \frac{1}{(b-a)^{2}} \int_{a}^{b}(b-x)[f(a) g(x)+f(x) g(a)] d x \\
+ & \frac{1}{(b-a)^{2}} \int_{a}^{b}(x-a)[f(b) g(x)+f(x) g(b)] d x \tag{1}\\
\leq & \frac{M(a, b)}{3}+\frac{N(a, b)}{6}+\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x
\end{align*}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b), N(a, b)=f(a) g(b)+f(b) g(a)$.
In fact, this theorem can be restated as follows:

Theorem 2 If $f, g:[a, b] \rightarrow \mathbb{R}$ are of the same convexity (i.e. both convex or both concave), then (1) holds. If f and g are of opposite convexity, then (1) is reversed.
Proof Since for $a<x<b$ we have

$$
x=\frac{b-x}{b-a} a+\frac{x-a}{b-a} b,
$$

the inequality

$$
\begin{equation*}
\left(f(x)-\frac{b-x}{b-a} f(a)-\frac{x-a}{b-a} f(b)\right)\left(g(x)-\frac{b-x}{b-a} g(a)-\frac{x-a}{b-a} g(b)\right) \geq 0 \tag{2}
\end{equation*}
$$

[^0]
WITKOWSKI/Turk J Math

holds if f and g are of the same convexity, else (2) is reversed.
Integrating the above inequality over the interval $[a, b]$, we obtain the desired result.
Theorem 3 in [3] requires correction.
Theorem 3 Let $f, g:[a, b] \rightarrow \mathbb{M}$ be convex, nonnegative functions. Then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b}\left(f\left(\frac{a+b}{2}\right) g(x)+g\left(\frac{a+b}{2}\right) f(x)\right) d x \leq \frac{1}{2(b-a)} \int_{a}^{b} f(x) g(x) d x+\frac{M}{12}+\frac{N}{6}+f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right), \tag{3}
\end{equation*}
$$

(M and N being as in Theorem 1).

The original version does not contain the nonnegativity assumption, but then it is easy to produce a counterexample: let g be convex and $f(x) \equiv-1$. Then the inequality (3) becomes

$$
\frac{1}{b-a} \int_{a}^{b} g(x) d x \geq \frac{g(a)+g(b)}{2}
$$

- obviously opposite to the right-hand side of the Hermite-Hadamard inequality.

As Theorem 3 is not valid in the general case, we cannot trust Proposition 5 in [3] in the case $a, b<0$ (especially because x^{n} is not convex in the interval $(-\infty, 0)$ for odd n).

We feel obliged to comment on the use of the term 'mean' in section 3: in the mathematical literature the word 'mean' denotes a function taking values between the extremities of its argument(s). The attempt to extend the definition of the geometric, arithmetic, logarithmic, and generalised logarithmic means is only partially successful.

$$
\begin{gather*}
A(a, b)=\frac{a+b}{2}, G(a, b)=\sqrt{a b}, L(a, b)=\frac{b-a}{\ln |b|-\ln |a|} \\
L_{n}(a, b)=\left(\frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)}\right)^{\frac{1}{n}}, K(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}} \tag{4}
\end{gather*}
$$

define means for positive a, b. Clearly, the expressions above make sense for some other arguments, but usually their values do not lie between the arguments: $G(-1,-4)=2, L\left(e^{2},-e\right)=e^{2}+e, \lim _{a \rightarrow-\infty} L_{2}(a, 1)=\infty$ etc., thus calling them 'means' should be regarded as a mistake.

Tracing back the cited literature for the source of this misuse, we see that the process started in the paper by Dragomir and Agarwal ([1]), the mistake was reproduced by Kirmaci ([2]) and, consequently, by Tunç.

It is worth noting that the extended logarithmic means L_{n} and power means $M_{n}(a, b)=A\left(a^{n}, b^{n}\right)^{1 / n}$ can be extended to the real line in the case of positive real exponents. To this end, let $f_{n}(x)=\operatorname{sgn}(x)|x|^{n}$. Then f_{n} is a strictly increasing, odd function and we can define

$$
L_{n}(a, b)=f_{n}^{-1}\left(\frac{\int_{a}^{b} f_{n}(t) d t}{b-a}\right) \quad \text { and } \quad M_{n}(a, b)=f_{n}^{-1}\left(\frac{f_{n}(a)+f_{n}(b)}{2}\right)
$$

Both definitions match the original ones for positive arguments and define means (in the case of odd natural n, L_{n} matches the original definition). Unfortunately the power functions (with the exception of $n=1$) cannot be extended to a bijection preserving the convexity.

Clearly this method cannot be applied to negative exponents.

References

[1] Dragomir, S.S., Agarwal, P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (5) 91-95, (1998).
[2] Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 137-146, (2004).
[3] Tunç, M.: On some new inequalities for convex functions, Turk. J. Math. 36 245-251, (2012).

[^0]: *Correspondence: alfred.witkowski@utp.edu.pl
 2010 AMS Mathematics Subject Classification: primary 26B25, secondary 26E60.

