Radical operations on the multiplicative lattice

Esra ŞENGELEN SEVİM*
İstanbul Bilgi University, Department of Mathematics, Dolapdere, İstanbul, Turkey

Received: 29.11.2011 • Accepted: 18.07.2012 • Published Online: 26.08.2013 • Printed: 23.09 .2013

Abstract

The purpose of this paper is to introduce interesting and useful properties of quasi-radical and radical operations on the elements of a multiplicative lattice.

Key words: Multiplicative lattice, radical operations, quasi-radical operations

1. Introduction

By a multiplicative lattice, we mean a complete lattice L, with least element 0 and compact greatest element I, on which there is defined a commutative, associative, completely join distributive product for which I is a multiplicative identity. Multiplicative lattices have been studied extensively by E. W. Johnson and C. Jayaram, see [2-7].

Throughout this paper, L denotes a multiplicative lattice. An element $a \in L$ is said to be proper if $a<I$. An element $p<I$ in L is said to be prime if $a b \leq p$ implies $a \leq p$ or $b \leq p$. We denote the set of prime elements in L by $\operatorname{Spec}(L)$. An element $I^{*}<I$ in L is said to be maximal if $I^{*}<x \leq I$ implies $x=I$. It is easily seen that maximal elements are prime.

If a is an element of a multiplicative lattice L, we define

$$
\sqrt{a}=\bigvee\left\{t \in L \mid t^{n} \leq a \text { for some natural number } \mathrm{n}\right\}
$$

In this paper we explain the concept of an operation F on the elements of a multiplicative lattice L and define the F-radical of an element. We shall also define the concepts of F-radical and F-prime elements, as well as the F-prime spectrum of the multiplicative lattice. We will also state some natural properties in Relations 2.1. Moreover, we explain the concept of quasi-radical operations on the elements of a multiplicative lattice. Quasi-radical operations have been studied for commutative rings with identity by A. Benhissi, M. Rosenlund, and D. Laksov, see [1], [10], [11] and [12]. We will show that if a is an element in a multiplicative lattice L then $F(a)=\sqrt{F(a)}=F(\sqrt{a})$ for any quasi-radical operation F on the elements of L. Furthermore, we explain the concept of a radical operation F on the elements in a multiplicative lattice and show that any radical operation F on the elements in a multiplicative lattice is quasi-radical. Finally, we state the theorem, which shows that a quasi-radical operation satisfying certain condition must be radical. Many of the interesting radical operations have been studied by D. Laksov, J-J. Risler and G. Strengle, see [8], [9], [11] and [13].

[^0]
2. Operation in multiplicative lattice

We now define the concept of an operation F on the elements in a multiplicative lattice and define the F-radical of an element in a multiplicative lattice. We further define the concept of F-radical, F-prime elements and F-prime spectrum of the multiplicative lattice. We state some properties in Relation 2.1, for operations on the elements in a multiplicative lattice, and show some implications regarding their interconnections in Proposition 2.1.

We begin with the following definitions.

Definition 2.1 An operation F on the elements of L is a correspondence that to every element a in L associates an element $F(a)$ in L.

Here onward, unless otherwise stated, F denotes an operation on the elements of a multiplicative lattice L.
Definition 2.2 (i). For an element a of L, we call $F(a)$ the F-radical of a.
(ii). We say that a is F-radical if $F(a)=a$. A prime element p is called F-prime if it is F-radical.

Definition 2.3 We define F-prime spectrum of L as

$$
\operatorname{Spec}_{F}(L)=\{p \in \operatorname{Spec}(L) \mid p=F(p)\} .
$$

Definition 2.4 F-radical elements have the ascending chain condition (acc) if for every sequence $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ of F-radical elements in L the chain $a_{0} \leq a_{1} \leq a_{2} \leq \ldots$ stabilizes.

Relations 2.1 It is natural to ask if F satisfies the following relations for any elements a, b and $\left\{a_{j}\right\}_{j \in J}$ in L :
(a) $a \leq F(a)$
(b) $\quad F(F(a))=F(a)$
(c) $\quad F(a \wedge b)=F(a) \wedge F(b)=F(a b)$
(d) $\quad F\left(\bigvee_{j \in J} a_{j}\right)=F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right)$
(e) $\sqrt{a} \leq F(a)$.
(f) $\quad a \leq b$ implies $F(a) \leq F(b)$
(g) $\quad F\left(\bigvee_{j \in J} a_{j}\right)=\bigvee_{j \in J} a_{j}$ if $\left\{a_{j}\right\}_{j \in J}$ is an ordered family of F-radical elements.

The following proposition shows the relationships between the items given in Relation 2.1.

Proposition 2.1 The following hold for $(a)-(f)$ of Relations 2.1.

1. If F satisfies (a), (b) and (f) then F satisfies (d).
2. If F satisfies (c) then F satisfies (f).
3. If F satisfies (a) and (c) then F satisfies (e).
4. If F satisfies (d) then F satisfies (b).
5. If F satisfies (a) and (d) then F satisfies (f).

In particular the relations $(a),(b)$ and (c) imply $(d),(e)$ and (f).

Proof

1. We have from (a) that $a_{j} \leq F\left(a_{j}\right)$ for each $j \in J$. It follows that

$$
\bigvee_{j \in J} a_{j} \leq \bigvee_{j \in J} F\left(a_{j}\right)
$$

Consequently, we see by (f) that

$$
F\left(\bigvee_{j \in J} a_{j}\right) \leq F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right)
$$

Conversely, since $a_{l} \leq \bigvee_{j \in J} a_{j}$ for each $l \in J$, then $F\left(a_{l}\right) \leq F\left(\bigvee_{j \in J} a_{j}\right)$ for each $l \in J$ by (f). Hence $\bigvee_{j \in J} F\left(a_{j}\right) \leq F\left(\bigvee_{j \in J} a_{j}\right)$. This implies, again by (f), that $F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right) \leq F\left(F\left(\bigvee_{j \in J} a_{j}\right)\right)$. So, from (b) we get $F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right) \leq F\left(\bigvee_{j \in J} a_{j}\right)$. Hence

$$
F\left(\bigvee_{j \in J} a_{j}\right)=F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right)
$$

that is, (d) holds.
2. Assume (f) is not true. There exist then $a, b \in L$ such that $a \leq b$ but $F(a) \not \leq F(b)$. Hence $F(a \wedge b)=F(a) \neq F(a) \wedge F(b)$ which contradicts (c). Thus, F satisfies (f) which follows from (c).
3. From the relation (c) we have $F\left(t^{2}\right)=F(t) \wedge F(t)=F(t)$ for every $t \in L$. By induction on n, we obtain $F\left(t^{n}\right)=F(t)$ for all positive integers n. We know that $\sqrt{b}=\bigvee_{j \in J}\left\{t_{j} \mid t_{j}^{n} \leq b\right\}$. This implies $F\left(t_{j}\right)=F\left(t_{j}^{n}\right) \leq F(b)$. From relation (a) we have also $t_{j} \leq F\left(t_{j}\right)$. Hence $t_{j} \leq F(b)$ and we have proved that $\sqrt{b} \leq F(b)$.
4. If $F(a) \neq F(F(a))$ then $F\left(\bigvee_{j \in J} a_{j}\right) \neq F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right)$ for $J=1$ and $a_{1}=a$. Thus, F satisfies (b) which follows from (d).
5. If relation (f) does not hold, then there exist $a, b \in L$ such that $a \leq b$ does not imply $F(a) \not \leq F(b)$. Then $F(b)<F(a) \vee F(b)$ so we have by (a) that $F(a \vee b)=F(b) \neq F(a) \vee F(b) \leq F(F(a) \vee F(b))$, which contradicts (d). Thus (f) is satisfied under the conditions (a) and (d).

Lemma 2.1 Let p be a prime element in a multiplicative lattice L and let F be an operation on the elements in L satisfying (a) and (f) of Relations 2.1. The following two conditions are equivalent:
(1) $F(p)=p$
(2) $a \leq p$ implies $F(a) \leq p$ for each element a in L.

Proof Assume (1) does not hold, that is by (a) we have that $p<F(p)$ then condition (2) with $a=p$ does not hold either. Thus (2) implies (1).
Conversely, assume that (2) does not hold. Then there is an element a in L such that $a \leq p$ and $F(a) \nsubseteq p$. Then $F(a) \leq F(p)$ and by $(a) p<F(p)$, that is condition (1) does not hold. This shows that (1) implies (2).

Next, we explain how an operation F is defined as a quasi-radical operation on the elements of a multiplicative lattice. Operations of this kind have been studied by Benhissi, M. Rosenlund and D. Laksov; see [1], [10], [11] and [12].

Definition 2.5 A quasi-radical operation F on the elements in a multiplicative lattice L is defined as an operation on the elements in L such that for all elements a and b in L the following conditions hold:
(a) $a \leq F(a)$
(b) $F(F(a))=F(a)$
(c) $F(a \wedge b)=F(a) \wedge F(b)=F(a b)$.

Remark 2.1 From Proposition 2.1 we see that any quasi-radical operation F satisfies (a)-(f) of Relations 2.1.
The following proposition shows that $F(a)=\sqrt{F(a)}=F(\sqrt{a})$ is satisfied for any quasi-radical operation F in a multiplicative lattice.

Proposition 2.2 A quasi-radical operation F on the elements of L satisfies $F(a)=\sqrt{F(a)}=F(\sqrt{a})$ for any element $a \in L$.
Proof It is clear that $F(a) \leq \sqrt{F(a)}$. Conversely, since

$$
\sqrt{F(a)}=\bigvee_{j \in J}\left\{m_{j} \mid m_{j}^{n} \leq F(a)\right\}
$$

we have that $F\left(m_{j}^{n}\right) \leq F(F(a))$ and so, $m_{j} \leq F\left(m_{j}\right) \leq F(a)$. Hence, $\sqrt{F(a)} \leq F(a)$. Since F is a quasiradical operation it satisfies $(b),(e)$ and (f) of Relations 2.1. Hence $F(a) \leq F(\sqrt{a}) \leq F(F(a))=F(a)$. We have now shown that $F(a)=F(\sqrt{a})$ and this finishes our proof.

Proposition 2.3 Let F be a quasi-radical operation on the elements of L. F satisfies (g) of Relation 2.1 if and only if $F\left(\bigvee_{j \in J} a_{j}\right)=\bigvee_{j \in J} F\left(a_{j}\right)$ for every ordered family of elements $\left\{a_{j}\right\}_{j \in J}$ in L.
Proof Since F is a quasi-radical operation F satisfies $(a),(b)$ and (c) of Relation 2.1. Let $\left\{a_{j}\right\}_{j \in J}$ be an ordered family of elements in L. Then by (f) which follows from (c), we have that $\left\{F\left(a_{j}\right)\right\}_{j \in J}$ is an ordered family of F-radical elements in L. Thus by the condition (g), F satisfies $F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right)=\bigvee_{j \in J} F\left(a_{j}\right)$ for every ordered family of elements $\left\{a_{j}\right\}_{j \in J}$ in L. Furthermore, F satisfies (d) which follows from $(a),(b)$ and (f) by Proposition 2.1. Hence $F\left(\bigvee_{j \in J} a_{j}\right)=F\left(\bigvee_{j \in J} F\left(a_{j}\right)\right)$ is satisfied for every ordered family of element in L. This shows that $F\left(\bigvee_{j \in J} a_{j}\right)=\bigvee_{j \in J} F\left(a_{j}\right)$. Conversely, we have $\bigvee_{j \in J} a_{j}=\bigvee_{j \in J} F\left(a_{j}\right)$ for ordered F-radical
elements and $F\left(\bigvee_{i \in J} a_{j}\right)=\bigvee_{j \in J} F\left(a_{j}\right)$, so $\bigvee_{j \in J} a_{j}=F\left(\bigvee_{j \in J} a_{j}\right)$. Then this shows that (g) is satisfied.

Theorem 2.1 Let F be a quasi-radical operation on the elements of L. If L satisfies the ascending chain condition for F-radical elements, then any F-radical element is the infimum of a finite number of F-prime elements.
Proof Let Ω be the set of F-radical elements which are not the infimum of a finite number of F-prime elements.

Assume that $\Omega \neq \emptyset$. Then Ω admits a maximal element I^{*}, because the acc for F-radical elements holds. Then I^{*} is F-radical and cannot be prime. Take $b, c \not \leq I^{*}$ such that $b c \leq I^{*}$, then $I^{*}<b \vee I^{*}$ and $I^{*}<I^{*} \vee c$. Since I^{*} is maximal in Ω these two new elements are not in Ω. From (a) we get $I^{*}<I^{*} \vee c \leq F\left(I^{*} \vee c\right)$ and $I^{*}<I^{*} \vee b \leq F\left(I^{*} \vee b\right)$. Thus the elements $F\left(I^{*} \vee b\right)$ and $F\left(I^{*} \vee c\right)$ are F-radical by (b) but are not in Ω and therefore expressible as an infimum of finite number F-prime elements. By (c) we have

$$
\begin{aligned}
I^{*} & \leq F\left(I^{*} \vee c\right) \wedge F\left(I^{*} \vee b\right)=F\left(\left(I^{*} \vee c\right)\left(I^{*} \vee b\right)\right) \\
& =F\left(I^{* 2} \vee c I^{*} \vee b I^{*} \vee c b\right) \leq F\left(I^{*}\right)=I^{*}
\end{aligned}
$$

So, $I^{*}=F\left(I^{*} \vee b\right) \wedge F\left(I^{*} \vee c\right)$ and thus, an infimum for a finite number of F-prime elements, contradicting the assumption that I^{*} is in Ω. Thus $\Omega=\emptyset$.

The following definition explains the concept of a radical operation F on the elements in a multiplicative lattice L.

Definition 2.6 A radical operation F on the elements of L is defined as an operation on the elements of L such that

$$
\begin{equation*}
F(a)=\bigwedge_{a \leq p, p \in Q_{F}} p, \text { for each element } a \text { in } L \tag{1}
\end{equation*}
$$

for some subset Q_{F} of $\operatorname{Spec}(L)$. If there are no $p \in Q_{F}$ satisfying $a \leq p$ then $F(a)=I$. We say that F is associated to Q_{F}.

We will prove that any radical operation F on the elements in a multiplicative lattice is quasi-radical.

Proposition 2.4 If F is radical operation on elements of L, then F is quasi-radical. In particular (a)-(f) of Relations 2.1 hold.
Proof Let a be an element of L. The equation (1) holds only for prime elements satisfying $a \leq p$. It is clear that

$$
\begin{equation*}
a \leq F(a) \tag{2}
\end{equation*}
$$

Thus the condition (a) of Definition 2.5 holds. Every prime element $p \in Q_{F}$ with $a \leq p$, contains $F(a)$ so $F(F(a)) \leq F(a)$. By (2) above we have that $F(a) \leq F(F(a))$. Therefore $F(F(a))=F(a)$ and so F satisfies the condition (b) of Definition 2.5.

By (1) we have

$$
F(a \wedge b)=\bigwedge_{a \wedge b \leq p, p \in Q_{F}} p, F(a b)=\bigwedge_{a b \leq p, p \in Q_{F}} p
$$

and

$$
F(a) \wedge F(b)=\left(\bigwedge_{a \leq p, p \in Q_{F}} p\right) \wedge\left(\bigwedge_{b \leq p, p \in Q_{F}} p\right)
$$

Since for every prime element $p \in L, a \leq p$ or $b \leq p$, also since $a \wedge b \leq p$ and $a b \leq p$, we have $F(a \wedge b) \leq F(a) \wedge F(b)$ and $F(a b) \leq F(a) \wedge F(b)$. On the other hand, if a prime element satisfies $a \wedge b \leq p$ or $a b \leq p$ then it satisfies $a \leq p$ or $b \leq p$. Hence $F(a \wedge b) \geq F(a) \wedge F(b)$ and $F(a b) \geq F(a) \wedge F(b)$, it follows that $F(a \wedge b)=F(a) \wedge F(b)=F(a b)$.

The following propositions explain how a radical operation F is associated to a set Q_{F} of prime elements in a multiplicative lattice and show that any radical operation is associated to its F-prime spectrum.

Proposition 2.5 Let F be a radical operation on the elements of L associated to a set $Q_{F} \subseteq \operatorname{Spec}(L)$. Then $Q_{F} \subseteq \operatorname{Spec}_{F}(L)$ and F coincides with the radical operation associated to the set $\operatorname{Spec}_{F}(L)=\{p \in \operatorname{Spec}(L)$: $F(p)=p\}$
Proof Since $p=F(p)$ when $p \in Q_{F}$, we have $Q_{F} \subseteq \operatorname{Spec}_{F}(L)$ and thus

$$
\bigwedge_{\substack{a \leq p, p=F(p), \\ \text { pa prime element }}} p \leq F(a), \quad \forall a \in L .
$$

Proposition 2.4 shows that F satisfies (a) and (f) of Relation 2.1 and by Lemma 2.1 proves that if p is a prime element such that $a \leq p$ and $p=F(p)$, then $F(a) \leq p$. Consequently, we have

$$
F(a)=\bigwedge_{\substack{a \leq p, p=F(p), \\ \text { p a prime element }}} p .
$$

Proposition 2.6 Let F be a radical operation on the elements of L associated to Q_{F} where $Q_{F} \subseteq \operatorname{Spec}(L)$. The equality $Q_{F}=\operatorname{Spec}_{F}(L)$ holds if and only if the following condition is satisfied:

For each collection of prime elements $\left\{p_{i}\right\}_{i \in I}$ in Q_{F} such that $p=\bigwedge_{i \in I} p_{i}$ is a prime element, we have that $p \in Q_{F}$.

Proof Assume that the condition does not hold. Then there exists a collection of prime elements $\left\{p_{i}\right\}_{i \in I}$ in Q_{F} such that $p=\bigwedge_{i \in I} p_{i}$ is a prime element but p is not in Q_{F}. This implies $\operatorname{Spec}_{F}(L) \neq Q_{F}$ since $p \in \operatorname{Spec}_{F}(L)$. Hence $\operatorname{Spec}_{F}(L)=Q_{F}$ implies that the condition holds. To prove the converse inclusion let the condition in the proposition be satisfied and $p \in \operatorname{Spec}_{F}(L)$. Then we have

$$
p=F(p)=\bigwedge_{p \leq p^{\prime}, p^{\prime} \in Q_{F}} p^{\prime}
$$

Thus p is the infimum of prime elements in Q_{F}, and by the condition we have that $p \in Q_{F}$. Hence $\operatorname{Spec}_{F}(L) \subseteq Q_{F}$. By Proposition 2.5 we have $Q_{F} \subseteq \operatorname{Spec}_{F}(L)$ which together with the inclusion shown above proves that $\operatorname{Spec}_{F}(L)=Q_{F}$.

Definition 2.7 A multiplicative lattice L is called strongly compact if for any $a \in L, a \leq \bigvee_{j=1}^{n} b_{j}$ implies $a \leq b_{l}$ for some $l \in J$.

Here, we state the theorem which shows that a quasi-radical operation satisfying certain condition must be radical operation.

Theorem 2.2 Let F be a quasi-radical operation and let L be a strongly compact multiplicative lattice such that F satisfies (g) of Relation 2.1. Then F is a radical operation.

Proof Since F is a quasi-radical operation, it satisfies $(a),(b),(c)$ and (f) of Relation 2.1. Let a be an element in L. From Lemma 2.1 it follows that if a prime element $a \leq p$ satisfies $F(p)=p$ then $F(a) \leq p$. Thus if $F(a)=I$ there is no F-prime element greater than a. If $F(a) \neq I$ let $f \not \leq F(a)$ be an element in L. Let \mathcal{F} be the set of elements $b \in L$ such that $a \leq b, f \not \leq b$ and $F(b)=b$. Since from (b) we have that $F(F(a))=F(a)$ and from (a) that $a \leq F(a)$ we see that $F(a) \in \mathcal{F}$ and thus $\mathcal{F} \neq \emptyset$. Each chain in \mathcal{F} has a maximal element by (g). Thus by Zorn's Lemma there is a maximal element $p \in \mathcal{F}$. Assume that p is not a prime element. Then there exist $g, h \in L$ such that $g \not \leq p, h \not \leq p$ but $g h \leq p$. Thus $g \vee p$ is not in \mathcal{F}. So by $(a), F(g \vee p)$ is not in \mathcal{F}. By $(b), F(F(g \vee p))=F(g \vee p)$. Since $a \leq F(g \vee p)$, this implies $f \leq F(g \vee p)$. Similarly $f \leq F(h \vee p)$. Thus $f \leq F(g \vee p) \wedge F(h \vee p)=F((g \vee p)(h \vee p))=F(g h \vee p)=F(p)=p$ which is a contradiction so p is a prime element. Thus we have shown the existence of F-prime element p such that $a \leq p$ but $f \not \leq p$. Since $f \not \leq F(a)$ was arbitrary this together with the result of Lemma 2.1, proves $F(a)$ can be realized as the infimum of the F-prime elements p such that $a \leq p$. That is F is a radical operation on the elements of L by Proposition 2.5.

Acknowledgment

The author wishes to thank the referee for his helpful comments and suggestions.

References

[1] Benhissi, A.: Hilbert's basis theorem for *-radical ideals. J. Pure Appl. Algebra. 161, 245-253 (2001).
[2] Jayaram, C., Johnson, E. W.: Some result on almost principal element lattices. Period. Math. Hungar. 31, 33-42 (1995).
[3] Jayaram, C., Johnson, E. W.: s-prime elements in multiplicative lattices. Period. Math. Hungar. 31, 201-208 (1995).
[4] Jayaram, C., Johnson, E. W.: Dedekind Lattice. Acta. Sci. Math. 63, 367-378 (1997).
[5] Jayaram, C., Johnson, E. W.: Strong compact elements in multiplicative lattices. Czechoslovak Math. J. 47(122), 105-112 (1997).
[6] Jayaram, C., Johnson, E. W.: σ-elements in multiplicative lattices. Czechoslovak Math. J. 48(123), 641-651 (1998).
[7] Jayaram, C.: Prime elements in multiplicative lattices. Algebra Universalis. 48, 117-127 (2002).
[8] Laksov, D.: Radicals defined by universal polynomials. TRITA-MAT-1986-27 Department of Mathematics, Royal Institute of Technology, Stockholm.
[9] Laksov, D.: Radicals and Hilbert Nullstellensatz for not necessarily algebraically closed fields. L'Enseignement Mathematique. 33, 323-338 (1987).
[10] Laksov, D. Rosenlund, M.: Radicals of ideals that are not the intersection of radical primes. Fund. Math. 185, no. 1, 83-96, (2005).
[11] Risler, J-J.: Le théorème des zéros en géometriés algébrique et analytique relles. Bulletin de la S.M.F. 104, 113-127 (1976).
[12] Rosenlund, M.: Radical Operations in rings and topological spaces. Thesis (Tekn.dr.)-Kungliga Tekniska Hogskolan (Sweden). 2004.
[13] Stengle, G.: A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry. Math. Ann. 207, 87-97, (1974).

[^0]: *Correspondence: esra.sengelen@bilgi.edu.tr
 2010 AMS Mathematics Subject Classification: 06B23, 06B75.

