

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2013) 37: 739 – 746 © TÜBİTAK doi:10.3906/mat-1111-43

Research Article

Radical operations on the multiplicative lattice

Esra ŞENGELEN SEVİM*

İstanbul Bilgi University, Department of Mathematics, Dolapdere, İstanbul, Turkey

Received: 29.11.2011	•	Accepted: 18.07.2012	•	Published Online: 26.08.2013	•	Printed: 23.09.2013
----------------------	---	----------------------	---	-------------------------------------	---	----------------------------

Abstract: The purpose of this paper is to introduce interesting and useful properties of quasi-radical and radical operations on the elements of a multiplicative lattice.

Key words: Multiplicative lattice, radical operations, quasi-radical operations

1. Introduction

By a multiplicative lattice, we mean a complete lattice L, with least element 0 and compact greatest element I, on which there is defined a commutative, associative, completely join distributive product for which I is a multiplicative identity. Multiplicative lattices have been studied extensively by E. W. Johnson and C. Jayaram, see [2-7].

Throughout this paper, L denotes a multiplicative lattice. An element $a \in L$ is said to be proper if a < I. An element p < I in L is said to be prime if $ab \le p$ implies $a \le p$ or $b \le p$. We denote the set of prime elements in L by Spec(L). An element $I^* < I$ in L is said to be maximal if $I^* < x \le I$ implies x = I. It is easily seen that maximal elements are prime.

If a is an element of a multiplicative lattice L, we define

 $\sqrt{a} = \bigvee \{ t \in L | t^n \le a \text{ for some natural number n} \}.$

In this paper we explain the concept of an operation F on the elements of a multiplicative lattice Land define the F-radical of an element. We shall also define the concepts of F-radical and F-prime elements, as well as the F-prime spectrum of the multiplicative lattice. We will also state some natural properties in Relations 2.1. Moreover, we explain the concept of quasi-radical operations on the elements of a multiplicative lattice. Quasi-radical operations have been studied for commutative rings with identity by A. Benhissi, M. Rosenlund, and D. Laksov, see [1], [10], [11] and [12]. We will show that if a is an element in a multiplicative lattice L then $F(a) = \sqrt{F(a)} = F(\sqrt{a})$ for any quasi-radical operation F on the elements of L. Furthermore, we explain the concept of a radical operation F on the elements in a multiplicative lattice and show that any radical operation F on the elements in a multiplicative lattice is quasi-radical. Finally, we state the theorem, which shows that a quasi-radical operation satisfying certain condition must be radical. Many of the interesting radical operations have been studied by D. Laksov, J-J. Risler and G. Strengle, see [8], [9], [11] and [13].

^{*}Correspondence: esra.sengelen@bilgi.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 06B23, 06B75.

ŞENGELEN SEVİM/Turk J Math

2. Operation in multiplicative lattice

We now define the concept of an operation F on the elements in a multiplicative lattice and define the F-radical of an element in a multiplicative lattice. We further define the concept of F-radical, F-prime elements and F-prime spectrum of the multiplicative lattice. We state some properties in Relation 2.1, for operations on the elements in a multiplicative lattice, and show some implications regarding their interconnections in Proposition 2.1.

We begin with the following definitions.

Definition 2.1 An operation F on the elements of L is a correspondence that to every element a in L associates an element F(a) in L.

Here onward, unless otherwise stated, F denotes an operation on the elements of a multiplicative lattice L.

Definition 2.2 (i). For an element a of L, we call F(a) the F-radical of a.

(ii). We say that a is F-radical if F(a) = a. A prime element p is called F-prime if it is F-radical.

Definition 2.3 We define F-prime spectrum of L as

$$Spec_F(L) = \{ p \in Spec(L) | p = F(p) \}$$

Definition 2.4 *F*-radical elements have the ascending chain condition (acc) if for every sequence $\{a_i\}_{i\in\mathbb{N}}$ of *F*-radical elements in *L* the chain $a_0 \leq a_1 \leq a_2 \leq \dots$ stabilizes.

Relations 2.1 It is natural to ask if F satisfies the following relations for any elements a, b and $\{a_j\}_{j\in J}$ in L:

- $(a) \quad a \le F(a)$
- $(b) \quad F(F(a)) = F(a)$
- (c) $F(a \wedge b) = F(a) \wedge F(b) = F(ab)$
- (d) $F(\bigvee_{j \in J} a_j) = F(\bigvee_{j \in J} F(a_j))$
- $(e) \quad \sqrt{a} \le F(a) \,.$
- (f) $a \le b$ implies $F(a) \le F(b)$
- (g) $F(\bigvee_{i \in J} a_j) = \bigvee_{i \in J} a_j$ if $\{a_j\}_{j \in J}$ is an ordered family of F-radical elements.

The following proposition shows the relationships between the items given in Relation 2.1.

Proposition 2.1 The following hold for (a) - (f) of Relations 2.1.

- 1. If F satisfies (a), (b) and (f) then F satisfies (d).
- 2. If F satisfies (c) then F satisfies (f).
- 3. If F satisfies (a) and (c) then F satisfies (e).

140	7	1	Ω
1 10	1	4	υ

- 4. If F satisfies (d) then F satisfies (b).
- 5. If F satisfies (a) and (d) then F satisfies (f).

In particular the relations (a), (b) and (c) imply (d), (e) and (f).

Proof

1. We have from (a) that $a_j \leq F(a_j)$ for each $j \in J$. It follows that

$$\bigvee_{j\in J} a_j \le \bigvee_{j\in J} F(a_j).$$

Consequently, we see by (f) that

$$F(\bigvee_{j\in J}a_j) \le F(\bigvee_{j\in J}F(a_j)).$$

Conversely, since $a_l \leq \bigvee_{j \in J} a_j$ for each $l \in J$, then $F(a_l) \leq F(\bigvee_{j \in J} a_j)$ for each $l \in J$ by (f). Hence $\bigvee_{j \in J} F(a_j) \leq F(\bigvee_{j \in J} a_j)$. This implies, again by (f), that $F(\bigvee_{j \in J} F(a_j)) \leq F(F(\bigvee_{j \in J} a_j))$. So, from (b) we get $F(\bigvee_{j \in J} F(a_j)) \leq F(\bigvee_{j \in J} a_j)$. Hence

$$F(\bigvee_{j\in J}a_j) = F(\bigvee_{j\in J}F(a_j)),$$

that is, (d) holds.

- 2. Assume (f) is not true. There exist then $a, b \in L$ such that $a \leq b$ but $F(a) \nleq F(b)$. Hence $F(a \wedge b) = F(a) \neq F(a) \wedge F(b)$ which contradicts (c). Thus, F satisfies (f) which follows from (c).
- 3. From the relation (c) we have $F(t^2) = F(t) \wedge F(t) = F(t)$ for every $t \in L$. By induction on n, we obtain $F(t^n) = F(t)$ for all positive integers n. We know that $\sqrt{b} = \bigvee_{j \in J} \{t_j | t_j^n \leq b\}$. This implies $F(t_j) = F(t_j^n) \leq F(b)$. From relation (a) we have also $t_j \leq F(t_j)$. Hence $t_j \leq F(b)$ and we have proved that $\sqrt{b} \leq F(b)$.
- 4. If $F(a) \neq F(F(a))$ then $F(\bigvee_{j \in J} a_j) \neq F(\bigvee_{j \in J} F(a_j))$ for J = 1 and $a_1 = a$. Thus, F satisfies (b) which follows from (d).
- 5. If relation (f) does not hold, then there exist $a, b \in L$ such that $a \leq b$ does not imply $F(a) \nleq F(b)$. Then $F(b) < F(a) \lor F(b)$ so we have by (a) that $F(a \lor b) = F(b) \neq F(a) \lor F(b) \leq F(F(a) \lor F(b))$, which contradicts (d). Thus (f) is satisfied under the conditions (a) and (d).

Lemma 2.1 Let p be a prime element in a multiplicative lattice L and let F be an operation on the elements in L satisfying (a) and (f) of Relations 2.1. The following two conditions are equivalent:

(1) F(p) = p

(2) $a \le p$ implies $F(a) \le p$ for each element a in L.

Proof Assume (1) does not hold, that is by (a) we have that p < F(p) then condition (2) with a = p does not hold either. Thus (2) implies (1).

Conversely, assume that (2) does not hold. Then there is an element a in L such that $a \leq p$ and $F(a) \nleq p$. Then $F(a) \leq F(p)$ and by (a) p < F(p), that is condition (1) does not hold. This shows that (1) implies (2). \Box

Next, we explain how an operation F is defined as a quasi-radical operation on the elements of a multiplicative lattice. Operations of this kind have been studied by Benhissi, M. Rosenlund and D. Laksov; see [1], [10], [11] and [12].

Definition 2.5 A quasi-radical operation F on the elements in a multiplicative lattice L is defined as an operation on the elements in L such that for all elements a and b in L the following conditions hold:

- (a) $a \leq F(a)$
- (b) F(F(a)) = F(a)
- (c) $F(a \wedge b) = F(a) \wedge F(b) = F(ab).$

Remark 2.1 From Proposition 2.1 we see that any quasi-radical operation F satisfies (a)-(f) of Relations 2.1.

The following proposition shows that $F(a) = \sqrt{F(a)} = F(\sqrt{a})$ is satisfied for any quasi-radical operation F in a multiplicative lattice.

Proposition 2.2 A quasi-radical operation F on the elements of L satisfies $F(a) = \sqrt{F(a)} = F(\sqrt{a})$ for any element $a \in L$.

Proof It is clear that $F(a) \leq \sqrt{F(a)}$. Conversely, since

$$\sqrt{F(a)} = \bigvee_{j \in J} \{ m_j | m_j^n \le F(a) \},\$$

we have that $F(m_j^n) \leq F(F(a))$ and so, $m_j \leq F(m_j) \leq F(a)$. Hence, $\sqrt{F(a)} \leq F(a)$. Since F is a quasiradical operation it satisfies (b), (e) and (f) of Relations 2.1. Hence $F(a) \leq F(\sqrt{a}) \leq F(F(a)) = F(a)$. We have now shown that $F(a) = F(\sqrt{a})$ and this finishes our proof.

Proposition 2.3 Let F be a quasi-radical operation on the elements of L. F satisfies (g) of Relation 2.1 if and only if $F(\bigvee_{i \in J} a_j) = \bigvee_{i \in J} F(a_j)$ for every ordered family of elements $\{a_j\}_{j \in J}$ in L.

Proof Since F is a quasi-radical operation F satisfies (a), (b) and (c) of Relation 2.1. Let $\{a_j\}_{j\in J}$ be an ordered family of elements in L. Then by (f) which follows from (c), we have that $\{F(a_j)\}_{j\in J}$ is an ordered family of F-radical elements in L. Thus by the condition (g), F satisfies $F(\bigvee_{j\in J}F(a_j)) = \bigvee_{j\in J}F(a_j)$ for every ordered family of elements $\{a_j\}_{j\in J}$ in L. Furthermore, F satisfies (d) which follows from (a), (b) and (f) by Proposition 2.1. Hence $F(\bigvee_{j\in J}a_j) = F(\bigvee_{j\in J}F(a_j))$ is satisfied for every ordered family of element in L. This shows that $F(\bigvee_{j\in J}a_j) = \bigvee_{j\in J}F(a_j)$. Conversely, we have $\bigvee_{j\in J}a_j = \bigvee_{j\in J}F(a_j)$ for ordered F-radical

742

elements and $F(\bigvee_{i \in J} a_j) = \bigvee_{j \in J} F(a_j)$, so $\bigvee_{i \in J} a_j = F(\bigvee_{i \in J} a_j)$. Then this shows that (g) is satisfied. \Box

Theorem 2.1 Let F be a quasi-radical operation on the elements of L. If L satisfies the ascending chain condition for F-radical elements, then any F-radical element is the infimum of a finite number of F-prime elements.

Proof Let Ω be the set of *F*-radical elements which are not the infimum of a finite number of *F*-prime elements.

Assume that $\Omega \neq \emptyset$. Then Ω admits a maximal element I^* , because the acc for F-radical elements holds. Then I^* is F-radical and cannot be prime. Take $b, c \notin I^*$ such that $bc \leq I^*$, then $I^* < b \lor I^*$ and $I^* < I^* \lor c$. Since I^* is maximal in Ω these two new elements are not in Ω . From (a) we get $I^* < I^* \lor c \leq F(I^* \lor c)$ and $I^* < I^* \lor b \leq F(I^* \lor b)$. Thus the elements $F(I^* \lor b)$ and $F(I^* \lor c)$ are F-radical by (b) but are not in Ω and therefore expressible as an infimum of finite number F-prime elements. By (c) we have

$$I^* \leq F(I^* \lor c) \land F(I^* \lor b) = F((I^* \lor c)(I^* \lor b))$$
$$= F(I^{*2} \lor cI^* \lor bI^* \lor cb) \leq F(I^*) = I^*.$$

So, $I^* = F(I^* \lor b) \land F(I^* \lor c)$ and thus, an infimum for a finite number of *F*-prime elements, contradicting the assumption that I^* is in Ω . Thus $\Omega = \emptyset$.

The following definition explains the concept of a radical operation F on the elements in a multiplicative lattice L.

Definition 2.6 A radical operation F on the elements of L is defined as an operation on the elements of L such that

$$F(a) = \bigwedge_{a \le p, \ p \in Q_F} p, \ for \ each \ element \ a \ in \ L$$
(1)

for some subset Q_F of Spec(L). If there are no $p \in Q_F$ satisfying $a \leq p$ then F(a) = I. We say that F is associated to Q_F .

We will prove that any radical operation F on the elements in a multiplicative lattice is quasi-radical.

Proposition 2.4 If F is radical operation on elements of L, then F is quasi-radical. In particular (a)–(f) of Relations 2.1 hold.

Proof Let a be an element of L. The equation (1) holds only for prime elements satisfying $a \le p$. It is clear that

$$a \le F(a). \tag{2}$$

Thus the condition (a) of Definition 2.5 holds. Every prime element $p \in Q_F$ with $a \leq p$, contains F(a) so $F(F(a)) \leq F(a)$. By (2) above we have that $F(a) \leq F(F(a))$. Therefore F(F(a)) = F(a) and so F satisfies the condition (b) of Definition 2.5.

By (1) we have

$$F(a \wedge b) = \bigwedge_{a \wedge b \le p, \ p \in Q_F} p \ , \ F(ab) = \bigwedge_{ab \le p, \ p \in Q_F} p \ ,$$

743

and

$$F(a) \wedge F(b) = \Big(\bigwedge_{a \le p, \ p \in Q_F} p\Big) \wedge \Big(\bigwedge_{b \le p, \ p \in Q_F} p\Big).$$

Since for every prime element $p \in L$, $a \leq p$ or $b \leq p$, also since $a \wedge b \leq p$ and $ab \leq p$, we have $F(a \wedge b) \leq F(a) \wedge F(b)$ and $F(ab) \leq F(a) \wedge F(b)$. On the other hand, if a prime element satisfies $a \wedge b \leq p$ or $ab \leq p$ then it satisfies $a \leq p$ or $b \leq p$. Hence $F(a \wedge b) \geq F(a) \wedge F(b)$ and $F(ab) \geq F(a) \wedge F(b)$, it follows that $F(a \wedge b) = F(a) \wedge F(b) = F(ab)$.

The following propositions explain how a radical operation F is associated to a set Q_F of prime elements in a multiplicative lattice and show that any radical operation is associated to its F-prime spectrum.

Proposition 2.5 Let F be a radical operation on the elements of L associated to a set $Q_F \subseteq Spec(L)$. Then $Q_F \subseteq Spec_F(L)$ and F coincides with the radical operation associated to the set $Spec_F(L) = \{p \in Spec(L) : F(p) = p\}$

Proof Since p = F(p) when $p \in Q_F$, we have $Q_F \subseteq Spec_F(L)$ and thus

$$\bigwedge_{\substack{a \le p, \ p = F(p), \\ p \text{ a prime element}}} p \le F(a), \quad \forall a \in L$$

Proposition 2.4 shows that F satisfies (a) and (f) of Relation 2.1 and by Lemma 2.1 proves that if p is a prime element such that $a \leq p$ and p = F(p), then $F(a) \leq p$. Consequently, we have

$$F(a) = \bigwedge_{\substack{a \leq p, \ p = F(p), \\ p \text{ a prime element}}} p.$$

Proposition 2.6 Let F be a radical operation on the elements of L associated to Q_F where $Q_F \subseteq Spec(L)$. The equality $Q_F = Spec_F(L)$ holds if and only if the following condition is satisfied:

For each collection of prime elements $\{p_i\}_{i \in I}$ in Q_F such that $p = \bigwedge_{i \in I} p_i$ is a prime element, we have that $p \in Q_F$.

Proof Assume that the condition does not hold. Then there exists a collection of prime elements $\{p_i\}_{i \in I}$ in Q_F such that $p = \bigwedge_{i \in I} p_i$ is a prime element but p is not in Q_F . This implies $Spec_F(L) \neq Q_F$ since $p \in Spec_F(L)$. Hence $Spec_F(L) = Q_F$ implies that the condition holds. To prove the converse inclusion let the condition in the proposition be satisfied and $p \in Spec_F(L)$. Then we have

$$p = F(p) = \bigwedge_{p \le p', p' \in Q_F} p'.$$

Thus p is the infimum of prime elements in Q_F , and by the condition we have that $p \in Q_F$. Hence $Spec_F(L) \subseteq Q_F$. By Proposition 2.5 we have $Q_F \subseteq Spec_F(L)$ which together with the inclusion shown above proves that $Spec_F(L) = Q_F$.

Definition 2.7 A multiplicative lattice L is called strongly compact if for any $a \in L$, $a \leq \bigvee_{j=1}^{n} b_j$ implies $a \leq b_l$ for some $l \in J$.

Here, we state the theorem which shows that a quasi-radical operation satisfying certain condition must be radical operation.

Theorem 2.2 Let F be a quasi-radical operation and let L be a strongly compact multiplicative lattice such that F satisfies (g) of Relation 2.1. Then F is a radical operation.

Proof Since F is a quasi-radical operation, it satisfies (a), (b), (c) and (f) of Relation 2.1. Let a be an element in L. From Lemma 2.1 it follows that if a prime element $a \leq p$ satisfies F(p) = p then $F(a) \leq p$. Thus if F(a) = I there is no F-prime element greater than a. If $F(a) \neq I$ let $f \nleq F(a)$ be an element in L. Let \mathcal{F} be the set of elements $b \in L$ such that $a \leq b$, $f \nleq b$ and F(b) = b. Since from (b) we have that F(F(a)) = F(a) and from (a) that $a \leq F(a)$ we see that $F(a) \in \mathcal{F}$ and thus $\mathcal{F} \neq \emptyset$. Each chain in \mathcal{F} has a maximal element by (g). Thus by Zorn's Lemma there is a maximal element $p \in \mathcal{F}$. Assume that p is not a prime element. Then there exist g, $h \in L$ such that $g \nleq p$, $h \nleq p$ but $gh \leq p$. Thus $g \lor p$ is not in \mathcal{F} . So by $(a), F(g \lor p)$ is not in \mathcal{F} . By $(b), F(F(g \lor p)) = F(g \lor p)$. Since $a \leq F(g \lor p)$, this implies $f \leq F(g \lor p)$. Similarly $f \leq F(h \lor p)$. Thus $f \leq F(g \lor p) \land F(h \lor p) = F((g \lor p)(h \lor p)) = F(gh \lor p) = F(p) = p$ which is a contradiction so p is a prime element. Thus we have shown the existence of F-prime element p such that $a \leq p$ but $f \nleq p$. Since $f \nleq F(a)$ was arbitrary this together with the result of Lemma 2.1, proves F(a) can be realized as the infimum of the F-prime elements p such that $a \leq p$. That is F is a radical operation on the elements of L by Proposition 2.5.

Acknowledgment

The author wishes to thank the referee for his helpful comments and suggestions.

References

- [1] Benhissi, A.: Hilbert's basis theorem for *-radical ideals. J. Pure Appl. Algebra. 161, 245-253 (2001).
- [2] Jayaram, C., Johnson, E. W.: Some result on almost principal element lattices. Period. Math. Hungar. 31, 33-42 (1995).
- [3] Jayaram, C., Johnson, E. W.: s-prime elements in multiplicative lattices. Period. Math. Hungar. 31, 201-208 (1995).
- [4] Jayaram, C., Johnson, E. W.: Dedekind Lattice. Acta. Sci. Math. 63, 367-378 (1997).
- [5] Jayaram, C., Johnson, E. W.: Strong compact elements in multiplicative lattices. Czechoslovak Math. J. 47(122), 105-112 (1997).
- [6] Jayaram, C., Johnson, E. W.: σ-elements in multiplicative lattices. Czechoslovak Math. J. 48(123), 641-651 (1998).
- [7] Jayaram, C.: Prime elements in multiplicative lattices. Algebra Universalis. 48, 117-127 (2002).
- [8] Laksov, D.: Radicals defined by universal polynomials. TRITA-MAT-1986-27 Department of Mathematics, Royal Institute of Technology, Stockholm.
- [9] Laksov, D.: Radicals and Hilbert Nullstellensatz for not necessarily algebraically closed fields. L'Enseignement Mathematique. 33, 323-338 (1987).

ŞENGELEN SEVİM/Turk J Math

- [10] Laksov, D. Rosenlund, M.: Radicals of ideals that are not the intersection of radical primes. Fund. Math. 185, no. 1, 83-96, (2005).
- [11] Risler, J-J.: Le théorème des zéros en géometriés algébrique et analytique relles. Bulletin de la S.M.F. 104, 113-127 (1976).
- [12] Rosenlund, M.: Radical Operations in rings and topological spaces. Thesis (Tekn.dr.)-Kungliga Tekniska Hogskolan (Sweden). 2004.
- [13] Stengle, G.: A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry. Math. Ann. 207, 87-97, (1974).