Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $747-761$
(c) TÜBITAK
doi:10.3906/mat-1201-41

Polynomial root separation in terms of the Remak height

Artūras DUBICKAS*

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania

Received: 20.01.2012 • Accepted: 26.07.2012 • Published Online: 26.08.2013 • Printed: 23.09 .2013

Abstract

We investigate some monic integer irreducible polynomials which have two close roots. If $P(x)$ is a separable polynomial in $\mathbb{Z}[x]$ of degree $d \geqslant 2$ with the Remak height $\mathcal{R}(P)$ and the minimal distance between the quotient of two distinct roots and unity $\operatorname{Sep}(P)$, then the inequality $1 / \operatorname{Sep}(P) \ll \mathcal{R}(P)^{d-1}$ is true with the implied constant depending on d only. Using a recent construction of Bugeaud and Dujella we show that for each $d \geqslant 3$ there exists an irreducible monic polynomial $P \in \mathbb{Z}[x]$ of degree d for which $\mathcal{R}(P)^{(2 d-3)(d-1) /(3 d-5)} \ll 1 / \operatorname{Sep}(P)$. For $d=3$ the exponent $3 / 2$ is improved to $5 / 3$ and it is shown that the exponent 2 is optimal in the class of cubic (not necessarily monic) irreducible polynomials in $\mathbb{Z}[x]$.

Key words: Polynomial root separation, Mahler's measure, Remak height, discriminant

1. Introduction

Let

$$
P(x):=a_{d} x^{d}+\cdots+a_{1} x+a_{0}=a_{d}\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{d}\right) \in \mathbb{C}[x], \quad a_{d}, a_{0} \neq 0
$$

be a separable polynomial of degree $d \geqslant 2$. Throughout, let

$$
\Delta(P):=a_{d}^{2 d-2} \prod_{1 \leqslant i<j \leqslant d}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

be its discriminant,

$$
H(P):=\max _{1 \leqslant j \leqslant d}\left|a_{j}\right|
$$

its height,

$$
M(P):=\left|a_{d}\right| \prod_{j=1}^{d} \max \left(1,\left|\alpha_{j}\right|\right)
$$

its Mahler measure and

$$
\mathcal{R}(P):=\left|a_{d}\right| \prod_{j=1}^{d}\left|\alpha_{j}\right|^{(d-j) /(d-1)},
$$

[^0]where $\alpha_{1}, \ldots, \alpha_{d}$ are labeled so that $\left|\alpha_{1}\right| \geqslant\left|\alpha_{2}\right| \geqslant \ldots \geqslant\left|\alpha_{d}\right|$, its Remak height. The last quantity in the context of polynomials first appeared in the paper of Remak [21] who proved the inequality
\[

$$
\begin{equation*}
\sqrt{|\Delta(P)|} \leqslant d^{d / 2} \mathcal{R}(P)^{d-1} \tag{1}
\end{equation*}
$$

\]

This quantity also appears in [15], [20], [24] and is studied in detail in [9], [10], where it is named after Remak. In [8], it is shown that if $a_{i j} \in \mathbb{C}$ for $1 \leqslant i, j \leqslant d$ and the complex numbers z_{j} satisfy $\left|z_{1}\right| \geqslant\left|z_{2}\right| \geqslant \ldots \geqslant\left|z_{d}\right|$, then

$$
\begin{equation*}
\left|\operatorname{det}\left(a_{i j} z_{j}^{i-1}\right)_{1 \leqslant i, j \leqslant d}\right| \leqslant\left|z_{1}\right|^{d-1}\left|z_{2}\right|^{d-2} \ldots\left|z_{d-1}\right| \prod_{j=1}^{d}\left(\sum_{i=1}^{d}\left|a_{i j}\right|^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

This implies both (1) and Hadamard's inequality.
Note that in view of

$$
\begin{equation*}
\sqrt{M(P) \min \left(\left|a_{d}\right|,\left|a_{0}\right|\right)} \leqslant \mathcal{R}(P) \leqslant M(P) \tag{3}
\end{equation*}
$$

(see [10]) the inequality (1) is at least as good as Mahler's inequality

$$
\sqrt{|\Delta(P)|} \leqslant d^{d / 2} M(P)^{d-1}
$$

In [16] Mahler also proved that

$$
\begin{equation*}
\operatorname{sep}(P)>\frac{\sqrt{3|\Delta(P)|}}{d^{d / 2+1} M(P)^{d-1}}, \tag{4}
\end{equation*}
$$

where

$$
\operatorname{sep}(P):=\min _{i \neq j}\left|\alpha_{i}-\alpha_{j}\right|
$$

is the minimal distance between two distinct roots of P. After the paper of Mahler various aspects of polynomial root separation have been investigated in [1]-[5], [7], [11]-[13], [18]-[20], [22].

In fact, in (4) one cannot replace $M(P)$ by $\mathcal{R}(P)$ (see the first example in Section 2 below), but instead finds the following.

Theorem 1 For each $d \geqslant 2$ and each polynomial $P \in \mathbb{C}[x]$ of degree $d, P(0) \neq 0$, we have

$$
\begin{equation*}
\operatorname{Sep}(P)>\frac{c_{d} \sqrt{|\Delta(P)|}}{\mathcal{R}(P)^{d-1}} \tag{5}
\end{equation*}
$$

where $\operatorname{Sep}(P):=\min _{i \neq j}\left|1-\alpha_{j} / \alpha_{i}\right|$ and

$$
\begin{equation*}
c_{d}:=\frac{\sqrt{3}}{d^{d / 2+1} \sqrt{(1-1 / d)(1-1 / 2 d)}} \tag{6}
\end{equation*}
$$

The inequality (5) is due to Mignotte [19] (see also [7]). We shall give its short proof based on (2) in Section 4.

Note that for $d=2$ we have

$$
\operatorname{Sep}(P)=\frac{\sqrt{|\Delta(P)|}}{\mathcal{R}(P)}
$$

which is better than (5). For $d=3$ the constant $c_{3}=1 / 3 \sqrt{5}=0.14907 \ldots$ given in (6) can be improved to $1 / 4$. Furthermore, as in [22], the latter constant is best possible even if we restrict to the class of monic irreducible polynomials in $\mathbb{Z}[x]$.

Theorem 2 If $P(x) \in \mathbb{C}[x]$ is a separable cubic polynomial, $P(0) \neq 0$, then

$$
\begin{equation*}
\operatorname{Sep}(P)>\frac{\sqrt{|\Delta(P)|}}{4 \mathcal{R}(P)^{2}} \tag{7}
\end{equation*}
$$

Furthermore, for each $\varepsilon>0$ there is a monic cubic irreducible polynomial $P(x) \in \mathbb{Z}[x]$ for which

$$
\begin{equation*}
\operatorname{Sep}(P)<(1+\varepsilon) \frac{\sqrt{|\Delta(P)|}}{4 \mathcal{R}(P)^{2}} \tag{8}
\end{equation*}
$$

Note that, inequality (5) (unlike (4)) is symmetric with respect to the map $x \mapsto 1 / x$ in the sense that we can replace $P(x)$ by its reciprocal polynomial $P^{*}(x)= \pm x^{d} P(1 / x)$. Then $|\Delta(P)|=\left|\Delta\left(P^{*}\right)\right|$ and $\mathcal{R}(P)=\mathcal{R}\left(P^{*}\right)$, by Prop. 3.3 in [10]. Furthermore, $\operatorname{Sep}(P)$ is the minimal number among the following $d(d-1) / 2$ real numbers

$$
\left|1-\alpha_{2} / \alpha_{1}\right|,\left|1-\alpha_{3} / \alpha_{1}\right|, \ldots,\left|1-\alpha_{d} / \alpha_{d-1}\right|
$$

because $\left|\alpha_{1}\right| \geqslant \ldots \geqslant\left|\alpha_{d}\right|$ implies $\left|1-\alpha_{i} / \alpha_{j}\right| \geqslant\left|1-\alpha_{j} / \alpha_{i}\right|$ for $i<j$. So is also $\operatorname{Sep}\left(P^{*}\right)$, since the roots of P^{*} are $1 / \alpha_{d}, \ldots, 1 / \alpha_{1}$. Hence $\operatorname{Sep}(P)=\operatorname{Sep}\left(P^{*}\right)$. Of course, $\operatorname{sep}(P)$ and $\operatorname{sep}\left(P^{*}\right)$ can be different.

Below, when the degree of P, i.e., d will be fixed, we shall write $u \ll v$ for positive quantities u, v if the inequality $u \leqslant c v$ holds with some constant $c=c(d)$ depending on d only. With this notation, one has

$$
\begin{equation*}
H(P) \leqslant 2^{d} M(P) \ll M(P) \leqslant \sqrt{\sum_{j=0}^{d}\left|a_{j}\right|^{2}} \leqslant \sqrt{(d+1)} H(P) \ll H(P) \tag{9}
\end{equation*}
$$

so $H(P)$ and $M(P)$ are of the same size. Hence, for a separable polynomial $P(x) \in \mathbb{Z}[x]$ of degree d, from (4), (9) and (5) using $|\Delta(P)| \geqslant 1$ we find that

$$
\begin{equation*}
1 / \operatorname{sep}(P) \ll H(P)^{d-1} \quad \text { and } \quad 1 / \operatorname{Sep}(P) \ll \mathcal{R}(P)^{d-1} \tag{10}
\end{equation*}
$$

To investigate how sharp is the exponent $d-1$ in the first inequality of (10) the quantity

$$
e_{\mathrm{irr}}(d):=\limsup _{H(P) \rightarrow \infty} \frac{\log (1 / \operatorname{sep}(P))}{\log H(P)}
$$

where the limsup is taken over all integer irreducible polynomials P of degree d, is introduced. Of course, by the first inequality of (10), it satisfies $e_{\mathrm{irr}}(d) \leqslant d-1$. A similar quantity, where the polynomial P is, in addition, monic, is denoted by $e_{\mathrm{irr}}^{*}(d)$. Clearly,

$$
e_{\mathrm{irr}}^{*}(d) \leqslant e_{\mathrm{irr}}(d) \leqslant d-1
$$

It is straightforward that $e_{\text {irr }}(2)=1$ and $e_{\text {irr }}^{*}(2)=0$. It is also known that $e_{\mathrm{irr}}(3)=2$ (see [12], [22]). The lower bounds for $e_{\mathrm{irr}}(d), d \geqslant 4$, and for $e_{\mathrm{irr}}^{*}(d), d \geqslant 3$, have been obtained in [1]-[4]. Currently, the best bound on $e_{\text {irr }}(d)$ for each $d \geqslant 4$ is due to Bugeaud and Dujella [2]

$$
e_{\mathrm{irr}}(d) \geqslant \frac{d}{2}+\frac{d-2}{4(d-1)}
$$

As for $e_{\text {irr }}^{*}(d)$, their example gives the lower bound

$$
e_{\mathrm{irr}}^{*}(d) \geqslant \frac{d}{2}+\frac{d-2}{4(d-1)}-1
$$

for $d \geqslant 7$, but for $d=3,5$ and $d \geqslant 4$ even, the best bounds are due to Bugeaud and Mignotte [4]

$$
e_{\mathrm{irr}}^{*}(3) \geqslant 3 / 2, \quad e_{\mathrm{irr}}^{*}(5) \geqslant 7 / 4 \quad \text { and } \quad e_{\mathrm{irr}}^{*}(d) \geqslant(d-1) / 2
$$

respectively.
By (9), the height $H(P)$ and the Mahler measure $M(P)$ are essentially of the same size, so we will not get anything new by considering a corresponding quantity with $M(P)$ in place of $H(P)$. However, by (3), the Remak height $\mathcal{R}(P)$ can be significantly smaller, i.e., $\sqrt{H(P)} \ll \mathcal{R}(P) \ll H(P)$. So one can study

$$
g_{\mathrm{irr}}(d):=\limsup _{\mathcal{R}(P) \rightarrow \infty} \frac{\log (1 / \operatorname{Sep}(P))}{\log \mathcal{R}(P)}
$$

(resp. $g_{\mathrm{irr}}^{*}(d)$), where the limsup is taken over all (resp. all monic) integer irreducible polynomials P of degree d. Now, by the second inequality of (10), we obtain

$$
g_{\mathrm{irr}}^{*}(d) \leqslant g_{\mathrm{irr}}(d) \leqslant d-1
$$

for each $d \geqslant 2$.
A simple example,

$$
x^{2}-(2 t+1) x+t^{2}+t-1=\left(x-t-\frac{1+\sqrt{5}}{2}\right)\left(x-t-\frac{1-\sqrt{5}}{2}\right)
$$

with $t \in \mathbb{N}$ tending to infinity, shows that $g_{\text {irr }}^{*}(2) \geqslant 1$, hence

$$
g_{\mathrm{irr}}(2)=g_{\mathrm{irr}}^{*}(2)=1
$$

For $d \geqslant 3$, by a construction based on the example of Bugeaud and Dujella [2], we can come closer to the upper bound $d-1$ with the quantity $g_{\mathrm{irr}}^{*}(d)$ compared to the quantities $e_{\mathrm{irr}}(d)$ and $e_{\mathrm{irr}}^{*}(d)$.

Theorem 3 We have

$$
g_{\mathrm{irr}}^{*}(d) \geqslant \frac{(2 d-3)(d-1)}{3 d-5}
$$

for each $d \geqslant 3$.

The next theorem sharpens the inequality of this theorem for $d=3$ and evaluates the corresponding quantity for not necessarily monic polynomials.

Theorem 4 We have $g_{\mathrm{irr}}(3)=2$ and $g_{\mathrm{irr}}^{*}(3) \geqslant 5 / 3$.
Clearly, for monic polynomials P of degree d we have

$$
\mathcal{R}(P) \leqslant|\bar{P}|^{d / 2}
$$

where $|\bar{P}|:=\max _{\alpha: P(\alpha)=0}|\alpha|$ is the house of P. Thus (10) implies

$$
1 / \operatorname{Sep}(P) \ll|\bar{P}|^{d(d-1) / 2}
$$

for monic integer separable polynomials P of degree d. In the opposite direction we prove the following.

Theorem 5 For each $d \geqslant 4$ there are infinitely many monic integer irreducible polynomials $P \in \mathbb{Z}[x]$ of degree d for which $|\bar{P}|^{d(d-2) / 4} \ll 1 / \operatorname{Sep}(P)$. Furthermore, there are infinitely many monic cubic integer irreducible polynomials $P \in \mathbb{Z}[x]$ for which $|\bar{P}|^{5 / 2} \ll 1 / \operatorname{Sep}(P)$.

For monic cubic polynomials we have $\mathcal{R}(P)^{5 / 3} \leqslant|\bar{P}|^{5 / 2}$, and so Theorem 5 implies the inequality $g_{\mathrm{irr}}^{*}(3) \geqslant 5 / 3$ of Theorem 4. In fact, by Proposition 7 below, the equality $g_{\mathrm{irr}}^{*}(3)=5 / 3$ holds (and also the constant $5 / 2$ in Theorem 5 is optimal) if and only if Hall's conjecture [14] (asserting that there is an absolute constant $c>0$ such that the Diophantine inequality $0<\left|x^{3}-y^{2}\right|<c \sqrt{x}$ has no solutions in positive integers) is true. A corresponding result for the equality $e_{\text {irr }}^{*}(3)=3 / 2$ is given in [4].

In Section 2 we give some examples (introduced in [16], [18], [2] or their variations) and prove the first statement of Theorem 5 and Theorem 3. In Section 3 prove Theorem 4 and the second statement of Theorem 5. Finally, in Section 4 we will prove Theorems 1 and 2.

2. Three examples

The following lemma is well known (see [17] or [23]).
Lemma 6 Suppose λ is a root of the polynomial $x^{d}+\sum_{i=0}^{d-1} c_{i} x^{i}$ of multiplicity m and $\varepsilon>0$. Then for $\left|c_{i}-c_{i}^{\prime}\right|, i=0, \ldots, d-1$, sufficiently small the polynomial $x^{d}+\sum_{i=0}^{d-1} c_{i}^{\prime} x^{i}$ has exactly m roots within ε of λ.

As an illustration of his results in [16] Mahler considered the polynomial $x^{d}-1$. Let us consider the polynomial

$$
S_{t}(x):=x^{d}-t
$$

where t is a positive integer such that S_{t} is irreducible. (For instance, t can be a prime number.) Since $\alpha_{j}=e^{2 \pi i(j-1) / d} t^{1 / d}$ for each $j=1, \ldots, d$, we have

$$
\begin{gathered}
\mathcal{R}\left(S_{t}\right)=t^{1 / 2}, \quad M\left(S_{t}\right)=H\left(S_{t}\right)=t \\
\sqrt{\left|\Delta\left(S_{t}\right)\right|}=d^{d / 2} t^{(d-1) / 2}
\end{gathered}
$$

$$
\operatorname{sep}\left(S_{t}\right)=2 \sin (\pi / d) t^{1 / d}, \quad \operatorname{Sep}\left(S_{t}\right)=2 \sin (\pi / d)
$$

Hence

$$
\frac{\operatorname{Sep}\left(S_{t}\right) \mathcal{R}\left(S_{t}\right)^{d-1} d^{d / 2+1}}{\sqrt{\left|\Delta\left(S_{t}\right)\right|}}=2 \sin (\pi / d) d<2 \pi
$$

In particular, the constant $\sqrt{3}$ in (6) cannot be replaced by the constant 2π. Moreover, from $\mathcal{R}\left(S_{t}^{*}\right)=\mathcal{R}\left(S_{t}\right)=$ $t^{1 / 2}, \sqrt{\left|\Delta\left(S_{t}^{*}\right)\right|}=\sqrt{\left|\Delta\left(S_{t}\right)\right|}=d^{d / 2} t^{(d-1) / 2}$ and $\operatorname{sep}\left(S_{t}^{*}\right)=2 \sin (\pi / d) t^{-1 / d}$ we deduce that

$$
\frac{\operatorname{sep}\left(S_{t}^{*}\right) \mathcal{R}\left(S_{t}^{*}\right)^{d-1}}{\sqrt{\left|\Delta\left(S_{t}^{*}\right)\right|}}=\frac{2 \sin (\pi / d)}{d^{d / 2} t^{1 / d}}<\varepsilon
$$

for t large enough, so one cannot replace $M(P)$ by $\mathcal{R}(P)$ in (4).
The next example is due to Mignotte [18]. Fix a prime number p and consider the monic polynomial

$$
Q_{t}(x):=x^{d}-p(t x-1)^{2} \in \mathbb{Z}[x]
$$

where t is a sufficiently large positive integer. This polynomial is irreducible, by Eisenstein's criterion. We claim that this polynomial has $d-2$ 'large' roots $\alpha_{1}, \ldots, \alpha_{d-2}$ satisfying

$$
\begin{equation*}
\alpha_{j} \sim e^{2 \pi i(\tau(j)-1) /(d-2)} p^{1 /(d-2)} t^{2 /(d-2)} \quad \text { as } \quad t \rightarrow \infty \tag{11}
\end{equation*}
$$

where τ is a permutation of the set $\{1,2, \ldots, d-2\}$, and two 'small' positive roots $\alpha_{d-1}>\alpha_{d}$ satisfying

$$
\begin{equation*}
\alpha_{d-1}-\frac{1}{t} \sim \frac{1}{\sqrt{p} t^{d / 2+1}}, \quad \alpha_{d}-\frac{1}{t} \sim-\frac{1}{\sqrt{p} t^{d / 2+1}} \quad \text { as } \quad t \rightarrow \infty \tag{12}
\end{equation*}
$$

Indeed, setting $x:=t^{2 /(d-2)} y$ into $Q_{t}(x)=0$ and multiplying by $t^{-2 d /(d-2)}$, we obtain

$$
y^{d}-p y^{2}+2 p t^{-d /(d-2)} y-p t^{-2 d /(d-2)}=0
$$

so Lemma 6 implies (11). On the other hand, writing the root of Q_{t} in the form $x:=\left(y t^{-d / 2}+1\right) / t$, we find that

$$
0=t^{d} Q_{t}\left(\left(y t^{-d / 2}+1\right) / t\right)=\left(y t^{-d / 2}+1\right)^{d}-p y^{2}
$$

so, by Lemma $6, y$ is close to $\pm 1 / \sqrt{p}$ when t is large. This proves (12).
From $\mathcal{R}\left(Q_{t}\right)^{d-1}=\left|\alpha_{1}\right|^{d-1}\left|\alpha_{2}\right|^{d-2} \ldots\left|\alpha_{d-2}\right|^{2}\left|\alpha_{d-1}\right|$, using (11), (12), in view of

$$
\frac{2}{d-2}(d-1+d-2+\cdots+2)-1=\frac{2}{d-2}\left(\frac{(d-1) d}{2}-1\right)-1=d
$$

we obtain

$$
\mathcal{R}\left(Q_{t}\right)^{d-1} \sim p^{(d+1) / 2} t^{d} \quad \text { as } \quad t \rightarrow \infty
$$

and also

$$
\begin{equation*}
\operatorname{Sep}\left(Q_{t}\right)=\frac{\alpha_{d-1}-\alpha_{d}}{\alpha_{d-1}} \sim \frac{2}{\sqrt{p} t^{d / 2}} \quad \text { as } \quad t \rightarrow \infty \tag{13}
\end{equation*}
$$

Therefore,

$$
\frac{\log \left(1 / \operatorname{Sep}\left(Q_{t}\right)\right)}{\log \mathcal{R}\left(Q_{t}\right)} \rightarrow \frac{d / 2}{d /(d-1)}=\frac{d-1}{2}
$$

as $t \rightarrow \infty$.
In particular, this example yields the bound $g_{\text {irr }}^{*}(d) \geqslant(d-1) / 2$. Furthermore, combining $\left|\overline{Q_{t}}\right| \sim$ $p^{1 /(d-2)} t^{2 /(d-2)}$ with (13) we see that $\left|\overline{Q_{t}}\right|^{d(d-2) / 4} \ll 1 / \operatorname{Sep}\left(Q_{t}\right)$. This proves the first statement of Theorem 5 .

The next construction is essentially due to Bugeaud and Dujella [2]. Let

$$
C_{k}:=\frac{1}{k+1}\binom{2 k}{k}, \quad k=0,1,2, \ldots
$$

be the $k^{\text {th }}$ Catalan number. The Catalan numbers for $k=0,1,2, \ldots$ are

$$
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440, \ldots
$$

It is well known that

$$
\begin{equation*}
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k} \tag{14}
\end{equation*}
$$

and that the generating function of Catalan's numbers

$$
c(x):=\sum_{k=0}^{\infty} C_{k} x^{k}
$$

satisfies

$$
c(x)-1=c(x)^{2} x
$$

We next replace $c(x)$ in the equality $x^{-1}+c(x)\left(-x^{-1}+c(x)\right)=0, x \neq 0$, by its truncated series and introduce a new parameter t. More precisely, for integers $d \geqslant 2$ and $t \geqslant 1$ consider the Laurent polynomial

$$
\begin{equation*}
G_{t}(x):=\frac{1}{x}+\left(\sum_{k=0}^{d-2} C_{k} x^{k}+\frac{x^{d-1}}{t}\right)\left(-\frac{1}{x}+\sum_{k=0}^{d-2} C_{k} x^{k}+\frac{x^{d-1}}{t}\right) \tag{15}
\end{equation*}
$$

Note that the coefficient for x^{-1} in $G_{t}(x)$ is zero, because $C_{0}=1$. The coefficient for x^{n}, where $0 \leqslant n \leqslant d-3$, in $G_{t}(x)$ is equal to

$$
-C_{n+1}+C_{n} C_{0}+C_{n-1} C_{1}+\cdots+C_{0} C_{n}
$$

which is zero again in view of (14). Consequently,

$$
\begin{equation*}
F_{t}(x):=\frac{t^{2}}{x^{d-2}} G_{t}(x)=x^{d}+2 t C_{d-2} x^{d-1}+\sum_{k=0}^{d-2} a_{k}(t) x^{k} \tag{16}
\end{equation*}
$$

is a monic polynomial of degree d with integer coefficients. Here,

$$
\begin{equation*}
a_{k}(t)=2 C_{k-1} t+t^{2} \sum_{j=k}^{d-2} C_{j} C_{d-2+k-j} \tag{17}
\end{equation*}
$$

for $k=1, \ldots, d-2$ and

$$
\begin{equation*}
a_{0}(t)=-t+t^{2} \sum_{j=0}^{d-2} C_{j} C_{d-2-j}=-t+C_{d-1} t^{2} \tag{18}
\end{equation*}
$$

The monic polynomial $F_{t}(x)$ of degree d is irreducible if, say, t is a prime number. By Lemma 6 , (17) and (18), as $t \rightarrow \infty$, the polynomial $F_{t}(x)$ has $d-2$ roots $\alpha_{3}, \ldots, \alpha_{d}$ tending to $d-2$ roots of the polynomial

$$
C_{d-1}+\sum_{k=1}^{d-2} x^{k} \sum_{j=k}^{d-2} C_{j} C_{d-2+k-j}=\left(x-\lambda_{3}\right) \ldots\left(x-\lambda_{d}\right)
$$

(In principle, $\lambda_{3}, \ldots, \lambda_{d}$ are not necessarily distinct, although in all examples with small d they are distinct.)
Let ξ be the root of the polynomial

$$
E_{t}(x):=t \sum_{k=0}^{d-2} C_{k} x^{k}+x^{d-1}
$$

satisfying

$$
\begin{equation*}
\xi \sim-t C_{d-2} \quad \text { as } \quad t \rightarrow \infty \tag{19}
\end{equation*}
$$

Applying the mean value theorem to the function $E_{t}(x)$ in the interval $\left[\xi, \xi+\theta C_{d-2}^{3 / 2-d} t^{5 / 2-d}\right]$, where $\theta \in \mathbb{R}$ is fixed, in view of $E_{t}(\xi)=0$ and (19) we obtain

$$
E_{t}\left(\xi+\theta C_{d-2}^{3 / 2-d} t^{5 / 2-d}\right) \sim \theta C_{d-2}^{3 / 2-d} t^{5 / 2-d}\left((d-1) \xi^{d-2}+(d-2) C_{d-2} t \xi^{d-3}\right) \sim(-1)^{d} \theta \sqrt{\frac{t}{C_{d-2}}}
$$

as $t \rightarrow \infty$. Now, by (15) and (16),

$$
F_{t}(x) x^{d-1}=t^{2} x G_{t}(x)=t^{2} x\left(\frac{1}{x}+\frac{E_{t}(x)}{t}\left(-\frac{1}{x}+\frac{E_{t}(x)}{t}\right)\right)=t^{2}-t E_{t}(x)+x E_{t}(x)^{2} .
$$

Let us insert the root x of F_{t} written in the form $x=\xi+\theta C_{d-2}^{3 / 2-d} t^{5 / 2-d}$ into $1-E_{t}(x) t^{-1}+x t^{-2} E_{t}(x)^{2}=$ 0 . By the above, we see that the left hand side tends to $1-\theta^{2}$ as $t \rightarrow \infty$. Hence θ tends to 1 and -1 , so that the remaining two roots α_{1}, α_{2} of $F_{t}(x)$ satisfy

$$
\begin{equation*}
\alpha_{1}-\xi \sim-C_{d-2}^{3 / 2-d} t^{5 / 2-d} \quad \text { and } \quad \alpha_{2}-\xi \sim C_{d-2}^{3 / 2-d} t^{5 / 2-d} \tag{20}
\end{equation*}
$$

We are now in a position to prove Theorem 3. Set $t:=p k^{d}$ with a prime number p and a positive integer k and consider the polynomial $P_{k}(x):=F_{p k^{d}}(k x) k^{-d}$, where $F_{t}(x)$ is defined in (16). By (17), (18) and the Eisenstein criterion applied to p, we see that P_{k} is a monic irreducible polynomial of degree d. Its roots are $\beta_{j}=\alpha_{j} / k, j=1, \ldots, d$, where α_{j} are the roots of F_{t}. Since $t=p k^{d}$, from (19) and (20) we derive that $\beta_{1}, \beta_{2} \sim-p C_{d-2} k^{d-1}$ and

$$
\beta_{2}-\beta_{1} \sim 2 C_{d-2}^{3 / 2-d} p^{5 / 2-d} k^{-d^{2}+5 d / 2-1}
$$

as $k \rightarrow \infty$. Thus

$$
\begin{equation*}
\operatorname{Sep}\left(P_{k}\right) \leqslant\left|1-\beta_{1} / \beta_{2}\right| \sim 2 p^{3 / 2-d} C_{d-2}^{1 / 2-d} k^{-d^{2}+3 d / 2} \tag{21}
\end{equation*}
$$

Since $\beta_{j} \sim \lambda_{j} k^{-1}$ as $k \rightarrow \infty$ for $j=3, \ldots, d$, in view of

$$
(d-1)(d-1+d-2)-(d-3+d-2+\cdots+1)=(3 d-5) d / 2
$$

we find that

$$
\begin{equation*}
k^{(3 d-5) d / 2(d-1)} \ll \mathcal{R}\left(P_{k}\right)=\left|\beta_{1}\right|\left|\beta_{2}\right|^{(d-2) /(d-1)} \ldots\left|\beta_{d-1}\right|^{1 /(d-1)} \ll k^{(3 d-5) d / 2(d-1)} . \tag{22}
\end{equation*}
$$

Now, since $\mathcal{R}\left(P_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$, combining (21) with (22) we find that

$$
g_{\mathrm{irr}}^{*}(d) \geqslant \frac{d^{2}-3 d / 2}{(3 d-5) d /(2(d-1))}=\frac{(2 d-3)(d-1)}{3 d-5}
$$

This completes the proof of Theorem 3.

3. Proof of Theorem 4

Our proof of $g_{\text {irr }}(3)=2$ follows [22]. Let us begin, for example, with the polynomial

$$
P(x):=x^{3}-x-1=(x-\alpha)(x-\beta)(x-\gamma),
$$

where $\alpha=1.32471 \ldots$ and $\beta=-0.66235 \cdots+i 0.56227 \ldots, \gamma=-0.66235 \cdots-i 0.56227 \ldots$ are two complex conjugate roots satisfying

$$
|\beta|=|\gamma|<1 \quad \text { and } \Re(\beta)=\Re(\gamma)<0
$$

Consider the sequence $\alpha_{1}:=\alpha$ and

$$
\alpha_{k+1}:=1 /\left\{\alpha_{k}\right\} \quad \text { for } \quad k=1,2,3, \ldots
$$

Then $\alpha_{k}>1$ and $\alpha_{k} \in \mathbb{Q}(\alpha)$ for each $k \in \mathbb{N}$. Setting $\beta_{1}:=\beta, \gamma_{1}:=\gamma$ and $q_{k}:=\left[\alpha_{k}\right] \in \mathbb{N}$ (so that $\left.\alpha_{k+1}=1 /\left(\alpha_{k}-q_{k}\right)\right)$, we also define two corresponding sequences

$$
\beta_{k+1}=1 /\left(\beta_{k}-q_{k}\right) \quad \text { and } \quad \gamma_{k+1}=1 /\left(\gamma_{k}-q_{k}\right)
$$

for $k=1,2,3, \ldots$. Note that, by the above construction, the continued fraction expansion for the cubic number α_{k} is

$$
\begin{equation*}
\alpha_{k}=q_{k}+\frac{1}{q_{k+1}+\frac{1}{q_{k+2}+\cdots}} \tag{23}
\end{equation*}
$$

for each $k \in \mathbb{N}$.
It is easy to see that the 'next' polynomial $P_{k}(x)$ obtained from $P_{k-1}(x)$, firstly, by replacing $P_{k-1}(x)$ by $P_{k-1}\left(x+q_{k-1}\right)$ and then, secondly, by taking its reciprocal polynomial, namely,

$$
P_{k}(x)=P_{k-1}^{*}\left(x+q_{k-1}\right)=a_{k}\left(x-\alpha_{k}\right)\left(x-\beta_{k}\right)\left(x-\gamma_{k}\right) \in \mathbb{Z}[x], \quad a_{k} \in \mathbb{N}
$$

is irreducible, since so is $P_{k-1}(x)$. Furthermore, it is clear that

$$
\sqrt{\left|\Delta\left(P_{k}\right)\right|}=\sqrt{\left|\Delta\left(P_{k-1}\right)\right|}=\cdots=\sqrt{|\Delta(P)|}=\sqrt{23}
$$

DUBICKAS/Turk J Math

It is straightforward to check that for each $k \in \mathbb{N}$ the roots β_{k} and $\gamma_{k}=\overline{\beta_{k}}$ satisfy

$$
\left|\beta_{k}\right|=\left|\gamma_{k}\right|<1 \quad \text { and } \Re\left(\beta_{k}\right)=\Re\left(\gamma_{k}\right)<0 .
$$

Consequently, $\left|\alpha_{k}-\beta_{k}\right|=\left|\alpha_{k}-\gamma_{k}\right|>\alpha_{k}$, and so

$$
\begin{equation*}
\sqrt{23}=a_{k}^{2}\left|\alpha_{k}-\beta_{k}\right|\left|\alpha_{k}-\gamma_{k}\right|\left|\beta_{k}-\gamma_{k}\right|>a_{k}^{2} \alpha_{k}^{2}\left|\beta_{k}\right|\left|1-\gamma_{k} / \beta_{k}\right| \geqslant \mathcal{R}\left(P_{k}\right)^{2} \operatorname{Sep}\left(P_{k}\right) . \tag{24}
\end{equation*}
$$

If the sequences $a_{k} \in \mathbb{N}$ and $\alpha_{k}, k=1,2,3, \ldots$, were both bounded from above then, as $\left|\beta_{k}\right|,\left|\gamma_{k}\right|<1$, we would only have finitely many different polynomials $P_{k}(x) \in \mathbb{Z}[x]$. But then we must have $\alpha_{k}=\alpha_{j}$ for some indices $k>j \geqslant 1$. $\mathrm{By}(23)$, this implies that the sequence $q_{k}, k=1,2,3, \ldots$, is ultimately periodic. So $\alpha_{1}=\alpha$ must be a quadratic number, a contradiction. This proves that at least one sequence $a_{k}, k=1,2,3, \ldots$, or $\alpha_{k}, k=1,2,3, \ldots$, is unbounded. Hence the sequence $M\left(P_{k}\right)=a_{k} \alpha_{k}, k=1,2,3, \ldots$, is unbounded. Thus, by (3), $\mathcal{R}\left(P_{k}\right), k=1,2,3, \ldots$, is unbounded and therefore (24) implies $g_{\mathrm{irr}}(3) \geqslant 2$. Combining this with the upper bound $g_{\mathrm{irr}}(3) \leqslant 2$ we obtain $g_{\mathrm{irr}}(3)=2$.

Note that, by exactly the same argument, we can start with any Pisot number α of degree $d \geqslant 3$ with minimal polynomial P whose all other $d-1$ conjugates have negative real part. (For example, in [9] we have considered totally positive Pisot units α of degree d. Then $\alpha-1$ is a Pisot number of degree d with its all remaining $d-1$ conjugates negative.) Putting

$$
\alpha_{1,1}=\alpha, \quad \alpha_{1, k+1}=1 /\left\{\alpha_{1, k}\right\}, \quad k=1,2,3, \ldots
$$

we obtain the sequence of polynomials $P_{k}, k=1,2,3, \ldots$, with roots $\alpha_{1, k}, \alpha_{2, k}, \ldots, \alpha_{d, k}$ such that $\alpha_{1, k}$ is a Pisot number, $\alpha_{1, k}>1>\left|\alpha_{2, k}\right| \geqslant \ldots \geqslant\left|\alpha_{d, k}\right|$, and $\left|\alpha_{1, k}-\alpha_{i, k}\right|>\alpha_{1, k}$ for $i=2, \ldots, d-1$. It follows that

$$
\mathcal{R}\left(P_{k}\right)^{d-1} \prod_{2 \leqslant i<j \leqslant d}\left|1-\alpha_{j, k} / \alpha_{i, k}\right|<\sqrt{\Delta\left(P_{k}\right)}=\sqrt{\Delta(P)}
$$

Also, as above, all the numbers $\alpha_{1, k}, k=1,2,3, \ldots$, must be distinct, so the sequences $M\left(P_{k}\right)=a_{k} \alpha_{1, k}$, $k=1,2,3, \ldots$, and $\mathcal{R}\left(P_{k}\right), k=1,2,3, \ldots$, are unbounded. Of course, if α is a Pisot number with negative conjugates, then the roots $\alpha_{2, k}, \ldots, \alpha_{d, k}$ are negative for each $k \in \mathbb{N}$.

We next turn to monic cubic polynomials with two close roots and use the ideas of [4]. Recall first that, by a result of Danilov [6], there exist two increasing sequences of positive integers x_{k} and $y_{k}, k=1,2,3, \ldots$, and an absolute constant $c>0$ such that

$$
\begin{equation*}
x_{k}^{3}-y_{k}^{2} \sim c x_{k}^{1 / 2} \quad \text { as } \quad k \rightarrow \infty \tag{25}
\end{equation*}
$$

(See formula (6) in [6], where there is misprint in the power of the polynomial $t^{2}+6 t-11$.) So Proposition 7 with $w=5 / 2$ implies the assertion of Theorem 5 for cubic polynomials and also the inequality $g_{\text {irr }}^{*}(3) \geqslant 5 / 3$ of Theorem 4. Moreover, by Hall's conjecture [14], w is the largest real number with this property (although it is only known that $w<3$ which follows from an old result of Mordell), so equality $g_{\text {irr }}^{*}(3)=5 / 3$ is equivalent to Hall's conjecture.

The remainder of this section is devoted to the proof of the following statement.
Proposition 7 Let w be a positive number satisfying $5 / 2 \leqslant w<3$. Then the inequality $|\bar{P}|^{w} \ll 1 / \operatorname{Sep}(P)$ has infinitely many solutions in monic cubic irreducible polynomials $P \in \mathbb{Z}[x]$ if and only if the inequality $0<\left|x^{3}-y^{2}\right| \ll x^{3-w}$ has infinitely many solutions in positive integers x, y.

Proof Assume first that the inequality $0<\left|x_{k}^{3}-y_{k}^{2}\right| \ll x_{k}^{3-w}$ holds for infinitely many pairs $\left(x_{k}, y_{k}\right) \in \mathbb{N}^{2}$. Consider the monic cubic polynomial

$$
P_{k}(x):=x^{3}-3 x_{k} x-2 y_{k} \in \mathbb{Z}[x]
$$

with discriminant $\Delta\left(P_{k}\right)=108\left(x_{k}^{3}-y_{k}^{2}\right)$. Putting $\delta_{k}:=\left(x_{k}^{3}-y_{k}^{2}\right) x_{k}^{w-3} / 3$, we have $\left|\delta_{k}\right| \ll 1$. Evaluating the polynomial P_{k} at $x=-\sqrt{x_{k}}+z$ we find that

$$
\begin{gathered}
P_{k}\left(-\sqrt{x_{k}}+z\right)=-x_{k}^{3 / 2}+3 x_{k} z-3 \sqrt{x_{k}} z^{2}+z^{3}+3 x_{k}^{3 / 2}-3 x_{k} z-2 y_{k} \\
\quad=2\left(x_{k}^{3 / 2}-y_{k}\right)-3 \sqrt{x_{k}} z^{2}+z^{3}=\frac{2\left(x_{k}^{3}-y_{k}^{2}\right)}{x_{k}^{3 / 2}+y_{k}}-3 \sqrt{x_{k}} z^{2}+z^{3}
\end{gathered}
$$

Therefore, since

$$
\frac{2\left(x_{k}^{3}-y_{k}^{2}\right)}{3\left(x_{k}^{3 / 2}+y_{k}\right) \sqrt{x_{k}}} \sim \frac{x_{k}^{3}-y_{k}^{2}}{3 x_{k}^{2}}=\frac{3 \delta_{k} x_{k}^{3-w}}{3 x_{k}^{2}}=\delta_{k} x_{k}^{1-w} \quad \text { as } \quad k \rightarrow \infty
$$

for its two roots α_{k}, β_{k} we have

$$
\alpha_{k}+\sqrt{x_{k}} \sim-x_{k}^{1 / 2-w / 2} \sqrt{\delta_{k}} \text { and } \beta_{k}+\sqrt{x_{k}} \sim x_{k}^{1 / 2-w / 2} \sqrt{\delta_{k}}
$$

Thus the third root satisfies $\gamma_{k} \sim 2 \sqrt{x_{k}}$ as $k \rightarrow \infty$. Therefore, in both cases $\left(\alpha_{k}, \beta_{k}\right.$ are real or complex conjugate roots), we have $\gamma_{k}>\left|\alpha_{k}\right| \geqslant\left|\beta_{k}\right|$ and

$$
\operatorname{sep}\left(P_{k}\right)=\left|\alpha_{k}-\beta_{k}\right| \sim 2 \sqrt{\left|\delta_{k}\right|} x_{k}^{1 / 2-w / 2}
$$

It follows that $\operatorname{Sep}\left(P_{k}\right) \sim 2 \sqrt{\left|\delta_{k}\right|} x_{k}^{-w / 2}$ and $\left|\overline{P_{k}}\right| \sim 2 x_{k}^{1 / 2}$, giving the inequality $\left|\overline{P_{k}}\right|^{w} \ll 1 / \operatorname{Sep}\left(P_{k}\right)$ for the monic cubic polynomials P_{k} defined above.

To complete the proof in one direction it remains to show that P_{k} are irreducible for k large enough. For a contradiction assume that P_{k} is reducible in $\mathbb{Z}[x]$. Then one of the roots α_{k}, β_{k} or γ_{k} must be an integer. If at least two roots are integers then all three must be integers which is impossible in view of $\beta_{k}-\alpha_{k} \rightarrow 0$. So assume that one is an integer and two others are the roots of an irreducible polynomial $Q(x)=x^{2}+u x+v \in \mathbb{Z}[x]$. By the same reason, as $\beta_{k}-\alpha_{k} \rightarrow 0$, these two cannot be α_{k}, β_{k}, so one of the roots of Q is γ_{k}. Assume that the other root of Q is β_{k}. (The proof in case this is α_{k} is the same.) Then α_{k}, β_{k} are real negative numbers, $u=-\gamma_{k}-\beta_{k}=\alpha_{k}$ and $\Delta(Q)=u^{2}-4 v=\left(\gamma_{k}-\beta_{k}\right)^{2} \notin \mathbb{Z}^{2}$. Thus

$$
\beta_{k}-\alpha_{k}=\beta_{k}-u=\frac{-u-\sqrt{\Delta(Q)}}{2}-u=\frac{-3 u-\sqrt{\Delta(Q)}}{2} \geqslant \frac{1}{2(-3 u+\sqrt{\Delta(Q)})}
$$

As $-3 u=-3 \alpha_{k}<3 \gamma_{k}$ and $\sqrt{\Delta(Q)}=\gamma_{k}-\beta_{k}=\gamma_{k}+\left|\beta_{k}\right|<2 \gamma_{k}$, this yields $\operatorname{sep}\left(P_{k}\right)=\beta_{k}-\alpha_{k}>1 / 10 \gamma_{k}$, contrary to $\operatorname{sep}\left(P_{k}\right) \ll x_{k}^{1 / 2-w / 2} \ll \gamma_{k}^{1-w} \ll \gamma_{k}^{-3 / 2}$.

To prove the result in the opposite direction we assume that the inequality

$$
\mathcal{R}(P)^{2 w / 3} \ll 1 / \operatorname{Sep}(P)
$$

has infinitely many solutions in monic cubic irreducible polynomials $P=P_{k} \in \mathbb{Z}[x]$. Note that this assumption is weaker than required because $\mathcal{R}(P)^{2 w / 3} \leqslant|\bar{P}|^{w}$. Without restriction of generality (by replacing $P_{k}(x)$ by $P_{k}(6 x)$, if necessary, and omitting everywhere the index k) we may assume that the coefficients of $P(x)=$ $x^{3}+a x^{2}+b x+c$ satisfy $6 \mid a, b, c$. We claim that $\mathcal{R}(P)^{2 w / 3} \ll 1 / \operatorname{Sep}(P)$ implies

$$
\begin{equation*}
\operatorname{sep}(P) \ll|\bar{P}|^{1-w} \tag{26}
\end{equation*}
$$

(possibly with another constant in \ll).
Indeed, assume that α, β, γ are the roots of P satisfying $|\alpha| \leqslant|\beta| \leqslant|\gamma|$. As $\mathcal{R}(P)$ tends to infinity (there are only finitely many monic integer polynomials with $\mathcal{R}(P)$ bounded), $\operatorname{Sep}(P)$ tends to zero; so let us consider only those P for which $\operatorname{Sep}(P) \leqslant 1 / 2$. Evidently, $\operatorname{Sep}(P)$ is one of the numbers $|1-\alpha / \beta|,|1-\beta / \gamma|$ or $|1-\alpha / \gamma|$.

In the first case, $\operatorname{Sep}(P)=|1-\alpha / \beta|$, using $\operatorname{sep}(P) \leqslant|\beta-\alpha|=|\beta| \operatorname{Sep}(P),|\beta| \leqslant|\gamma|$ and $w<3$ we obtain

$$
|\gamma|^{w-1} \operatorname{sep}(P) \leqslant|\gamma|^{w-1}|\beta| \operatorname{Sep}(P) \leqslant|\gamma|^{2 w / 3}|\beta|^{w / 3} \operatorname{Sep}(P)=\mathcal{R}(P)^{2 w / 3} \operatorname{Sep}(P) \ll 1 .
$$

In the second case, $\operatorname{Sep}(P)=|1-\beta / \gamma|$, from $\operatorname{Sep}(P) \leqslant 1 / 2$ it follows that $|\beta / \gamma| \geqslant 1 / 2$, hence $|\beta| \geqslant|\gamma| / 2$. Similarly, in the third case, $\operatorname{Sep}(P)=|1-\alpha / \gamma|$, we obtain $|\alpha| \geqslant|\gamma| / 2$, so $|\beta| \geqslant|\alpha| \geqslant|\gamma| / 2$. Therefore, in these two cases we have $|\gamma|^{3 / 2} \ll|\gamma||\beta|^{1 / 2}=\mathcal{R}(P)$, i.e. $|\gamma| \ll \mathcal{R}(P)^{2 / 3}$. From $\operatorname{sep}(P) \leqslant|\gamma| \operatorname{Sep}(P)$ we conclude that

$$
|\gamma|^{w-1} \operatorname{sep}(P) \leqslant|\gamma|^{w} \operatorname{Sep}(P) \ll \mathcal{R}(P)^{2 w / 3} \operatorname{Sep}(P) \ll 1,
$$

which gives (26) again.
Next, let us replace $P(x)$ by $P(x-a / 3)$. This does not change either sep (P) or $\Delta(P)$. If α, β, γ were the roots of $P(x)=x^{3}+a x^{2}+b x+c$ satisfying $|\alpha| \leqslant|\beta| \leqslant|\gamma|$ (so that $\alpha+\beta+\gamma=-a$, and hence $3|\gamma| \geqslant|a|$) then the roots of $P(x-a / 3)$ are $\alpha+a / 3, \beta+a / 3, \gamma+a / 3$. The modulus of the largest of those three does not exceed $|\gamma|+|a| / 3 \leqslant 2|\gamma|=2|\bar{P}|$, so this change may increase the value of $|\bar{P}|$ at most twice. It follows that (26) holds for infinitely many monic cubic irreducible polynomials

$$
P(x)=(x-a / 3)^{3}+a(x-a / 3)^{2}+b(x-a / 3)+c=x^{3}-\left(a^{2} / 3-b\right) x-\left(a b / 3-c-2 a^{3} / 27\right) .
$$

Since $6 \mid a, b, c$, we can write P in the form $P(x)=x^{3}-3 p x-2 q \in \mathbb{Z}[x]$ with integers $p:=\left(a^{2} / 3-b\right) / 3$, $q:=\left(a b / 3-c-2 a^{3} / 27\right) / 2$ and with the roots α, β, γ satisfying $|\alpha| \leqslant|\beta| \leqslant|\gamma|$.

Now, since γ has the largest modulus among three roots satisfying $\alpha+\beta+\gamma=0$ and $\operatorname{sep}(P) \rightarrow 0$, we must have $\operatorname{sep}(P)=|\alpha-\beta|$ and so α, β tend to $-\gamma / 2$. In particular, this implies $2 q=\alpha \beta \gamma \geqslant \gamma^{3} / 5$, so $\gamma \ll q^{1 / 3}$. Hence from $\Delta(P)=108\left(p^{3}-q^{2}\right)$ using (26) and the irreducibility of P we find that

$$
0<\sqrt{108\left|p^{3}-q^{2}\right|}=\sqrt{|\Delta(P)|}=|\alpha-\beta||\alpha-\gamma||\beta-\gamma| \ll \operatorname{sep}(P)|\gamma|^{2} \ll|\gamma|^{3-w} \ll q^{1-w / 3}
$$

So the inequality $0<\left|p^{3}-q^{2}\right| \ll q^{2-2 w / 3}$ has infinitely many solutions $(p, q) \in \mathbb{N}^{2}$. This implies the result in view of $q^{2-2 w / 3} \ll\left(p^{3 / 2}\right)^{2-2 w / 3}=p^{3-w}$.

4. Proof of Theorems 1 and 2

Proof of Theorem 1. To give a short proof of (5) we assume that $\operatorname{Sep}(P)=\left|1-\alpha_{l} / \alpha_{k}\right|$ with $k<l$. Let us subtract the $l^{\text {th }}$ column of the determinant $\operatorname{det}\left(\alpha_{j}^{i-1}\right)_{1 \leqslant i, j \leqslant d}$ from its $k^{\text {th }}$ column. The element $i \times k$ of the resulting determinant is equal to $\alpha_{k}^{i-1}-\alpha_{l}^{i-1}$. Taking out the factor $1-\alpha_{l} / \alpha_{k}$ out of each element of the $k^{\text {th }}$ column we obtain

$$
\operatorname{det}\left(\alpha_{j}^{i-1}\right)_{1 \leqslant i, j \leqslant d}=\left(1-\alpha_{l} / \alpha_{k}\right) \operatorname{det}\left(a_{i j} \alpha_{j}^{i-1}\right)_{1 \leqslant i, j \leqslant d},
$$

where $a_{i j}:=1$ for $j \neq k$ and $a_{i k}:=\alpha_{k}^{2-i}\left(\alpha_{k}^{i-1}-\alpha_{l}^{i-1}\right) /\left(\alpha_{k}-\alpha_{l}\right)$, because the element $i \times k$ becomes

$$
\frac{\alpha_{k}^{i-1}-\alpha_{l}^{i-1}}{1-\alpha_{l} / \alpha_{k}}=\frac{\left(\alpha_{k}^{i-1}-\alpha_{l}^{i-1}\right) \alpha_{k}^{i-1}}{\left(\alpha_{k}-\alpha_{l}\right) \alpha_{k}^{i-2}}=a_{i k} \alpha_{k}^{i-1}
$$

In particular, $a_{1 k}=0$ and

$$
\left|a_{i k}\right|=\left|1+\alpha_{l} / \alpha_{k}+\cdots+\left(\alpha_{l} / \alpha_{k}\right)^{i-2}\right| \leqslant 1+\left|\alpha_{l} / \alpha_{k}\right|+\cdots+\left|\left(\alpha_{l} / \alpha_{k}\right)^{i-2}\right| \leqslant i-1
$$

for $i=2, \ldots, d$, since $\left|\alpha_{l}\right| \leqslant\left|\alpha_{k}\right|$. Thus, by (6),

$$
\begin{aligned}
\prod_{j=1}^{d}\left(\sum_{i=1}^{d}\left|a_{i j}\right|^{2}\right)^{1 / 2} \leqslant & d^{(d-1) / 2} \sqrt{1^{2}+\cdots+(d-1)^{2}}=d^{(d-1) / 2}(d(d-1)(2 d-1) / 6)^{1 / 2} \\
& =d^{d / 2+1} \sqrt{(1-1 / d)(1-1 / 2 d)} / \sqrt{3}=1 / c_{d}
\end{aligned}
$$

Therefore, applying (2), we obtain

$$
\begin{gathered}
\sqrt{|\Delta(P)|}=\left|a_{d}\right|^{d-1}\left|\operatorname{det}\left(\alpha_{j}^{i-1}\right)_{1 \leqslant i, j \leqslant d}\right|=\left|a_{d}\right|^{d-1} \operatorname{Sep}(P)\left|\operatorname{det}\left(a_{i j} \alpha_{j}^{i-1}\right)_{1 \leqslant i, j \leqslant d}\right| \\
<\operatorname{Sep}(P) \mathcal{R}(P)^{d-1} / c_{d}
\end{gathered}
$$

giving (5).
Proof of Theorem 2. Assume that $\operatorname{Sep}(P)=\left|1-\alpha_{2} / \alpha_{1}\right|$. (The proof in two other cases is the same.) Then

$$
\frac{\sqrt{|\Delta(P)|}}{\operatorname{Sep}(P) \mathcal{R}(P)^{2}}=\frac{\left|\alpha_{1}-\alpha_{2}\right|\left|\alpha_{1}-\alpha_{3}\right|\left|\alpha_{2}-\alpha_{3}\right|\left|\alpha_{1}\right|}{\left|\alpha_{1}-\alpha_{2}\right|\left|\alpha_{1}\right|^{2}\left|\alpha_{2}\right|}=\left|1-\alpha_{3} / \alpha_{1}\right|\left|1-\alpha_{3} / \alpha_{2}\right|
$$

Since $\left|1-\alpha_{3} / \alpha_{1}\right| \leqslant 1+\left|\alpha_{3} / \alpha_{1}\right| \leqslant 2$ and $\left|1-\alpha_{3} / \alpha_{2}\right| \leqslant 2$, their product does not exceed 4 . Furthermore, it is equal to 4 only if $\alpha_{3} / \alpha_{1}=\alpha_{3} / \alpha_{2}=-1$, which is impossible, because $\alpha_{1} \neq \alpha_{2}$. Hence $\sqrt{|\Delta(P)|} / \operatorname{Sep}(P) \mathcal{R}(P)^{2}<4$, giving (7).

To prove the lower bound (8), let us consider the polynomials

$$
P_{t}(x):=(x+p t)(x-p t)^{2}-p=\left(x-\alpha_{t}\right)\left(x-\beta_{t}\right)\left(x-\gamma_{t}\right),
$$

where p is a fixed prime number and t runs through positive integers. By Eisenstein's criterion, the polynomial P_{t} is irreducible for each $t \in \mathbb{N}$. By Lemma 6, we have $\alpha_{t} \sim-p t$ and $\beta_{t}, \gamma_{t} \sim p t$ as $t \rightarrow \infty$. Furthermore, inserting $x=p t+y / \sqrt{t}$ into $P_{t}(x)=0$ we find that

$$
y^{3} t^{-3 / 2}+2 p\left(y^{2}-1 / 2\right)=0
$$

Hence Lemma 6 implies $\beta_{t}-p t \sim-1 / \sqrt{2 t}$ and $\gamma_{t}-p t \sim 1 / \sqrt{2 t}$ as $t \rightarrow \infty$. If follows that $\beta_{t}-\gamma_{t} \sim \sqrt{2 / t}$,

$$
\operatorname{Sep}\left(P_{t}\right) \sim \frac{\sqrt{2}}{p t^{3 / 2}}, \quad \mathcal{R}\left(P_{t}\right) \sim p^{3 / 2} t^{3 / 2} \quad \text { and } \quad \sqrt{\left|\Delta\left(P_{t}\right)\right|} \sim 4 \sqrt{2} p^{2} t^{3 / 2}
$$

as $t \rightarrow \infty$. Consequently, $\operatorname{Sep}\left(P_{t}\right) \mathcal{R}\left(P_{t}\right)^{2} / \sqrt{\left|\Delta\left(P_{t}\right)\right|} \rightarrow 1 / 4$ as $t \rightarrow \infty$. This completes the proof of (8).

Acknowledgement

I thank the referee for careful reading and some useful comments.

References

[1] Beresnevich, V., Bernik, V., and Götze, F.: The distribution of close conjugate algebraic numbers. Compos. Math. 146, 1165-1179, (2010).
[2] Bugeaud, Y., and Dujella, A.: Root separation for irreducible integer polynomials. Bull. London Math. Soc. 43, 1239-1244, (2011).
[3] Bugeaud, Y., and Mignotte, M.: On the distance between roots of integer polynomials. Proc. Edinburgh Math. Soc. 47, 553-556, (2004).
[4] Bugeaud, Y., and Mignotte, M.: Polynomial root separation. Intern. J. Number Theory 6, 587-602, (2010).
[5] Collins, G.E.: Polynomial root separation. J. Symbolic Comput. 32, 467-473, (2001).
[6] Danilov, L.V.: The Diophantine equation $x^{3}-y^{2}=k$ and Hall's conjecture. Mathematical Notes 32, 617-618, (1982).
[7] Dubickas, A.: An estimation of the difference between two zeros of a polynomial. In: New Trends in Probability and Statistics. Vol. 2: Analytic and Probabilistic Methods in Number Theory (Eds.: F. Schweiger and E. Manstavičius), 17-27, TEV, Vilnius, VSP, Utrecht (1992).
[8] Dubickas, A.: On a conjecture of A. Schinzel and H. Zassenhaus. Acta Arith. 63, 15-20, (1993).
[9] Dubickas, A.: The Remak height for units. Acta Math. Hungar. 97, 1-13, (2002).
[10] Dubickas, A., and Smyth, C.J.: On the Remak height, the Mahler measure and conjugate sets of algebraic numbers lying on two circles. Proc. Edinburgh Math. Soc. 44, 1-13, (2001), 1-17.
[11] Dujella, A., and Pejković, T.: Root separation for reducible monic quartics. Rend. Semin. Mat. Univ. Padova 126, 63-72, (2011).
[12] Evertse, J.-H.: Distances between the conjugates of an algebraic number. Publ. Math. Debrecen 65, 323-340, (2004).
[13] Güting, R.: Polynomials with multiple zeros. Mathematika 14, 181-196, (1967).
[14] Hall, M., Jr.: The Diophantine equation $x^{3}-y^{2}=k$. In: Computers in Number Theory (Eds.: A.O.L. Atkin and B.J. Birch), 173-198, Proc. Oxford (1969), Academic Press (1971).
[15] Langevin, M.: Systèmes complets de conjugués sur un corps quadratique imaginaire et ensembles de largeur constante. In: Number Theory and Applications, NATO Adv. Sci. Inst. Ser. C 265, 445-457, Kluwer (1989).
[16] Mahler, K.: An inequality for the discriminant of a polynomial. Michigan Math. J. 11, 257-262, (1964).
[17] Marden, M.: The geometry of the zeros of a polynomial in a complex variable. Mathematical Surveys, New York: American Mathematical Society, VIII, 1949.
[18] Mignotte, M.: Some useful bounds. In: Computer Algebra, Symbolic and Algebraic Computation, 2nd ed. (Eds.: B. Buchberger, G. E. Collins and R. Loos), 259-263, Springer-Verlag (1982).
[19] Mignotte, M.: On the distance between the roots of a polynomial. Appl. Algebra Engng. Comm. Comput. 6, 327-332, (1995).
[20] Mignotte, M., and Payafar, M.: Distance entre les racines d'un polynôme. RAIRO Anal. Numér. 13, 181-192, (1979).
[21] Remak, R.: Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers. Compositio Math. 10, 245-285, (1952).
[22] Schönhage, A.: Polynomial root separation examples. J. Symbolic Comput. 41, 1080-1090, (2006).
[23] Uherka, D.J., and Sergot, A.M.: On the continuous dependence of the roots of a polynomial on its coefficients. Amer. Math. Monthly 84, 368-370, (1977).
[24] Zaïmi, T.: Minoration d'un produit pondéré des conjugués d'un entier algébrique totalement réel. C. R. Acad. Sci. Paris, Sér. I Math. 318, 1-4, (1994).

[^0]: *Correspondence: arturas.dubickas@mif.vu.lt
 2010 AMS Mathematics Subject Classification: 11R06, 11R09, 11R16.

