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Abstract: We investigate some monic integer irreducible polynomials which have two close roots. If P(x) is a separable
polynomial in Z[z] of degree d > 2 with the Remak height R(P) and the minimal distance between the quotient of two
distinct roots and unity Sep(P), then the inequality 1/Sep(P) < R(P)*™! is true with the implied constant depending

on d only. Using a recent construction of Bugeaud and Dujella we show that for each d > 3 there exists an irreducible
monic polynomial P € Z[z] of degree d for which R(P)(Z4=3)(@=1/(B4-5) « 1 /Sep(P). For d = 3 the exponent 3/2 is
improved to 5/3 and it is shown that the exponent 2 is optimal in the class of cubic (not necessarily monic) irreducible

polynomials in Z[z].
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1. Introduction
Let
P(x):=agz? + - +aix+ag=a4(z —a1)...(x —ay) € Clz], aa,ap #0,

be a separable polynomial of degree d > 2. Throughout, let

AP):=ay? ] (ei—ay)®

1<i<j<d

be its discriminant,
H(P):= i
()= o
its height,
d
M(P) := |ag] H max(1, |a;|)
j=1

its Mahler measure and

d
R(P) = |aa| [T ey |/,

j=1
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where a1, ..., aq are labeled so that |a1| > |aa| > ... > |aq4l|, its Remak height. The last quantity in the context

of polynomials first appeared in the paper of Remak [21] who proved the inequality

VIA(P)| < d¥*R(P)*1. (1)

This quantity also appears in [15], [20], [24] and is studied in detail in [9], [10], where it is named after Remak.
In (8], it is shown that if a;; € C for 1 <4,j < d and the complex numbers z; satisfy |z1| > 22| > ... > |24,
then

' d , d 1/2
et(asz} e < el el T (Elal) @
j=1 Ni=1

This implies both (1) and Hadamard’s inequality.

Note that in view of

VM (P) min(Jag|, [ao|) < R(P) < M(P) 3)

(see [10]) the inequality (1) is at least as good as Mahler’s inequality

VIAP)| < d¥?M (Pt

In [16] Mahler also proved that
3|A(P)]

sep(P) > St pr (pyi

where
sep(P) := min oy — a|
i#]

is the minimal distance between two distinct roots of P. After the paper of Mahler various aspects of polynomial
root separation have been investigated in [1]-[5], [7], [11]-[13], [18]-[20], [22].

In fact, in (4) one cannot replace M (P) by R(P) (see the first example in Section 2 below), but instead
finds the following.

Theorem 1 For each d > 2 and each polynomial P € Clx] of degree d, P(0) # 0, we have
Sep(P) >

where Sep(P) := min;»; |1 — a;/a;| and

. V3
T g ST 1)1 - 1)2d)

(6)

The inequality (5) is due to Mignotte [19] (see also [7]). We shall give its short proof based on (2) in

Section 4.
Note that for d = 2 we have
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which is better than (5). For d = 3 the constant c3 = 1/3v/5 = 0.14907... given in (6) can be improved
to 1/4. Furthermore, as in [22], the latter constant is best possible even if we restrict to the class of monic

irreducible polynomials in Z[z].
Theorem 2 If P(x) € C[z] is a separable cubic polynomial, P(0) # 0, then

Sep(P) > VIAP)] (7)

AR(P)?

Furthermore, for each € > 0 there is a monic cubic irreducible polynomial P(x) € Z[x] for which

Sep(P) < (1+ s)m. (8)

Note that, inequality (5) (unlike (4)) is symmetric with respect to the map = +— 1/z in the sense
that we can replace P(z) by its reciprocal polynomial P*(z) = 4+z?P(1/z). Then |A(P)| = |A(P*)| and
R(P) = R(P*), by Prop. 3.3 in [10]. Furthermore, Sep(P) is the minimal number among the following
d(d — 1)/2 real numbers

|1 —az/oql, |1 —as/ail,..., |1 — ag/aa-1],
because |ai| > ... > |oyg| implies |1 —a;/a;| > |1 —a;/a;] for i < j. Sois also Sep(P*), since the roots of P*
are 1/ag,...,1/a;. Hence Sep(P) = Sep(P*). Of course, sep(P) and sep(P*) can be different.

Below, when the degree of P, i.e., d will be fixed, we shall write u < v for positive quantities u, v if the

inequality u < cv holds with some constant ¢ = ¢(d) depending on d only. With this notation, one has

d
> a2 < V(d+DH(P) < H(P), (9)
3=0

so H(P) and M(P) are of the same size. Hence, for a separable polynomial P(z) € Z[x] of degree d, from
(4), (9) and (5) using |A(P)| > 1 we find that

1/sep(P) < H(P)¥™! and 1/Sep(P) < R(P)% 1. (10)
To investigate how sharp is the exponent d — 1 in the first inequality of (10) the quantity

: log(1/sep(P))
éirr(d) := limsup —————=,
(@) H(P)afo log H(P)

where the limsup is taken over all integer irreducible polynomials P of degree d, is introduced. Of course,
by the first inequality of (10), it satisfies ey (d) < d — 1. A similar quantity, where the polynomial P is, in
addition, monic, is denoted by e .(d). Clearly,

er (d) <er(d) <d— 1.

irr
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It is straightforward that e, (2) = 1 and €,(2) = 0. It is also known that e;;(3) = 2 (see [12], [22]). The

lower bounds for ei;;(d), d > 4, and for e} (d), d > 3, have been obtained in [1]-[4]. Currently, the best bound
on ej,(d) for each d > 4 is due to Bugeaud and Dujella [2]

d—2

d
e(d) > = 4 ——
enl(d) 2 5+ 1a =)

As for e} (d), their example gives the lower bound

rr

d d—2
sd) >+ — -1
elrr(d) 2 + 4(d _ 1)

for d > 7, but for d = 3,5 and d > 4 even, the best bounds are due to Bugeaud and Mignotte [4]

er(3)>3/2, e (5)>7/4 and el (d) > (d—1)/2,

irr irr irr

respectively.

By (9), the height H(P) and the Mahler measure M (P) are essentially of the same size, so we will not
get anything new by considering a corresponding quantity with M (P) in place of H(P). However, by (3), the
Remak height R(P) can be significantly smaller, i.e., \/H(P) < R(P) < H(P). So one can study

log(1/Sep(P))
ir(d) := limsup —————-
girr(d) R(P)—>Io)o log R(P)

(resp. gt (d)), where the limsup is taken over all (resp. all monic) integer irreducible polynomials P of degree

d. Now, by the second inequality of (10), we obtain
G (d) < gine(d) <d —1

for each d > 2.

A simple example,

:c2—(2t+1)x+t2+t—1=(x—t— 5 5

) e 15

with ¢ € N tending to infinity, shows that g (2) > 1, hence

Girr(2) = g3, (2) = 1.

For d > 3, by a construction based on the example of Bugeaud and Dujella [2], we can come closer to the upper

bound d — 1 with the quantity ¢, (d) compared to the quantities e (d) and ef (d).

rr

Theorem 3 We have
. (2d —3)(d—1)
girr(d) = 3d _ 5

for each d > 3.
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The next theorem sharpens the inequality of this theorem for d = 3 and evaluates the corresponding

quantity for not necessarily monic polynomials.

Theorem 4 We have ¢iv(3) =2 and ¢i,.(3) > 5/3.

Clearly, for monic polynomials P of degree d we have
R(P) < [P|"/2,
where |P|:= max,.p(a)=o |a| is the house of P. Thus (10) implies

1/Sep(P) < [P|4d=1)/2
for monic integer separable polynomials P of degree d. In the opposite direction we prove the following.

Theorem 5 For each d > 4 there are infinitely many monic integer irreducible polynomials P € Z[x] of degree
d for which |P|%4=2)/* <« 1/Sep(P). Furthermore, there are infinitely many monic cubic integer irreducible
polynomials P € Z[z] for which |P|%/? < 1/Sep(P).

For monic cubic polynomials we have R(P)%/3 < [P|%/2, and so Theorem 5 implies the inequality
95.(3) = 5/3 of Theorem 4. In fact, by Proposition 7 below, the equality ¢, (3) = 5/3 holds (and also
the constant 5/2 in Theorem 5 is optimal) if and only if Hall’s conjecture [14] (asserting that there is an
absolute constant ¢ > 0 such that the Diophantine inequality 0 < |2® — y?| < ¢/ has no solutions in positive
integers) is true. A corresponding result for the equality e (3) = 3/2 is given in [4].

In Section 2 we give some examples (introduced in [16], [18], [2] or their variations) and prove the first
statement of Theorem 5 and Theorem 3. In Section 3 prove Theorem 4 and the second statement of Theorem 5.

Finally, in Section 4 we will prove Theorems 1 and 2.

2. Three examples

The following lemma is well known (see [17] or [23]).

Lemma 6 Suppose \ is a root of the polynomial x® + Zj;ol c;x® of multiplicity m and € > 0. Then for
ci—ci|,i=0,...,d—1, sufficiently small the polynomial x® + L xt has exactly m roots within € of \.
1 1=0 1

As an illustration of his results in [16] Mahler considered the polynomial 2% — 1. Let us consider the
polynomial
Si(x) := x4 —t,

where ¢ is a positive integer such that S; is irreducible. (For instance, ¢ can be a prime number.) Since

o = e2mi=1)/dgl/d for each j =1,...,d, we have
R(Sy) = Y2, M(S,) = H(S,) = t,
A = /072,
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sep(S;) = 2sin(r/d)t'/?,  Sep(S;) = 2sin(w/d).

Hence
Sep(S)R(Sy)d~1dd/2+1
|A(S)]

= 2sin(n/d)d < 2.

In particular, the constant v/3 in (6) cannot be replaced by the constant 2. Moreover, from R(S;) = R(S;) =
12 /TA(SEH)] = V/|A(Sy)| = d¥/?t4=1/2 and sep(S;) = 2sin(r/d)t~*/? we deduce that

sep(S;)R(S;)*™!  2sin(r/d)

N

for ¢ large enough, so one cannot replace M(P) by R(P) in (4).

The next example is due to Mignotte [18]. Fix a prime number p and consider the monic polynomial
Qi(x) == 2% — p(tx — 1)* € Z[2],

where t is a sufficiently large positive integer. This polynomial is irreducible, by Eisenstein’s criterion. We

claim that this polynomial has d — 2 ‘large’ roots «aq,...,aq_o satisfying
aj ~ 2T () =D/(d=2) j1/(d=2)42/(d=2) 55 ¢ 5 o0, (11)
where 7 is a permutation of the set {1,2,...,d — 2}, and two ‘small’ positive roots ag—1 > a4 satisfying
1 1 1 1
Y L N7 b= oo (12)

Indeed, setting  := t2/(4=2)y into Q+(x) = 0 and multiplying by t=24/(d=2) " we obtain
Yt — py? 4 opt= /@2y _ =24/ (@-2) _

so Lemma 6 implies (11). On the other hand, writing the root of Q; in the form z := (yt~%2 4+ 1)/t, we find
that

0=t"Qu((yt~"* + 1)/t) = (yt~** + )" — %,
so, by Lemma 6, y is close to 1/,/p when ¢ is large. This proves (12).

From R(Q:)4 1 = |a1|T Yaz|?72 .. |ag—2|?|a—1], using (11), (12), in view of

%(d—1+d—2+~~+2) —1—d32<(d_21)d—1) —1=d
we obtain
R(Q)T ~ pldH/24d ag ¢ 5 50
and also
Sep(Q;) = ad;;__lad N \/[jdﬂ as t — oo. (13)
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Therefore,
log(1/Sep(Q+)) d/2 d—1

ogR(Q)  d/d—1) 2

as t — oo.

In particular, this example yields the bound g (d) > (d — 1)/2. Furthermore, combining |Q:| ~
pt/(d=2)¢2/(d=2) with (13) we see that |Q|4?~2/4 <« 1/Sep(Q;). This proves the first statement of Theorem 5.

The next construction is essentially due to Bugeaud and Dujella [2]. Let

1 2k
=— k=0,1,2,...
Ck /{3+1<k>’ 07 )<y )

be the k" Catalan number. The Catalan numbers for £ =0,1,2,... are
1,1,2,5,14,42,132,429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, . . . .

It is well known that

Crp1 =Y CiCr_y (14)
k=0

and that the generating function of Catalan’s numbers

c(x) == Z Cr®
k=0
satisfies
c(z) — 1 = c(x)?x.

We next replace ¢(z) in the equality 27! + c(z)(—2~! + ¢(x)) = 0, = # 0, by its truncated series and

introduce a new parameter t. More precisely, for integers d > 2 and ¢ > 1 consider the Laurent polynomial

-1

1 «2 p 2l 1 &2 p o xdt
Gi() =~ + > Crat + . —5+chx +——)- (15)
k=0 k=0

Note that the coefficient for 27! in G(z) is zero, because Cy = 1. The coefficient for 2™, where 0 < n < d—3,
in G¢(z) is equal to
—Cni1+ CpCo + Cp1C1 + -+ + CoC,

which is zero again in view of (14). Consequently,

d—2
2 -
Fi(z) = FGt(x) =% 4 2Cy o2t 4 Z ar(t)z® (16)
k=0
is a monic polynomial of degree d with integer coeflicients. Here,
d—2
ak(t) = QCk_1t+tzzchd_2+k_j (17)
j=k

753



DUBICKAS/Turk J Math

for k=1,...,d—2 and
d—2
ao(t) = —t+t220jC’d_2_j = —t+Cd_1t2. (18)
§=0
The monic polynomial Fi(x) of degree d is irreducible if, say, ¢ is a prime number. By Lemma 6, (17)

and (18), as t — 0o, the polynomial F;(z) has d —2 roots as,...,aq tending to d — 2 roots of the polynomial
d—2  d—2
Co1+ D 2" CiCaaii—j = (x—A3) ... (x — Aa).
k=1 j=k

(In principle, As,...,Aq are not necessarily distinct, although in all examples with small d they are distinct.)

Let £ be the root of the polynomial

d—2
Ei(x) := tz Cra® + 2271
k=0
satisfying
&~ —tCy_g as t— 00. (19)

Applying the mean value theorem to the function Fy(z) in the interval [¢,& + 003122—11155/2711]7 where 0 € R is
fixed, in view of E(§) =0 and (19) we obtain

t

By(€+0C3L5 1127 ~ 0G0 (d = 16772 4 (d = 2)Caat™™®) ~ (<116 | 5 —

as t — oo. Now, by (15) and (16),

1 F 1 F

Ft(.’l])xd_l = tszt(m) — t2$( + tt(x) ( — 4 tt(x)>) _ t2 _ tEt(I‘) +$Et($)2
x x

Let us insert the root x of F} written in the form z = §+003£22_dt5/2’d into 1— Ey(z)t 1 +at 2B (x)? =

0. By the above, we see that the left hand side tends to 1 — 62 as t — co. Hence 6 tends to 1 and —1, so that

the remaining two roots ay, s of Fy(x) satisfy
ay — &~ —CY2 274 and g — € ~ O3 H5/2d, (20)

We are now in a position to prove Theorem 3. Set t := pk? with a prime number p and a positive integer
k and consider the polynomial Py(z) := Fa(kz)k™, where Fy(z) is defined in (16). By (17), (18) and the
Eisenstein criterion applied to p, we see that P is a monic irreducible polynomial of degree d. Its roots are
Bi = aj/k, j =1,...,d, where «; are the roots of F,. Since t = pk?, from (19) and (20) we derive that
Br, Ba ~ —pCa_ok® ! and
By — By ~ 202£é—dp5/2—dk—d2+5d/2—1
as k — oco. Thus
Sep(Pr) < 1= B1/fa| ~ 2p*/2 700, 5 =342, (21)
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Since B; ~ A\jk™! as k — oo for j =3,...,d, in view of
(d-—1)d-14d—-2)—(d—=34+d—2+4---4+1)=(3d—5)d/2,
we find that
RBA5)4/200-1) o R(Py) = |By]|Ba] D/ AV | |By |/ @D  f(34—5)/2(d-1), (22)
Now, since R(Pj) — 0o as k — 0o, combining (21) with (22) we find that

. P -3d2 (2d-3)(d—1)
9ecld) 2 BTSN e@ =)~ 3d-5

This completes the proof of Theorem 3.

3. Proof of Theorem 4
Our proof of gy (3) = 2 follows [22]. Let us begin, for example, with the polynomial

Pl)=2*-2z—-1=(z—a)(z - B)(z—7),

where a = 1.32471... and f = —0.66235--- 4+ ¢0.56227 ..., v = —0.66235- - - — 10.56227 ... are two complex
conjugate roots satisfying

18] =1]7] <1 and R(3) =R(v) < 0.

Consider the sequence a; := « and
aps1 = 1/{ax} for k=1,2,3,....

Then o > 1 and a € Q(a) for each ¥ € N. Setting 51 := 8, 71 := v and ¢ := [ax] € N (so that

ag+1 = 1/(ag — qi)), we also define two corresponding sequences

Ber1 =1/(Br —aqx) and vep1 = 1/(vk — )

for k=1,2,3,.... Note that, by the above construction, the continued fraction expansion for the cubic number
Qg is
1
o =qp + ————— (23)
We+1 + o=

for each k € N.
It is easy to see that the ‘next’ polynomial P (x) obtained from Py_i(x), firstly, by replacing Pr_1(x)
by Pi_1(z 4+ gx—1) and then, secondly, by taking its reciprocal polynomial, namely,

Pi(r) = Pi_1(z + qx—1) = ax(z — ax)(z — Br)(z — ) € Z[z], ax €N,

is irreducible, since so is Py_1(x). Furthermore, it is clear that

VIAE) = VAP 1) =+ = VIAP)] = v23.
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It is straightforward to check that for each k € N the roots 3 and v, = () satisfy

1Bkl = || <1 and R(Br) = R(m) <O0.

Consequently, |ax — Br| = |ax — Yk| > ag, and so

V23 = aj|ar — Bller — llBr — | > ajadl Bl — e/ Brl = R(Pr)*Sep(Py). (24)

If the sequences ar, € N and ay, k= 1,2,3,..., were both bounded from above then, as |Bk|, |vk| < 1,

we would only have finitely many different polynomials Py(x) € Z[z]. But then we must have aj = «; for some
indices k > j > 1. By (23), this implies that the sequence g, k = 1,2,3,..., is ultimately periodic. So a; = «
must be a quadratic number, a contradiction. This proves that at least one sequence ar, k = 1,2,3,..., or

ar, k=1,2,3,..., is unbounded. Hence the sequence M(P;) = aray, k =1,2,3,..., is unbounded. Thus,
by (3), R(Px), k =1,2,3,..., is unbounded and therefore (24) implies ¢;;;(3) = 2. Combining this with the
upper bound g;;+(3) < 2 we obtain g¢;,(3) = 2.

Note that, by exactly the same argument, we can start with any Pisot number « of degree d > 3 with
minimal polynomial P whose all other d — 1 conjugates have negative real part. (For example, in [9] we have
considered totally positive Pisot units « of degree d. Then a — 1 is a Pisot number of degree d with its all

remaining d — 1 conjugates negative.) Putting
Q11 =&, Q1 k+1 = 1/{a1,k}7 k= 172a37"'a

we obtain the sequence of polynomials P, k = 1,2,3,..., with roots o, a2,...,aqr such that a;; is a

Pisot number, a5 > 1> |ag k| = ... 2 |agkl, and |Jogp — k] > a1y for i =2,...,d — 1. It follows that

RPD)TY I 11— ayw/airl < VAP = VAP).

2<i<j<d
Also, as above, all the numbers oy, & = 1,2,3,..., must be distinct, so the sequences M (Py) = araq i,
k=1,2,3,...,and R(P), k =1,2,3,..., are unbounded. Of course, if « is a Pisot number with negative
conjugates, then the roots sk, ...,aq are negative for each k € N.

We next turn to monic cubic polynomials with two close roots and use the ideas of [4]. Recall first that,
by a result of Danilov [6], there exist two increasing sequences of positive integers zj and yx, k =1,2,3,...,

and an absolute constant ¢ > 0 such that

3 1/2

Ty —yp ~cx!” as k— oo (25)

(See formula (6) in [6], where there is misprint in the power of the polynomial t? 4+ 6t — 11.) So Proposition 7
with w = 5/2 implies the assertion of Theorem 5 for cubic polynomials and also the inequality ¢;;,(3) > 5/3 of
Theorem 4. Moreover, by Hall’s conjecture [14], w is the largest real number with this property (although it is
only known that w < 3 which follows from an old result of Mordell), so equality g¢:%.(3) = 5/3 is equivalent to
Hall’s conjecture.

The remainder of this section is devoted to the proof of the following statement.

Proposition 7 Let w be a positive number satisfying 5/2 < w < 3. Then the inequality |P|*¥ < 1/Sep(P)
has infinitely many solutions in monic cubic irreducible polynomials P € Zlx] if and only if the inequality

0 < |23 — % < 2®~% has infinitely many solutions in positive integers x,vy .
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Proof Assume first that the inequality 0 < |z} — y2| < 2}~ holds for infinitely many pairs (zy,yx) € N2.

Consider the monic cubic polynomial
Py () := 23 — 3xp0 — 2y, € Z[2]

with discriminant A(Py) = 108(z} — y?). Putting &, := (2} — )z ~3/3, we have |§;| < 1. Evaluating the
polynomial P at x = —,/xx + 2z we find that

Pi(—/xp + 2) = —xi/z +3zp2z — 3 /TR + 2% + 3332/2 —3xrz — 2y

2(z} — yp)

3/2 :
:2(1%/ — ) — 3VTR2? + 25 = 5 — 3T + 25
T, Yk
Therefore, since
2(x3 — y? 3_y2  3paiv
35?“ i) ~ Tk ka = 2k ’; = (51@1:,1;“’ as k — oo,
3(zy " + yk) Tk 3z, 3wy

for its two roots ay, B we have

o + /*ka_xllc/Z—w/2 ﬁ(sk and Sy + /Trklelc/Q—’w/2 /Fk‘

Thus the third root satisfies 7, ~ 2./Ty as k — oo. Therefore, in both cases (ay, B are real or complex

conjugate roots), we have v, > |ax| > |8x| and
1/2—w/2
sep(Pr) = o — Bi| ~ 24/|6k|zy, .

It follows that Sep(Py) ~ 2@36,:“)/2 and |Py| ~ 23511@/2’ giving the inequality |Py|¥ < 1/Sep(Py) for the
monic cubic polynomials Py defined above.

To complete the proof in one direction it remains to show that Py are irreducible for & large enough. For
a contradiction assume that Py is reducible in Z[x]. Then one of the roots ay, B or v; must be an integer. If at
least two roots are integers then all three must be integers which is impossible in view of 8y —aj — 0. So assume
that one is an integer and two others are the roots of an irreducible polynomial Q(z) = z? + uz + v € Z[z].
By the same reason, as 8y — ay — 0, these two cannot be ay, Bk, so one of the roots of @ is 5. Assume that
the other root of @ is Bx. (The proof in case this is «y is the same.) Then «y, Sy are real negative numbers,
u=—y — B =ar and A(Q) = u® —4v = (v — Br)? ¢ Z*. Thus

—u— /A(Q) —3u — /A(Q) 1
— — — e A A = 2 .
Br—ar =Bk —u 5 u 5 2 3ut VAQ)
As —3u = =3 < 3y and /A(Q) = v — Bx = vk + Bk < 27k, this yields sep(Py) = fr — ax > 1/10v,

1/2—w/2

contrary to sep(Py) < x 2,

<yiTv <yt

To prove the result in the opposite direction we assume that the inequality
R(P)?"/? < 1/Sep(P)
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has infinitely many solutions in monic cubic irreducible polynomials P = P, € Z[z]. Note that this assumption
is weaker than required because R(P)?*/? < |P|*. Without restriction of generality (by replacing Py(z) by
Py (6x), if necessary, and omitting everywhere the index k) we may assume that the coefficients of P(z) =

2% + az® + bx + ¢ satisfy 6|a,b,c. We claim that R(P)?*/3 < 1/Sep(P) implies
sep(P) < [P|'™" (26)

(possibly with another constant in <).

Indeed, assume that «, 3,7 are the roots of P satisfying || < |8] < |y]. As R(P) tends to infinity
(there are only finitely many monic integer polynomials with R(P) bounded), Sep(P) tends to zero; so let us
consider only those P for which Sep(P) < 1/2. Evidently, Sep(P) is one of the numbers |1 —a/8|, |1 — 8/7|
or |1 —a/yl.

In the first case, Sep(P) = |1 — «/B|, using sep(P) < |8 — a] = |B|Sep(P), |B] < |v| and w < 3 we

obtain
|’y|wilsep(P) < |y|w’1|ﬂ\Sep(P) < |,Y|QW/3‘IB|“’/SSep(P> = R(P)Qw/gsep(P) < 1.

In the second case, Sep(P) = |1 — /7], from Sep(P) < 1/2 it follows that |5/v| > 1/2, hence |B| > |v|/2.
Similarly, in the third case, Sep(P) = |1 —«a/~|, we obtain |a| > |v|/2, so |8 = |a| = |y|/2. Therefore, in these
two cases we have |v|*/2 < |7||8]/2 = R(P), i.e. |7] < R(P)*/3. From sep(P) < |y|Sep(P) we conclude that

7" sep(P) < [7]“Sep(P) < R(P)*/*Sep(P) < 1,

which gives (26) again.

Next, let us replace P(x) by P(x — a/3). This does not change either sep(P) or A(P). If «, 8, were
the roots of P(x) = 23 + ax? + bx + ¢ satisfying |a| < |B] < |v| (so that a+ 8+~ = —a, and hence 3|y| = |al)
then the roots of P(z —a/3) are a+a/3,8+ a/3,7+ a/3. The modulus of the largest of those three does not
exceed || + |a]/3 < 2|y| = 2|P|, so this change may increase the value of |P| at most twice. It follows that

(26) holds for infinitely many monic cubic irreducible polynomials
P(z) = (z —a/3)® + a(x — a/3)* + b(z — a/3) + ¢ = 2° — (a*/3 — b)x — (ab/3 — ¢ — 2a>/27).

Since 6|a,b,c, we can write P in the form P(z) = 23 — 3pz — 2q € Z[x] with integers p := (a?/3 — )/3,
q = (ab/3 — ¢ —2a3/27)/2 and with the roots «, 3,7 satisfying |a| < |3] < |7|.

Now, since 7 has the largest modulus among three roots satisfying « + 5+ = 0 and sep(P) — 0,
we must have sep(P) = |a — | and so «,f tend to —v/2. In particular, this implies 2¢ = a8y > 73/5, so
v < ¢/3. Hence from A(P) = 108(p® — ¢?) using (26) and the irreducibility of P we find that

0 < V108157 = ¢ = VIA(P) = la = Blla = 11|58 — 7] < sep(P)y? < hf*~* < ¢!/,

So the inequality 0 < [p® — ¢*| < ¢?>~2*/3 has infinitely many solutions (p,q) € N?. This implies the result in
view of ¢2720/3 & (p3/2)2-2w/3 = p3-w '
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4. Proof of Theorems 1 and 2

Proof of Theorem 1. To give a short proof of (5) we assume that Sep(P) = |1 — «;/ay| with k& < [. Let us
subtract the I*! column of the determinant det(aéfl)lgi,jgd from its k™" column. The element i x k of the
resulting determinant is equal to a?l — affl. Taking out the factor 1 — oy /ay out of each element of the k'
column we obtain

%

det(a igijca = (1 — ar/ag)det(ai;of i< j<as

where a;; :=1 for j # k and a;, := o (o} ' — o] ") /(e — ), because the element i x k becomes
-1 _ i1 i—1 i1y, i—1
a —ap (o —ap )y i1
= i—2 Gk
1—ap/ay (o — )y,

In particular, a1 =0 and
lair] = 11+ ar/ag + -+ (/o) 72| S L+ Jon /o] + -+ [(u /o) % < i — 1

for i =2,...,d, since |ay| < |ag|. Thus, by (6),

d d 1/2
II<§3mmﬁ <RI (1) = dY P d(d - 1) (2d - 1)/6)
j=1 “i=1

=¥ /(1 = 1/d)(1 —1/2d)/V3 = 1/cq.

Therefore, applying (2), we obtain
VIA(P)| = |aa|™"|det(a} i< j<a| = |aa|*"Sep(P)|det(asa) i< j<dl

< Sep(P)R(P)*!/ea,

giving (5). O
Proof of Theorem 2. Assume that Sep(P) = |1 — az/a1|. (The proof in two other cases is the same.)
Then

[ACP)]_ |oa — asllos — agllavs — g |
= — 1 _ 1 _ )
Sep(P)R(P)? o1 — oo || 1= az/on||l — as/az|

Since |1—as/a1] < 14+|as/a1] < 2 and |1—as3/as| < 2, their product does not exceed 4. Furthermore, it is equal
to 4 only if az/a; = az/as = —1, which is impossible, because a; # ag. Hence /]A(P)|/Sep(P)R(P)? < 4,
giving (7).

To prove the lower bound (8), let us consider the polynomials

Py(x) = (z+pt)(x —pt)* —p = (v — ar)(z — B) (@ — ),

where p is a fixed prime number and ¢ runs through positive integers. By Eisenstein’s criterion, the polynomial

P, is irreducible for each ¢ € N. By Lemma 6, we have oy ~ —pt and B,y ~ pt as t — oo. Furthermore,

inserting x = pt +y/+/t into P;(x) =0 we find that
Y332 £ 2p(y® —1/2) = 0.
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Hence Lemma 6 implies 8; — pt ~ —1/v/2t and ~; — pt ~ 1/v/2t as t — co. If follows that 3; — v, ~ 1/2/t,

V2

Sep(Fy) ~ W7

R(P,) ~ p¥/ 3% and /|A(R,)| ~ 4V2p*t3/?

as t — oo. Consequently, Sep(P;)R(P;)?/\/|A(P;)| — 1/4 as t — oo. This completes the proof of (8). O
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