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Abstract: The purpose of this paper is to introduce interesting and useful properties of quasi-radical and radical

operations on the elements of a multiplicative lattice.

Key words: Multiplicative lattice, radical operations, quasi-radical operations

1. Introduction

By a multiplicative lattice, we mean a complete lattice L , with least element 0 and compact greatest element

I , on which there is defined a commutative, associative, completely join distributive product for which I is a

multiplicative identity. Multiplicative lattices have been studied extensively by E. W. Johnson and C. Jayaram,

see [2-7].

Throughout this paper, L denotes a multiplicative lattice. An element a ∈ L is said to be proper if

a < I . An element p < I in L is said to be prime if ab ≤ p implies a ≤ p or b ≤ p . We denote the set of prime

elements in L by Spec(L). An element I∗ < I in L is said to be maximal if I∗ < x ≤ I implies x = I . It is

easily seen that maximal elements are prime.

If a is an element of a multiplicative lattice L , we define

√
a =

∨{
t ∈ L|tn ≤ a for some natural number n

}
.

In this paper we explain the concept of an operation F on the elements of a multiplicative lattice L

and define the F -radical of an element. We shall also define the concepts of F -radical and F -prime elements,

as well as the F -prime spectrum of the multiplicative lattice. We will also state some natural properties in

Relations 2.1. Moreover, we explain the concept of quasi-radical operations on the elements of a multiplicative

lattice. Quasi-radical operations have been studied for commutative rings with identity by A. Benhissi, M.

Rosenlund, and D. Laksov, see [1], [10], [11] and [12]. We will show that if a is an element in a multiplicative

lattice L then F (a) =
√
F (a) = F (

√
a) for any quasi-radical operation F on the elements of L . Furthermore,

we explain the concept of a radical operation F on the elements in a multiplicative lattice and show that any

radical operation F on the elements in a multiplicative lattice is quasi-radical. Finally, we state the theorem,

which shows that a quasi-radical operation satisfying certain condition must be radical. Many of the interesting

radical operations have been studied by D. Laksov, J-J. Risler and G. Strengle, see [8], [9], [11] and [13].
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2. Operation in multiplicative lattice

We now define the concept of an operation F on the elements in a multiplicative lattice and define the F -radical

of an element in a multiplicative lattice. We further define the concept of F -radical, F -prime elements and

F -prime spectrum of the multiplicative lattice. We state some properties in Relation 2.1, for operations on the

elements in a multiplicative lattice, and show some implications regarding their interconnections in Proposition

2.1.

We begin with the following definitions.

Definition 2.1 An operation F on the elements of L is a correspondence that to every element a in L

associates an element F (a) in L .

Here onward, unless otherwise stated, F denotes an operation on the elements of a multiplicative lattice L .

Definition 2.2 (i). For an element a of L , we call F (a) the F -radical of a .

(ii). We say that a is F -radical if F (a) = a . A prime element p is called F -prime if it is F -radical.

Definition 2.3 We define F -prime spectrum of L as

SpecF (L) = {p ∈ Spec(L)| p = F (p)}.

Definition 2.4 F -radical elements have the ascending chain condition (acc) if for every sequence {ai}i∈N of

F -radical elements in L the chain a0 ≤ a1 ≤ a2 ≤ ... stabilizes.

Relations 2.1 It is natural to ask if F satisfies the following relations for any elements a, b and {aj}j∈J in

L :

(a) a ≤ F (a)

(b) F (F (a)) = F (a)

(c) F (a ∧ b) = F (a) ∧ F (b)=F(ab)

(d) F (
∨

j∈J aj) = F (
∨

j∈J F (aj))

(e)
√
a ≤ F (a) .

(f) a ≤ b implies F (a) ≤ F (b)

(g) F (
∨

j∈J aj) =
∨

j∈J aj if {aj}j∈J is an ordered family of F-radical elements.

The following proposition shows the relationships between the items given in Relation 2.1.

Proposition 2.1 The following hold for (a)− (f) of Relations 2.1.

1. If F satisfies (a), (b) and (f) then F satisfies (d ).

2. If F satisfies (c) then F satisfies (f) .

3. If F satisfies (a) and (c) then F satisfies (e) .
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4. If F satisfies (d) then F satisfies (b) .

5. If F satisfies (a) and (d) then F satisfies (f) .

In particular the relations (a), (b) and (c) imply (d), (e) and (f) .

Proof

1. We have from (a) that aj ≤ F (aj) for each j ∈ J . It follows that

∨
j∈J

aj ≤
∨
j∈J

F (aj).

Consequently, we see by (f) that

F (
∨
j∈J

aj) ≤ F (
∨
j∈J

F (aj)).

Conversely, since al ≤
∨

j∈J aj for each l ∈ J , then F (al) ≤ F (
∨

j∈J aj) for each l ∈ J by (f). Hence∨
j∈J F (aj) ≤ F (

∨
j∈J aj). This implies, again by (f), that F (

∨
j∈J F (aj)) ≤ F (F (

∨
j∈J aj)). So, from

(b) we get F (
∨

j∈J F (aj)) ≤ F (
∨

j∈J aj). Hence

F (
∨
j∈J

aj) = F (
∨
j∈J

F (aj)),

that is, (d) holds.

2. Assume (f) is not true. There exist then a, b ∈ L such that a ≤ b but F (a) ≰ F (b). Hence

F (a ∧ b) = F (a) ̸= F (a) ∧ F (b) which contradicts (c). Thus, F satisfies (f) which follows from (c).

3. From the relation (c) we have F (t2) = F (t) ∧ F (t) = F (t) for every t ∈ L . By induction on n, we

obtain F (tn) = F (t) for all positive integers n. We know that
√
b =

∨
j∈J{tj |tnj ≤ b} . This implies

F (tj) = F (tnj ) ≤ F (b). From relation (a) we have also tj ≤ F (tj). Hence tj ≤ F (b) and we have proved

that
√
b ≤ F (b).

4. If F (a) ̸= F (F (a)) then F (
∨

j∈J aj) ̸= F (
∨

j∈J F (aj)) for J = 1 and a1 = a . Thus, F satisfies (b)

which follows from (d).

5. If relation (f) does not hold, then there exist a, b ∈ L such that a ≤ b does not imply F (a) ≰ F (b).

Then F (b) < F (a)∨F (b) so we have by (a) that F (a∨ b) = F (b) ̸= F (a)∨F (b) ≤ F (F (a)∨F (b)), which

contradicts (d). Thus (f) is satisfied under the conditions (a) and (d).

2

Lemma 2.1 Let p be a prime element in a multiplicative lattice L and let F be an operation on the elements

in L satisfying (a) and (f) of Relations 2.1 . The following two conditions are equivalent:

(1) F (p) = p
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(2) a ≤ p implies F (a) ≤ p for each element a in L .

Proof Assume (1) does not hold, that is by (a) we have that p < F (p) then condition (2) with a = p does

not hold either. Thus (2) implies (1).

Conversely, assume that (2) does not hold. Then there is an element a in L such that a ≤ p and F (a) ≰ p .

Then F (a) ≤ F (p) and by (a) p < F (p), that is condition (1) does not hold. This shows that (1) implies (2). 2

Next, we explain how an operation F is defined as a quasi-radical operation on the elements of a

multiplicative lattice. Operations of this kind have been studied by Benhissi, M. Rosenlund and D. Laksov; see

[1], [10], [11] and [12].

Definition 2.5 A quasi-radical operation F on the elements in a multiplicative lattice L is defined as an

operation on the elements in L such that for all elements a and b in L the following conditions hold:

(a) a ≤ F (a)

(b) F (F (a)) = F (a)

(c) F (a ∧ b) = F (a) ∧ F (b) = F (ab).

Remark 2.1 From Proposition 2.1 we see that any quasi-radical operation F satisfies (a)–(f) of Relations 2.1 .

The following proposition shows that F (a) =
√

F (a) = F (
√
a) is satisfied for any quasi-radical operation F in

a multiplicative lattice.

Proposition 2.2 A quasi-radical operation F on the elements of L satisfies F (a) =
√
F (a) = F (

√
a) for any

element a ∈ L .

Proof It is clear that F (a) ≤
√

F (a). Conversely, since

√
F (a) =

∨
j∈J

{mj |mn
j ≤ F (a)},

we have that F (mn
j ) ≤ F (F (a)) and so, mj ≤ F (mj) ≤ F (a). Hence,

√
F (a) ≤ F (a). Since F is a quasi-

radical operation it satisfies (b), (e) and (f) of Relations 2.1. Hence F (a) ≤ F (
√
a) ≤ F (F (a)) = F (a). We

have now shown that F (a) = F (
√
a) and this finishes our proof. 2

Proposition 2.3 Let F be a quasi-radical operation on the elements of L. F satisfies (g) of Relation 2.1 if

and only if F (
∨

j∈J aj) =
∨

j∈J F (aj) for every ordered family of elements {aj}j∈J in L .

Proof Since F is a quasi-radical operation F satisfies (a), (b) and (c) of Relation 2.1. Let {aj}j∈J be an

ordered family of elements in L . Then by (f) which follows from (c), we have that {F (aj)}j∈J is an ordered

family of F-radical elements in L . Thus by the condition (g), F satisfies F (
∨

j∈J F (aj)) =
∨

j∈J F (aj) for every

ordered family of elements {aj}j∈J in L . Furthermore, F satisfies (d) which follows from (a), (b) and (f)

by Proposition 2.1. Hence F (
∨

j∈J aj) = F (
∨

j∈J F (aj)) is satisfied for every ordered family of element in L .

This shows that F (
∨

j∈J aj) =
∨

j∈J F (aj). Conversely, we have
∨

j∈J aj =
∨

j∈J F (aj) for ordered F-radical
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elements and F (
∨

i∈J aj) =
∨

j∈J F (aj), so
∨

j∈J aj = F (
∨

j∈J aj). Then this shows that (g) is satisfied. 2

Theorem 2.1 Let F be a quasi-radical operation on the elements of L . If L satisfies the ascending chain

condition for F -radical elements, then any F -radical element is the infimum of a finite number of F -prime

elements.

Proof Let Ω be the set of F -radical elements which are not the infimum of a finite number of F -prime

elements.

Assume that Ω ̸= ∅ . Then Ω admits a maximal element I∗ , because the acc for F -radical elements holds.

Then I∗ is F -radical and cannot be prime. Take b, c ≰ I∗ such that bc ≤ I∗ , then I∗ < b∨I∗ and I∗ < I∗∨c .

Since I∗ is maximal in Ω these two new elements are not in Ω. From (a) we get I∗ < I∗ ∨ c ≤ F (I∗ ∨ c) and

I∗ < I∗ ∨ b ≤ F (I∗ ∨ b). Thus the elements F (I∗ ∨ b) and F (I∗ ∨ c) are F -radical by (b) but are not in Ω

and therefore expressible as an infimum of finite number F -prime elements. By (c) we have

I∗ ≤ F (I∗ ∨ c) ∧ F (I∗ ∨ b) = F ((I∗ ∨ c)(I∗ ∨ b))

= F (I∗2 ∨ cI∗ ∨ bI∗ ∨ cb) ≤ F (I∗) = I∗.

So, I∗ = F (I∗ ∨ b) ∧ F (I∗ ∨ c) and thus, an infimum for a finite number of F -prime elements, contradicting

the assumption that I∗ is in Ω. Thus Ω = ∅ . 2

The following definition explains the concept of a radical operation F on the elements in a multiplicative

lattice L .

Definition 2.6 A radical operation F on the elements of L is defined as an operation on the elements of L

such that

F (a) =
∧

a≤p, p∈QF

p, for each element a in L (1)

for some subset QF of Spec(L) . If there are no p ∈ QF satisfying a ≤ p then F (a) = I . We say that F is

associated to QF .

We will prove that any radical operation F on the elements in a multiplicative lattice is quasi-radical.

Proposition 2.4 If F is radical operation on elements of L , then F is quasi-radical. In particular (a)–(f) of

Relations 2.1 hold.

Proof Let a be an element of L . The equation (1) holds only for prime elements satisfying a ≤ p . It is clear

that

a ≤ F (a). (2)

Thus the condition (a) of Definition 2.5 holds. Every prime element p ∈ QF with a ≤ p , contains F (a) so

F (F (a)) ≤ F (a). By (2) above we have that F (a) ≤ F (F (a)). Therefore F (F (a)) = F (a) and so F satisfies

the condition (b) of Definition 2.5.

By (1) we have

F (a ∧ b) =
∧

a∧b≤p, p∈QF

p , F (ab) =
∧

ab≤p, p∈QF

p ,
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and

F (a) ∧ F (b) =
( ∧
a≤p, p∈QF

p
)
∧
( ∧
b≤p, p∈QF

p
)
.

Since for every prime element p ∈ L , a ≤ p or b ≤ p , also since a ∧ b ≤ p and ab ≤ p , we have

F (a ∧ b) ≤ F (a) ∧ F (b) and F (ab) ≤ F (a) ∧ F (b). On the other hand, if a prime element satisfies a ∧ b ≤ p

or ab ≤ p then it satisfies a ≤ p or b ≤ p . Hence F (a ∧ b) ≥ F (a) ∧ F (b) and F (ab) ≥ F (a) ∧ F (b), it follows

that F (a ∧ b) = F (a) ∧ F (b) = F (ab). 2

The following propositions explain how a radical operation F is associated to a set QF of prime elements

in a multiplicative lattice and show that any radical operation is associated to its F -prime spectrum.

Proposition 2.5 Let F be a radical operation on the elements of L associated to a set QF ⊆ Spec(L) . Then

QF ⊆ SpecF (L) and F coincides with the radical operation associated to the set SpecF (L) =
{
p ∈ Spec(L) :

F (p) = p
}

Proof Since p = F (p) when p ∈ QF , we have QF ⊆ SpecF (L) and thus∧
a ≤ p, p = F (p),

p a prime element

p ≤ F (a), ∀a ∈ L.

Proposition 2.4 shows that F satisfies (a) and (f) of Relation 2.1 and by Lemma 2.1 proves that if p is a prime

element such that a ≤ p and p = F (p), then F (a) ≤ p . Consequently, we have

F (a) =
∧

a ≤ p, p = F (p),
p a prime element

p.

2

Proposition 2.6 Let F be a radical operation on the elements of L associated to QF where QF ⊆ Spec(L) .

The equality QF = SpecF (L) holds if and only if the following condition is satisfied:

For each collection of prime elements
{
pi
}
i∈I

in QF such that p =
∧

i∈I pi is a prime element, we have

that p ∈ QF .

Proof Assume that the condition does not hold. Then there exists a collection of prime elements
{
pi
}
i∈I

in QF such that p =
∧

i∈I pi is a prime element but p is not in QF . This implies SpecF (L) ̸= QF since

p ∈ SpecF (L). Hence SpecF (L) = QF implies that the condition holds. To prove the converse inclusion let the

condition in the proposition be satisfied and p ∈ SpecF (L). Then we have

p = F (p) =
∧

p≤p′,p′∈QF

p′.

Thus p is the infimum of prime elements in QF , and by the condition we have that p ∈ QF . Hence

SpecF (L) ⊆ QF . By Proposition 2.5 we have QF ⊆ SpecF (L) which together with the inclusion shown

above proves that SpecF (L) = QF . 2
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Definition 2.7 A multiplicative lattice L is called strongly compact if for any a ∈ L , a ≤
∨n

j=1 bj implies

a ≤ bl for some l ∈ J .

Here, we state the theorem which shows that a quasi-radical operation satisfying certain condition must

be radical operation.

Theorem 2.2 Let F be a quasi-radical operation and let L be a strongly compact multiplicative lattice such

that F satisfies (g) of Relation 2.1. Then F is a radical operation.

Proof Since F is a quasi-radical operation, it satisfies (a), (b), (c) and (f) of Relation 2.1. Let a be an

element in L. From Lemma 2.1 it follows that if a prime element a ≤ p satisfies F (p) = p then F (a) ≤ p .

Thus if F (a) = I there is no F -prime element greater than a . If F (a) ̸= I let f ≰ F (a) be an element in

L. Let F be the set of elements b ∈ L such that a ≤ b , f ≰ b and F (b) = b . Since from (b) we have that

F (F (a)) = F (a) and from (a) that a ≤ F (a) we see that F (a) ∈ F and thus F ̸= ∅ . Each chain in F has a

maximal element by (g). Thus by Zorn’s Lemma there is a maximal element p ∈ F . Assume that p is not a

prime element. Then there exist g, h ∈ L such that g ≰ p, h ≰ p but gh ≤ p . Thus g ∨ p is not in F . So by

(a), F (g ∨ p) is not in F . By (b), F (F (g ∨ p)) = F (g ∨ p). Since a ≤ F (g ∨ p), this implies f ≤ F (g ∨ p).

Similarly f ≤ F (h ∨ p). Thus f ≤ F (g ∨ p) ∧ F (h ∨ p) = F ((g ∨ p)(h ∨ p)) = F (gh ∨ p) = F (p) = p which is

a contradiction so p is a prime element. Thus we have shown the existence of F -prime element p such that

a ≤ p but f ≰ p . Since f ≰ F (a) was arbitrary this together with the result of Lemma 2.1, proves F (a) can

be realized as the infimum of the F -prime elements p such that a ≤ p . That is F is a radical operation on the

elements of L by Proposition 2.5. 2
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