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Abstract: We investigate some monic integer irreducible polynomials which have two close roots. If P (x) is a separable

polynomial in Z[x] of degree d ⩾ 2 with the Remak height R(P ) and the minimal distance between the quotient of two

distinct roots and unity Sep(P ) , then the inequality 1/Sep(P ) ≪ R(P )d−1 is true with the implied constant depending

on d only. Using a recent construction of Bugeaud and Dujella we show that for each d ⩾ 3 there exists an irreducible

monic polynomial P ∈ Z[x] of degree d for which R(P )(2d−3)(d−1)/(3d−5) ≪ 1/Sep(P ) . For d = 3 the exponent 3/2 is

improved to 5/3 and it is shown that the exponent 2 is optimal in the class of cubic (not necessarily monic) irreducible

polynomials in Z[x] .
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1. Introduction

Let

P (x) := adx
d + · · ·+ a1x+ a0 = ad(x− α1) . . . (x− αd) ∈ C[x], ad, a0 ̸= 0,

be a separable polynomial of degree d ⩾ 2. Throughout, let

∆(P ) := a2d−2
d

∏
1⩽i<j⩽d

(αi − αj)
2

be its discriminant,

H(P ) := max
1⩽j⩽d

|aj |

its height,

M(P ) := |ad|
d∏

j=1

max(1, |αj |)

its Mahler measure and

R(P ) := |ad|
d∏

j=1

|αj |(d−j)/(d−1),
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where α1, . . . , αd are labeled so that |α1| ⩾ |α2| ⩾ . . . ⩾ |αd| , its Remak height. The last quantity in the context

of polynomials first appeared in the paper of Remak [21] who proved the inequality√
|∆(P )| ⩽ dd/2R(P )d−1. (1)

This quantity also appears in [15], [20], [24] and is studied in detail in [9], [10], where it is named after Remak.

In [8], it is shown that if aij ∈ C for 1 ⩽ i, j ⩽ d and the complex numbers zj satisfy |z1| ⩾ |z2| ⩾ . . . ⩾ |zd| ,
then

|det(aijzi−1
j )1⩽i,j⩽d| ⩽ |z1|d−1|z2|d−2 . . . |zd−1|

d∏
j=1

( d∑
i=1

|aij |2
)1/2

. (2)

This implies both (1) and Hadamard’s inequality.

Note that in view of √
M(P )min(|ad|, |a0|) ⩽ R(P ) ⩽ M(P ) (3)

(see [10]) the inequality (1) is at least as good as Mahler’s inequality√
|∆(P )| ⩽ dd/2M(P )d−1.

In [16] Mahler also proved that

sep(P ) >

√
3|∆(P )|

dd/2+1M(P )d−1
, (4)

where
sep(P ) := min

i ̸=j
|αi − αj |

is the minimal distance between two distinct roots of P . After the paper of Mahler various aspects of polynomial

root separation have been investigated in [1]–[5], [7], [11]–[13], [18]–[20], [22].

In fact, in (4) one cannot replace M(P ) by R(P ) (see the first example in Section 2 below), but instead

finds the following.

Theorem 1 For each d ⩾ 2 and each polynomial P ∈ C[x] of degree d , P (0) ̸= 0 , we have

Sep(P ) >
cd
√
|∆(P )|

R(P )d−1
, (5)

where Sep(P ) := mini ̸=j |1− αj/αi| and

cd :=

√
3

dd/2+1
√
(1− 1/d)(1− 1/2d)

. (6)

The inequality (5) is due to Mignotte [19] (see also [7]). We shall give its short proof based on (2) in

Section 4.

Note that for d = 2 we have

Sep(P ) =

√
|∆(P )|
R(P )

,
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which is better than (5). For d = 3 the constant c3 = 1/3
√
5 = 0.14907 . . . given in (6) can be improved

to 1/4. Furthermore, as in [22], the latter constant is best possible even if we restrict to the class of monic

irreducible polynomials in Z[x] .

Theorem 2 If P (x) ∈ C[x] is a separable cubic polynomial, P (0) ̸= 0 , then

Sep(P ) >

√
|∆(P )|

4R(P )2
. (7)

Furthermore, for each ε > 0 there is a monic cubic irreducible polynomial P (x) ∈ Z[x] for which

Sep(P ) < (1 + ε)

√
|∆(P )|

4R(P )2
. (8)

Note that, inequality (5) (unlike (4)) is symmetric with respect to the map x 7→ 1/x in the sense

that we can replace P (x) by its reciprocal polynomial P ∗(x) = ±xdP (1/x). Then |∆(P )| = |∆(P ∗)| and

R(P ) = R(P ∗), by Prop. 3.3 in [10]. Furthermore, Sep(P ) is the minimal number among the following

d(d− 1)/2 real numbers

|1− α2/α1|, |1− α3/α1|, . . . , |1− αd/αd−1|,

because |α1| ⩾ . . . ⩾ |αd| implies |1−αi/αj | ⩾ |1−αj/αi| for i < j . So is also Sep(P ∗), since the roots of P ∗

are 1/αd, . . . , 1/α1 . Hence Sep(P ) = Sep(P ∗). Of course, sep(P ) and sep(P ∗) can be different.

Below, when the degree of P , i.e., d will be fixed, we shall write u ≪ v for positive quantities u, v if the

inequality u ⩽ cv holds with some constant c = c(d) depending on d only. With this notation, one has

H(P ) ⩽ 2dM(P ) ≪ M(P ) ⩽

√√√√ d∑
j=0

|aj |2 ⩽
√
(d+ 1)H(P ) ≪ H(P ), (9)

so H(P ) and M(P ) are of the same size. Hence, for a separable polynomial P (x) ∈ Z[x] of degree d , from

(4), (9) and (5) using |∆(P )| ⩾ 1 we find that

1/sep(P ) ≪ H(P )d−1 and 1/Sep(P ) ≪ R(P )d−1. (10)

To investigate how sharp is the exponent d− 1 in the first inequality of (10) the quantity

eirr(d) := lim sup
H(P )→∞

log(1/sep(P ))

logH(P )
,

where the limsup is taken over all integer irreducible polynomials P of degree d , is introduced. Of course,

by the first inequality of (10), it satisfies eirr(d) ⩽ d − 1. A similar quantity, where the polynomial P is, in

addition, monic, is denoted by e∗irr(d). Clearly,

e∗irr(d) ⩽ eirr(d) ⩽ d− 1.
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It is straightforward that eirr(2) = 1 and e∗irr(2) = 0. It is also known that eirr(3) = 2 (see [12], [22]). The

lower bounds for eirr(d), d ⩾ 4, and for e∗irr(d), d ⩾ 3, have been obtained in [1]–[4]. Currently, the best bound

on eirr(d) for each d ⩾ 4 is due to Bugeaud and Dujella [2]

eirr(d) ⩾
d

2
+

d− 2

4(d− 1)
.

As for e∗irr(d), their example gives the lower bound

e∗irr(d) ⩾
d

2
+

d− 2

4(d− 1)
− 1

for d ⩾ 7, but for d = 3, 5 and d ⩾ 4 even, the best bounds are due to Bugeaud and Mignotte [4]

e∗irr(3) ⩾ 3/2, e∗irr(5) ⩾ 7/4 and e∗irr(d) ⩾ (d− 1)/2,

respectively.

By (9), the height H(P ) and the Mahler measure M(P ) are essentially of the same size, so we will not

get anything new by considering a corresponding quantity with M(P ) in place of H(P ). However, by (3), the

Remak height R(P ) can be significantly smaller, i.e.,
√
H(P ) ≪ R(P ) ≪ H(P ). So one can study

girr(d) := lim sup
R(P )→∞

log(1/Sep(P ))

logR(P )

(resp. g∗irr(d)), where the limsup is taken over all (resp. all monic) integer irreducible polynomials P of degree

d . Now, by the second inequality of (10), we obtain

g∗irr(d) ⩽ girr(d) ⩽ d− 1

for each d ⩾ 2.

A simple example,

x2 − (2t+ 1)x+ t2 + t− 1 =

(
x− t− 1 +

√
5

2

)(
x− t− 1−

√
5

2

)

with t ∈ N tending to infinity, shows that g∗irr(2) ⩾ 1, hence

girr(2) = g∗irr(2) = 1.

For d ⩾ 3, by a construction based on the example of Bugeaud and Dujella [2], we can come closer to the upper

bound d− 1 with the quantity g∗irr(d) compared to the quantities eirr(d) and e∗irr(d).

Theorem 3 We have

g∗irr(d) ⩾
(2d− 3)(d− 1)

3d− 5

for each d ⩾ 3 .
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The next theorem sharpens the inequality of this theorem for d = 3 and evaluates the corresponding

quantity for not necessarily monic polynomials.

Theorem 4 We have girr(3) = 2 and g∗irr(3) ⩾ 5/3 .

Clearly, for monic polynomials P of degree d we have

R(P ) ⩽ |P |d/2,

where |P | := maxα:P (α)=0 |α| is the house of P . Thus (10) implies

1/Sep(P ) ≪ |P |d(d−1)/2

for monic integer separable polynomials P of degree d . In the opposite direction we prove the following.

Theorem 5 For each d ⩾ 4 there are infinitely many monic integer irreducible polynomials P ∈ Z[x] of degree

d for which |P |d(d−2)/4 ≪ 1/Sep(P ). Furthermore, there are infinitely many monic cubic integer irreducible

polynomials P ∈ Z[x] for which |P |5/2 ≪ 1/Sep(P ) .

For monic cubic polynomials we have R(P )5/3 ⩽ |P |5/2 , and so Theorem 5 implies the inequality

g∗irr(3) ⩾ 5/3 of Theorem 4. In fact, by Proposition 7 below, the equality g∗irr(3) = 5/3 holds (and also

the constant 5/2 in Theorem 5 is optimal) if and only if Hall’s conjecture [14] (asserting that there is an

absolute constant c > 0 such that the Diophantine inequality 0 < |x3 − y2| < c
√
x has no solutions in positive

integers) is true. A corresponding result for the equality e∗irr(3) = 3/2 is given in [4].

In Section 2 we give some examples (introduced in [16], [18], [2] or their variations) and prove the first

statement of Theorem 5 and Theorem 3. In Section 3 prove Theorem 4 and the second statement of Theorem 5.

Finally, in Section 4 we will prove Theorems 1 and 2.

2. Three examples

The following lemma is well known (see [17] or [23]).

Lemma 6 Suppose λ is a root of the polynomial xd +
∑d−1

i=0 cix
i of multiplicity m and ε > 0 . Then for

|ci − c′i| , i = 0, . . . , d− 1 , sufficiently small the polynomial xd +
∑d−1

i=0 c′ix
i has exactly m roots within ε of λ .

As an illustration of his results in [16] Mahler considered the polynomial xd − 1. Let us consider the

polynomial

St(x) := xd − t,

where t is a positive integer such that St is irreducible. (For instance, t can be a prime number.) Since

αj = e2πi(j−1)/dt1/d for each j = 1, . . . , d , we have

R(St) = t1/2, M(St) = H(St) = t,

√
|∆(St)| = dd/2t(d−1)/2,
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sep(St) = 2 sin(π/d)t1/d, Sep(St) = 2 sin(π/d).

Hence

Sep(St)R(St)
d−1dd/2+1√

|∆(St)|
= 2 sin(π/d)d < 2π.

In particular, the constant
√
3 in (6) cannot be replaced by the constant 2π . Moreover, from R(S∗

t ) = R(St) =

t1/2 ,
√
|∆(S∗

t )| =
√

|∆(St)| = dd/2t(d−1)/2 and sep(S∗
t ) = 2 sin(π/d)t−1/d we deduce that

sep(S∗
t )R(S∗

t )
d−1√

|∆(S∗
t )|

=
2 sin(π/d)

dd/2t1/d
< ε

for t large enough, so one cannot replace M(P ) by R(P ) in (4).

The next example is due to Mignotte [18]. Fix a prime number p and consider the monic polynomial

Qt(x) := xd − p(tx− 1)2 ∈ Z[x],

where t is a sufficiently large positive integer. This polynomial is irreducible, by Eisenstein’s criterion. We

claim that this polynomial has d− 2 ‘large’ roots α1, . . . , αd−2 satisfying

αj ∼ e2πi(τ(j)−1)/(d−2)p1/(d−2)t2/(d−2) as t → ∞, (11)

where τ is a permutation of the set {1, 2, . . . , d− 2} , and two ‘small’ positive roots αd−1 > αd satisfying

αd−1 −
1

t
∼ 1

√
ptd/2+1

, αd −
1

t
∼ − 1

√
ptd/2+1

as t → ∞. (12)

Indeed, setting x := t2/(d−2)y into Qt(x) = 0 and multiplying by t−2d/(d−2) , we obtain

yd − py2 + 2pt−d/(d−2)y − pt−2d/(d−2) = 0,

so Lemma 6 implies (11). On the other hand, writing the root of Qt in the form x := (yt−d/2 + 1)/t , we find

that

0 = tdQt((yt
−d/2 + 1)/t) = (yt−d/2 + 1)d − py2,

so, by Lemma 6, y is close to ±1/
√
p when t is large. This proves (12).

From R(Qt)
d−1 = |α1|d−1|α2|d−2 . . . |αd−2|2|αd−1| , using (11), (12), in view of

2

d− 2

(
d− 1 + d− 2 + · · ·+ 2

)
− 1 =

2

d− 2

(
(d− 1)d

2
− 1

)
− 1 = d

we obtain

R(Qt)
d−1 ∼ p(d+1)/2td as t → ∞

and also

Sep(Qt) =
αd−1 − αd

αd−1
∼ 2

√
ptd/2

as t → ∞. (13)
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Therefore,

log(1/Sep(Qt))

logR(Qt)
→ d/2

d/(d− 1)
=

d− 1

2

as t → ∞ .

In particular, this example yields the bound g∗irr(d) ⩾ (d − 1)/2. Furthermore, combining |Qt| ∼
p1/(d−2)t2/(d−2) with (13) we see that |Qt|d(d−2)/4 ≪ 1/Sep(Qt). This proves the first statement of Theorem 5.

The next construction is essentially due to Bugeaud and Dujella [2]. Let

Ck :=
1

k + 1

(
2k

k

)
, k = 0, 1, 2, . . . ,

be the kth Catalan number. The Catalan numbers for k = 0, 1, 2, . . . are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, . . . .

It is well known that

Cn+1 =

n∑
k=0

CkCn−k (14)

and that the generating function of Catalan’s numbers

c(x) :=
∞∑
k=0

Ckx
k

satisfies

c(x)− 1 = c(x)2x.

We next replace c(x) in the equality x−1 + c(x)(−x−1 + c(x)) = 0, x ̸= 0, by its truncated series and

introduce a new parameter t . More precisely, for integers d ⩾ 2 and t ⩾ 1 consider the Laurent polynomial

Gt(x) :=
1

x
+

( d−2∑
k=0

Ckx
k +

xd−1

t

)(
− 1

x
+

d−2∑
k=0

Ckx
k +

xd−1

t

)
. (15)

Note that the coefficient for x−1 in Gt(x) is zero, because C0 = 1. The coefficient for xn , where 0 ⩽ n ⩽ d−3,

in Gt(x) is equal to

−Cn+1 + CnC0 + Cn−1C1 + · · ·+ C0Cn,

which is zero again in view of (14). Consequently,

Ft(x) :=
t2

xd−2
Gt(x) = xd + 2tCd−2x

d−1 +
d−2∑
k=0

ak(t)x
k (16)

is a monic polynomial of degree d with integer coefficients. Here,

ak(t) = 2Ck−1t+ t2
d−2∑
j=k

CjCd−2+k−j (17)
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for k = 1, . . . , d− 2 and

a0(t) = −t+ t2
d−2∑
j=0

CjCd−2−j = −t+ Cd−1t
2. (18)

The monic polynomial Ft(x) of degree d is irreducible if, say, t is a prime number. By Lemma 6, (17)

and (18), as t → ∞ , the polynomial Ft(x) has d− 2 roots α3, . . . , αd tending to d− 2 roots of the polynomial

Cd−1 +

d−2∑
k=1

xk
d−2∑
j=k

CjCd−2+k−j = (x− λ3) . . . (x− λd).

(In principle, λ3, . . . , λd are not necessarily distinct, although in all examples with small d they are distinct.)

Let ξ be the root of the polynomial

Et(x) := t
d−2∑
k=0

Ckx
k + xd−1

satisfying

ξ ∼ −tCd−2 as t → ∞. (19)

Applying the mean value theorem to the function Et(x) in the interval [ξ, ξ + θC
3/2−d
d−2 t5/2−d] , where θ ∈ R is

fixed, in view of Et(ξ) = 0 and (19) we obtain

Et(ξ + θC
3/2−d
d−2 t5/2−d) ∼ θC

3/2−d
d−2 t5/2−d((d− 1)ξd−2 + (d− 2)Cd−2tξ

d−3) ∼ (−1)dθ

√
t

Cd−2

as t → ∞ . Now, by (15) and (16),

Ft(x)x
d−1 = t2xGt(x) = t2x

(
1

x
+

Et(x)

t

(
− 1

x
+

Et(x)

t

))
= t2 − tEt(x) + xEt(x)

2.

Let us insert the root x of Ft written in the form x = ξ+θC
3/2−d
d−2 t5/2−d into 1−Et(x)t

−1+xt−2Et(x)
2 =

0. By the above, we see that the left hand side tends to 1− θ2 as t → ∞ . Hence θ tends to 1 and −1, so that

the remaining two roots α1, α2 of Ft(x) satisfy

α1 − ξ ∼ −C
3/2−d
d−2 t5/2−d and α2 − ξ ∼ C

3/2−d
d−2 t5/2−d. (20)

We are now in a position to prove Theorem 3. Set t := pkd with a prime number p and a positive integer

k and consider the polynomial Pk(x) := Fpkd(kx)k−d , where Ft(x) is defined in (16). By (17), (18) and the

Eisenstein criterion applied to p , we see that Pk is a monic irreducible polynomial of degree d . Its roots are

βj = αj/k , j = 1, . . . , d , where αj are the roots of Ft . Since t = pkd , from (19) and (20) we derive that

β1, β2 ∼ −pCd−2k
d−1 and

β2 − β1 ∼ 2C
3/2−d
d−2 p5/2−dk−d2+5d/2−1

as k → ∞ . Thus

Sep(Pk) ⩽ |1− β1/β2| ∼ 2p3/2−dC
1/2−d
d−2 k−d2+3d/2. (21)
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Since βj ∼ λjk
−1 as k → ∞ for j = 3, . . . , d , in view of

(d− 1)(d− 1 + d− 2)− (d− 3 + d− 2 + · · ·+ 1) = (3d− 5)d/2,

we find that

k(3d−5)d/2(d−1) ≪ R(Pk) = |β1||β2|(d−2)/(d−1) . . . |βd−1|1/(d−1) ≪ k(3d−5)d/2(d−1). (22)

Now, since R(Pk) → ∞ as k → ∞ , combining (21) with (22) we find that

g∗irr(d) ⩾
d2 − 3d/2

(3d− 5)d/(2(d− 1))
=

(2d− 3)(d− 1)

3d− 5
.

This completes the proof of Theorem 3.

3. Proof of Theorem 4

Our proof of girr(3) = 2 follows [22]. Let us begin, for example, with the polynomial

P (x) := x3 − x− 1 = (x− α)(x− β)(x− γ),

where α = 1.32471 . . . and β = −0.66235 · · · + i0.56227 . . . , γ = −0.66235 · · · − i0.56227 . . . are two complex

conjugate roots satisfying

|β| = |γ| < 1 and ℜ(β) = ℜ(γ) < 0.

Consider the sequence α1 := α and

αk+1 := 1/{αk} for k = 1, 2, 3, . . . .

Then αk > 1 and αk ∈ Q(α) for each k ∈ N . Setting β1 := β , γ1 := γ and qk := [αk] ∈ N (so that

αk+1 = 1/(αk − qk)), we also define two corresponding sequences

βk+1 = 1/(βk − qk) and γk+1 = 1/(γk − qk)

for k = 1, 2, 3, . . . . Note that, by the above construction, the continued fraction expansion for the cubic number

αk is

αk = qk +
1

qk+1 +
1

qk+2+···
(23)

for each k ∈ N .

It is easy to see that the ‘next’ polynomial Pk(x) obtained from Pk−1(x), firstly, by replacing Pk−1(x)

by Pk−1(x+ qk−1) and then, secondly, by taking its reciprocal polynomial, namely,

Pk(x) = P ∗
k−1(x+ qk−1) = ak(x− αk)(x− βk)(x− γk) ∈ Z[x], ak ∈ N,

is irreducible, since so is Pk−1(x). Furthermore, it is clear that

√
|∆(Pk)| =

√
|∆(Pk−1)| = · · · =

√
|∆(P )| =

√
23.
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It is straightforward to check that for each k ∈ N the roots βk and γk = βk satisfy

|βk| = |γk| < 1 and ℜ(βk) = ℜ(γk) < 0.

Consequently, |αk − βk| = |αk − γk| > αk , and so

√
23 = a2k|αk − βk||αk − γk||βk − γk| > a2kα

2
k|βk||1− γk/βk| ⩾ R(Pk)

2Sep(Pk). (24)

If the sequences ak ∈ N and αk , k = 1, 2, 3, . . . , were both bounded from above then, as |βk|, |γk| < 1,

we would only have finitely many different polynomials Pk(x) ∈ Z[x] . But then we must have αk = αj for some

indices k > j ⩾ 1. By (23), this implies that the sequence qk , k = 1, 2, 3, . . . , is ultimately periodic. So α1 = α

must be a quadratic number, a contradiction. This proves that at least one sequence ak , k = 1, 2, 3, . . . , or

αk , k = 1, 2, 3, . . . , is unbounded. Hence the sequence M(Pk) = akαk , k = 1, 2, 3, . . . , is unbounded. Thus,

by (3), R(Pk), k = 1, 2, 3, . . . , is unbounded and therefore (24) implies girr(3) ⩾ 2. Combining this with the

upper bound girr(3) ⩽ 2 we obtain girr(3) = 2.

Note that, by exactly the same argument, we can start with any Pisot number α of degree d ⩾ 3 with

minimal polynomial P whose all other d− 1 conjugates have negative real part. (For example, in [9] we have

considered totally positive Pisot units α of degree d . Then α − 1 is a Pisot number of degree d with its all

remaining d− 1 conjugates negative.) Putting

α1,1 = α, α1,k+1 = 1/{α1,k}, k = 1, 2, 3, . . . ,

we obtain the sequence of polynomials Pk , k = 1, 2, 3, . . . , with roots α1,k, α2,k, . . . , αd,k such that α1,k is a

Pisot number, α1,k > 1 > |α2,k| ⩾ . . . ⩾ |αd,k|, and |α1,k − αi,k| > α1,k for i = 2, . . . , d− 1. It follows that

R(Pk)
d−1

∏
2⩽i<j⩽d

|1− αj,k/αi,k| <
√

∆(Pk) =
√
∆(P ).

Also, as above, all the numbers α1,k , k = 1, 2, 3, . . . , must be distinct, so the sequences M(Pk) = akα1,k ,

k = 1, 2, 3, . . . , and R(Pk), k = 1, 2, 3, . . . , are unbounded. Of course, if α is a Pisot number with negative

conjugates, then the roots α2,k, . . . , αd,k are negative for each k ∈ N .

We next turn to monic cubic polynomials with two close roots and use the ideas of [4]. Recall first that,

by a result of Danilov [6], there exist two increasing sequences of positive integers xk and yk , k = 1, 2, 3, . . . ,

and an absolute constant c > 0 such that

x3
k − y2k ∼ cx

1/2
k as k → ∞. (25)

(See formula (6) in [6], where there is misprint in the power of the polynomial t2 + 6t− 11.) So Proposition 7

with w = 5/2 implies the assertion of Theorem 5 for cubic polynomials and also the inequality g∗irr(3) ⩾ 5/3 of

Theorem 4. Moreover, by Hall’s conjecture [14], w is the largest real number with this property (although it is

only known that w < 3 which follows from an old result of Mordell), so equality g∗irr(3) = 5/3 is equivalent to

Hall’s conjecture.

The remainder of this section is devoted to the proof of the following statement.

Proposition 7 Let w be a positive number satisfying 5/2 ⩽ w < 3 . Then the inequality |P |w ≪ 1/Sep(P )

has infinitely many solutions in monic cubic irreducible polynomials P ∈ Z[x] if and only if the inequality

0 < |x3 − y2| ≪ x3−w has infinitely many solutions in positive integers x, y .

756



DUBICKAS/Turk J Math

Proof Assume first that the inequality 0 < |x3
k − y2k| ≪ x3−w

k holds for infinitely many pairs (xk, yk) ∈ N2 .

Consider the monic cubic polynomial

Pk(x) := x3 − 3xkx− 2yk ∈ Z[x]

with discriminant ∆(Pk) = 108(x3
k − y2k). Putting δk := (x3

k − y2k)x
w−3
k /3, we have |δk| ≪ 1. Evaluating the

polynomial Pk at x = −√
xk + z we find that

Pk(−
√
xk + z) = −x

3/2
k + 3xkz − 3

√
xkz

2 + z3 + 3x
3/2
k − 3xkz − 2yk

= 2(x
3/2
k − yk)− 3

√
xkz

2 + z3 =
2(x3

k − y2k)

x
3/2
k + yk

− 3
√
xkz

2 + z3.

Therefore, since

2(x3
k − y2k)

3(x
3/2
k + yk)

√
xk

∼ x3
k − y2k
3x2

k

=
3δkx

3−w
k

3x2
k

= δkx
1−w
k as k → ∞,

for its two roots αk, βk we have

αk +
√
xk ∼ −x

1/2−w/2
k

√
δk and βk +

√
xk ∼ x

1/2−w/2
k

√
δk.

Thus the third root satisfies γk ∼ 2
√
xk as k → ∞ . Therefore, in both cases (αk, βk are real or complex

conjugate roots), we have γk > |αk| ⩾ |βk| and

sep(Pk) = |αk − βk| ∼ 2
√
|δk|x1/2−w/2

k .

It follows that Sep(Pk) ∼ 2
√
|δk|x−w/2

k and |Pk| ∼ 2x
1/2
k , giving the inequality |Pk|w ≪ 1/Sep(Pk) for the

monic cubic polynomials Pk defined above.

To complete the proof in one direction it remains to show that Pk are irreducible for k large enough. For

a contradiction assume that Pk is reducible in Z[x] . Then one of the roots αk, βk or γk must be an integer. If at

least two roots are integers then all three must be integers which is impossible in view of βk−αk → 0. So assume

that one is an integer and two others are the roots of an irreducible polynomial Q(x) = x2 + ux + v ∈ Z[x] .
By the same reason, as βk − αk → 0, these two cannot be αk, βk , so one of the roots of Q is γk . Assume that

the other root of Q is βk . (The proof in case this is αk is the same.) Then αk, βk are real negative numbers,

u = −γk − βk = αk and ∆(Q) = u2 − 4v = (γk − βk)
2 /∈ Z2 . Thus

βk − αk = βk − u =
−u−

√
∆(Q)

2
− u =

−3u−
√
∆(Q)

2
⩾ 1

2(−3u+
√
∆(Q))

.

As −3u = −3αk < 3γk and
√

∆(Q) = γk − βk = γk + |βk| < 2γk , this yields sep(Pk) = βk − αk > 1/10γk ,

contrary to sep(Pk) ≪ x
1/2−w/2
k ≪ γ1−w

k ≪ γ
−3/2
k .

To prove the result in the opposite direction we assume that the inequality

R(P )2w/3 ≪ 1/Sep(P )
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has infinitely many solutions in monic cubic irreducible polynomials P = Pk ∈ Z[x] . Note that this assumption

is weaker than required because R(P )2w/3 ⩽ |P |w . Without restriction of generality (by replacing Pk(x) by

Pk(6x), if necessary, and omitting everywhere the index k ) we may assume that the coefficients of P (x) =

x3 + ax2 + bx+ c satisfy 6|a, b, c . We claim that R(P )2w/3 ≪ 1/Sep(P ) implies

sep(P ) ≪ |P |1−w (26)

(possibly with another constant in ≪).

Indeed, assume that α, β, γ are the roots of P satisfying |α| ⩽ |β| ⩽ |γ| . As R(P ) tends to infinity

(there are only finitely many monic integer polynomials with R(P ) bounded), Sep(P ) tends to zero; so let us

consider only those P for which Sep(P ) ⩽ 1/2. Evidently, Sep(P ) is one of the numbers |1− α/β| , |1− β/γ|
or |1− α/γ| .

In the first case, Sep(P ) = |1 − α/β| , using sep(P ) ⩽ |β − α| = |β|Sep(P ), |β| ⩽ |γ| and w < 3 we

obtain

|γ|w−1sep(P ) ⩽ |γ|w−1|β|Sep(P ) ⩽ |γ|2w/3|β|w/3Sep(P ) = R(P )2w/3Sep(P ) ≪ 1.

In the second case, Sep(P ) = |1 − β/γ| , from Sep(P ) ⩽ 1/2 it follows that |β/γ| ⩾ 1/2, hence |β| ⩾ |γ|/2.
Similarly, in the third case, Sep(P ) = |1−α/γ| , we obtain |α| ⩾ |γ|/2, so |β| ⩾ |α| ⩾ |γ|/2. Therefore, in these

two cases we have |γ|3/2 ≪ |γ||β|1/2 = R(P ), i.e. |γ| ≪ R(P )2/3 . From sep(P ) ⩽ |γ|Sep(P ) we conclude that

|γ|w−1sep(P ) ⩽ |γ|wSep(P ) ≪ R(P )2w/3Sep(P ) ≪ 1,

which gives (26) again.

Next, let us replace P (x) by P (x− a/3). This does not change either sep(P ) or ∆(P ). If α, β, γ were

the roots of P (x) = x3 + ax2 + bx+ c satisfying |α| ⩽ |β| ⩽ |γ| (so that α+ β+ γ = −a , and hence 3|γ| ⩾ |a|)
then the roots of P (x− a/3) are α+ a/3, β + a/3, γ + a/3. The modulus of the largest of those three does not

exceed |γ| + |a|/3 ⩽ 2|γ| = 2|P | , so this change may increase the value of |P | at most twice. It follows that

(26) holds for infinitely many monic cubic irreducible polynomials

P (x) = (x− a/3)3 + a(x− a/3)2 + b(x− a/3) + c = x3 − (a2/3− b)x− (ab/3− c− 2a3/27).

Since 6|a, b, c , we can write P in the form P (x) = x3 − 3px − 2q ∈ Z[x] with integers p := (a2/3 − b)/3,

q := (ab/3− c− 2a3/27)/2 and with the roots α, β, γ satisfying |α| ⩽ |β| ⩽ |γ| .
Now, since γ has the largest modulus among three roots satisfying α + β + γ = 0 and sep(P ) → 0,

we must have sep(P ) = |α − β| and so α, β tend to −γ/2. In particular, this implies 2q = αβγ ⩾ γ3/5, so

γ ≪ q1/3 . Hence from ∆(P ) = 108(p3 − q2) using (26) and the irreducibility of P we find that

0 <
√

108|p3 − q2| =
√
|∆(P )| = |α− β||α− γ||β − γ| ≪ sep(P )|γ|2 ≪ |γ|3−w ≪ q1−w/3.

So the inequality 0 < |p3 − q2| ≪ q2−2w/3 has infinitely many solutions (p, q) ∈ N2 . This implies the result in

view of q2−2w/3 ≪ (p3/2)2−2w/3 = p3−w . 2
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4. Proof of Theorems 1 and 2

Proof of Theorem 1. To give a short proof of (5) we assume that Sep(P ) = |1 − αl/αk| with k < l . Let us

subtract the lth column of the determinant det(αi−1
j )1⩽i,j⩽d from its kth column. The element i × k of the

resulting determinant is equal to αi−1
k − αi−1

l . Taking out the factor 1− αl/αk out of each element of the kth

column we obtain

det(αi−1
j )1⩽i,j⩽d = (1− αl/αk)det(aijα

i−1
j )1⩽i,j⩽d,

where aij := 1 for j ̸= k and aik := α2−i
k (αi−1

k − αi−1
l )/(αk − αl), because the element i× k becomes

αi−1
k − αi−1

l

1− αl/αk
=

(αi−1
k − αi−1

l )αi−1
k

(αk − αl)α
i−2
k

= aikα
i−1
k .

In particular, a1k = 0 and

|aik| = |1 + αl/αk + · · ·+ (αl/αk)
i−2| ⩽ 1 + |αl/αk|+ · · ·+ |(αl/αk)

i−2| ⩽ i− 1

for i = 2, . . . , d , since |αl| ⩽ |αk| . Thus, by (6),

d∏
j=1

( d∑
i=1

|aij |2
)1/2

⩽ d(d−1)/2
√
12 + · · ·+ (d− 1)2 = d(d−1)/2(d(d− 1)(2d− 1)/6)1/2

= dd/2+1
√
(1− 1/d)(1− 1/2d)/

√
3 = 1/cd.

Therefore, applying (2), we obtain√
|∆(P )| = |ad|d−1

∣∣det(αi−1
j )1⩽i,j⩽d

∣∣ = |ad|d−1Sep(P )
∣∣det(aijαi−1

j )1⩽i,j⩽d

∣∣
< Sep(P )R(P )d−1/cd,

giving (5). □
Proof of Theorem 2. Assume that Sep(P ) = |1 − α2/α1| . (The proof in two other cases is the same.)

Then √
|∆(P )|

Sep(P )R(P )2
=

|α1 − α2||α1 − α3||α2 − α3||α1|
|α1 − α2||α1|2|α2|

= |1− α3/α1||1− α3/α2|.

Since |1−α3/α1| ⩽ 1+|α3/α1| ⩽ 2 and |1−α3/α2| ⩽ 2, their product does not exceed 4. Furthermore, it is equal

to 4 only if α3/α1 = α3/α2 = −1, which is impossible, because α1 ̸= α2 . Hence
√
|∆(P )|/Sep(P )R(P )2 < 4,

giving (7).

To prove the lower bound (8), let us consider the polynomials

Pt(x) := (x+ pt)(x− pt)2 − p = (x− αt)(x− βt)(x− γt),

where p is a fixed prime number and t runs through positive integers. By Eisenstein’s criterion, the polynomial

Pt is irreducible for each t ∈ N . By Lemma 6, we have αt ∼ −pt and βt, γt ∼ pt as t → ∞ . Furthermore,

inserting x = pt+ y/
√
t into Pt(x) = 0 we find that

y3t−3/2 + 2p(y2 − 1/2) = 0.
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Hence Lemma 6 implies βt − pt ∼ −1/
√
2t and γt − pt ∼ 1/

√
2t as t → ∞ . If follows that βt − γt ∼

√
2/t ,

Sep(Pt) ∼
√
2

pt3/2
, R(Pt) ∼ p3/2t3/2 and

√
|∆(Pt)| ∼ 4

√
2p2t3/2

as t → ∞ . Consequently, Sep(Pt)R(Pt)
2/
√

|∆(Pt)| → 1/4 as t → ∞ . This completes the proof of (8). □
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