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doi:10.3906/mat-1110-29

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

A characterization of Auslander category

Juxiang SUN∗

Department of Mathematics, Shangqiu Normal University, Shangqiu 476000, China

Received: 16.10.2011 • Accepted: 10.08.2012 • Published Online: 26.08.2013 • Printed: 23.09.2013

Abstract: In this paper, we discuss the Bass class and the Auslander class with respect to a semidualizing module over

an associative ring. Let SCR be a semidualizing module we proved that the Bass class BC(R) is a right orthogonal

subcategory of some right R -module; and that the Auslander class AC(S) is a left orthogonal subcategory of the

character module of some left S -module. As an application, we introduce the notion of the minimal semidualizing

module, and get a one to one correspondence between the isomorphism classes of minimal semidualizing R -modules and

maximal classes among coresolving preenvelope classes of ModR with the same Ext-projective generators in gen∗ R .
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1. Introduction

Semidualizing modules provide a common generalization of a dualizing module and a free module of rank one

over a commutative noetherian local ring. Foxby [8] first defined them (PG-modules of rank one), while many

people furthered their study in other names (see for example [2, 13]). In [10], Henric Holm and Diana White

extended the definition of semidualizing modules to a non-commutative non-noetherian ring, which coincided

with the notion of a Wakamatsu tilting module introduced by T. Wakamatsu in [14].

A semidualizing module over a commutative noetherian ring gives rise to two full subcategories of the

category of R-modules, namely the so-called Auslander class AC(R) and Bass class BC(R) defined by Avramov

and Foxby [5, 8]. Semidualizing modules and their Auslander/Bass classes have caught, attention of several

authors (see for instance [4, 6, 8]). In [10], Henric Holm and Diana White also extended the definition of

Auslander classes and Bass classes to arbitrary associative rings. In this paper, we discuss the Auslander class

and the Bass class with respect to a semidualizing module over an associative ring.

This paper is organized as follows. In Section 2, we give some terminology and some preliminary results

which are often used in this paper. In Section 3, we give a characterization of the Auslander class and the Bass

class with respect to a semidualizing module. And our main results are as follows:

Theorem 1.1 Let SCR be a semidualizing module. Then

(1) BC(R) = N⊥ , for some right R-module N .

(2) AC(S) =
⊥M+ , for some left S -module M .

Where N⊥ is a right orthogonal subcategory of N and M+ is the character module of M .
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We call a semidualizing module C a minimal semidualizing module if there is no proper direct summand

of C which is also a semidualizing module. As an application of Theorem 1.1, we have the following theorem.

Theorem 1.2 Let C be an R -module with S = EndR C . Then

(1) C → BC(R) gives a one to one correspondence between the isomorphism classes of minimal semid-

ualizing R -modules and maximal classes among those coresolving preenvelope classes of ModR with the same

Ext-projective generators in gen∗R .

(2) C → AC(S) gives a one to one correspondence between the isomorphism classes of minimal semid-

ualizing S -modules and maximal classes among those resolving precover classes of ModS with the same Ext-

injective cogenerators in gen∗ S .

2. Preliminaries

Throughout this paper, all rings are associative with identities and all modules are unitary. MR (RM) denotes

a right (left) R -module. We denote by ModR the category of right R -modules. For an R -module M , we

denote by M+ the character module HomZ(M,Q/Z) of M . M I (M (I)) is the direct product (sum) of copies

of a module M indexed by a set I . As usual, AddRM (addRM) denotes the full subcategory of ModR whose

objects are the direct summands of (finite) direct sums of copies of M . Similarly, ProdRM stands for the full

subcategory of ModR whose objects are the direct summands of direct products of copies of M . We denote

by GenM the full subcategory of ModR consisting of those modules X such that there is an epimorphism

M0 → X with M0 ∈ AddRM . Dually we define CogenM .

In this paper, all subcategories are closed under finite direct sums, finite direct summands, and isomor-

phisms. Following [7], a full subcategory C of ModR is called a resolving subcategory if it is closed under

extensions and kernels of epimorphisms and if it contains all the projective modules. Dually, a full subcategory

C of ModR is called a coresolving subcategory if it is closed under extensions and cokernels of monomorphisms

and if it contains all the injective modules.

Let C be a full subcategory of ModR . We denote by C⊥ (resp., ⊥C ) the subcategory of R -modules

N such that Exti≥1
R (X,N) = 0 (resp., Exti≥1

R (N,X) = 0) for any X ∈ C . Recall that C is a self-orthogonal

subcategory of ModR , if C ⊂ ⊥C . We say that an R -module C ∈ C is Ext-projective in C , if C ∈ ⊥C . Moreover,

C is an Ext-projective generator for C , if it is an Ext-projective module, and for any module M ∈ C , there
exists an exact sequence: 0 → M ′ → C ′ → M → 0 with C ′ ∈ AddR C and M ′ ∈ C . Dually, we define an

Ext-injective module and an Ext-injective cogenerator for C .
Given a full subcategory C of ModR , we denote by gen∗ C (resp., Gen∗ C ) the subcategory of all modules

N such that there exists a long exact sequence: · · · f2−→ M1 f1−→ M0 f0−→ N → 0 with each M i ∈ C (resp.,

M i ∈ AddR C ) and each Ext1R(C,Ker fi) = 0. Dually, we define cogen∗ C (resp., Cogen∗ C ) the subcategory

of all modules N such that there exists a long exact sequence: 0 → N
g0−→M0

g1−→M1
g2−→ · · · , where Mi ∈ C

(resp., Mi ∈ ProdR C ) and Ext1R(Coker gi, C) = 0 for all i ≥ 0. If the category C is of the form addRM for

some R -module M , often simply replace the category with the module M in the corresponding notations. For

example, we use gen∗M instead of gen∗ C .
Let R and S be two rings. Following [10], an (S,R)-bimodule C is a semidualizing module, if (1)

CR ∈ gen∗R ; (2)SC ∈ gen∗ S ; (3) The homothety map SSS → HomR(C,C) is an isomorphism; (4) The

homothety map RRR → HomS(C,C) is an isomorphism; (5) Exti≥1
R (CR, CR) = Exti≥1

S (SC, SC) = 0. In [1]
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an (S,R)-bimodule C is called a faithfully balanced bimodule, if it satisfies (3) and (4). On the other hand,

in [14] CR is a Wakamatsu tilting module, if it satisfies (1) C ∈ gen∗R ; (2) R ∈ cogen∗ C ; (3) C is self-

orthogonal. In fact, following ([14], Lemma 3.2), an (S,R)-bimodule C is a semidualizing module if and only

if CR is a Wakamatsu tilting module with S = End(CR) if and only if SC is a Wakamatsu tilting module with

End(SC) = R .

Let SCR be a semidualizing bimodule. Following [10], the Auslander class AC(S) with respect to SCR

consists of all S -modules M satisfying

(A1) TorSi≥1(M,C) = 0,

(A2) Exti≥1
R (C,M ⊗S C) = 0, and

(A3) The natural evaluation homomorphism γM : M → HomR(C,M ⊗S C), defined by γ(m)(c) = m⊗ c
for any m ∈M and c ∈ C , is an isomorphism (of S -modules).

The Bass class BC(R) with respect to SCR consists of all R -modules N satisfying

(B1) Exti≥1
R (C,N) = 0,

(B2) TorSi≥1(HomR(C,N), C) = 0, and

(B3) The natural evaluation homomorphism νN : HomR(C,N)⊗S C → N , defined by ν(f ⊗ c) = f(c)

for any c ∈ C and f ∈ HomR(C,N), is an isomorphism (of R -modules).

Let us now recall some notions concerning precover classes and preenvelope classes in [7]. Let C be a full

subcategory of ModR . A homomorphism f : C → M in ModR is called a C -precover of M if C ∈ C and

the sequence HomR(X,C)
f∗−→ HomR(X,M) → 0 is exact for all X ∈ C . Dually, we define a C -preenvelope.

Recall that C is a precover class (resp., preenvelope class) provided each R -module admits a C -precover (resp.,
C -preenvelope). A C -precover f : C → M of M is called special, if f is surjective and Ext1R(N,Ker f) = 0

for all N ∈ C . Dually, we define a special C -preenvelope. C is called a special precover class (resp., special

preenvelope classes), if each R -module M has a special C -precover (resp., special C -preenvelope). An analogous

theory has independently been discovered and studied by M. Auslander and other authors. Following [7, 9], let

C,D ⊆ ModR ; the pair (C,D) is called a cotorsion pair, if C = {M ∈ ModR |Ext1R(M,D) = 0 for all D ∈ D}
and D = {N ∈ ModR |Ext1R(C,N) = 0 for all C ∈ C} . A cotorsion pair (C,D) in ModR is called complete if

either C is a special precover class or D is a special preenvelope class (see [9], P102, Lemma 2.2.6).

The following observations will be very useful.

Lemma 2.1 [12, 11] Let M be an R-module. AddRM is a precover class, and ProdRM is a preenvelope

class.

Let R and S be two rings and SCR a faithfully balanced bimodule. For any R -module X , we have a

natural map νX : HomR(C,X) ⊗S C → X , defined by ν(f ⊗ c) = f(c) for any c ∈ C and f ∈ HomR(C,X).

Dually, for any S -module Y , we have a natural map γY : Y → HomR(C, Y ⊗S C), defined by γ(y)(c) = y⊗ c ,

for any y ∈ Y and c ∈ C . It is easy to see that νX (resp., γY ) is an isomorphism, provided X ∈ addR C

(resp., Y ∈ addS C
+ ). The following result is maybe known, and we give a proof for safety.

Lemma 2.2 Let SCR be a faithfully balanced bimodule.

(1) If CR is finitely generated, then for any X ∈ AddR C , the natural map νX is an isomorphism.
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(2) If SC is finitely generated, then for any Y ∈ ProdS C
+ , the natural map γY is an isomorphism.

Proof We only prove (1). The proof of (2) is similar. We first claim that νC(I) is an isomorphism for some

index set I . Since CR is finitely generated, there is an isomorphism HomR(C,C
(I)) → HomR(C,C)

(I) defined

by f → (pif), where pi : C
(I) → C is the ith projection for i ∈ I . Thus we have an isomorphism

β1 : HomR(C,C
(I))⊗S C → HomR(C,C)

(I) ⊗S C,

given by f ⊗ c→ (pif)⊗ c for f ∈ HomR(C,C
(I)).

Note that −⊗S C commutes with direct sums, hence we have an isomorphism

β2 : HomR(C,C)
(I) ⊗S C → (HomR(C,C)⊗S C)

(I),

given by (gi)⊗ c→ (gi ⊗ c) for c ∈ C and (gi) ∈ HomR(C,C)
(I) .

Since SCR is faithful and balanced, the homothety map σ : S → HomR(C,C), given by σ(s)(c) = sc

for s ∈ S and c ∈ C , is an isomorphism. Hence there is an isomorphism

β3 : (HomR(C,C)⊗S C)
(I) → (S ⊗S C)

(I),

given by (gi ⊗ ci) → (σ−1(gi)⊗ ci), where gi ∈ HomR(C,C) and ci ∈ C for i ∈ I .

And the natural isomorphism S ⊗S C → C induces an isomorphism

β4 : (S ⊗S C)
(I) → C(I)

given by (si ⊗ ci) → (sici), where si ∈ S and ci ∈ C for i ∈ I .

Let f ∈ HomR(C,C
(I)) and c ∈ C . Then β4β3β2β1(f ⊗ c) = β4β3β2((pif) ⊗ c) = β4β3((pif ⊗ c)) =

β4(σ
−1(pif)⊗ c) = σ−1(pif)(c) = (pif(c)) = f(c). It is easy to see that νC(I) = β4β3β2β1 is an isomorphism.

Let X ∈ AddR C . There is an R -module Y such that X ⊕ Y = C(I) for some index set I . Then there

is a split exact sequence 0 → X
λ−→ C(I) p−→ Y → 0 which induces the following commutative diagram with

exact rows:

0 // HomR(C,X)⊗S C

νX

��

λ∗⊗1 // HomR(C,C
(I))⊗S C

ν
C(I)

��

p∗⊗1 // HomR(C, Y )⊗S C

νY

��

// 0

0 // X
λ // C(I) p // Y // 0.

The Five Lemma shows that νX is a monomorphism. Thus νY is also a monomorphism, and hence νX is an

isomorphism by the Five Lemma again. 2

Lemma 2.3 (Ext-Tor relations)[9] Let R and S be two rings and A a right R -module, and n ≥ 1 a nature

number.

(1) Let B be an (S,R)-bimodule and C an injective right S -module. Then

ExtnR(A,HomS(B,C)) ∼= HomS(Tor
R
n (A,B), C).

(2) Let A ∈ gen∗R , and let B be an (S,R)-bimodule and C an injective left S -module. Then

TorRn (A,HomS(B,C)) ∼= HomS(Ext
n
R(A,B), C).
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3. Main results

Taking CX = C⊥ ∩Gen∗ C and YC = ⊥C ∩ Cogen∗ C , we have the following proposition.

Proposition 3.1 Let SCR be a semidualizing module. Then

(1)BC(R) = CR
X ;

(2)AC(S) = Y
SC+ .

Proof (1) We first claim that AddR C ⊆ BC(R). In fact, it suffices to show that C(I) ∈ BC(R) for any index

set I . Because SCR is a semidualizing module, we have ExtiR(C,C
(I)) ∼= ExtiR(C,C)

(I) = 0 for any i ≥ 1, and

HomR(C,C
(I)) ∼= HomR(C,C)

(I) = S(I) . Hence, TorSi≥1(HomR(C,C
(I)), C(I)) ∼= TorSi≥1(S

(I), C(I)) = 0. By

Lemma 2.2, the natural map νC(I) : HomR(C,C
(I) ⊗S C) → C(I) is an isomorphism. And we obtain our claim.

Given any M ∈ CRX , there is a long exact sequence:

· · · f3−→ C2
f2−→ C1

f1−→ C0
f0−→M → 0 (3.1)

with each Ci ∈ AddR C and each Ker fi ∈ C⊥ , which induces a projective resolution of HomR(C,M) in

ModS :

· · · → HomR(C,C1)
f1∗−→ HomR(C,C0)

f0∗−→ HomR(C,M) → 0. (3.2)

by applying HomR(C,−) to the sequence (3.1), because C ∈ gen∗R . Applying the functor − ⊗S C to the

sequence (3.2), we get a complex

· · · → HomR(C,C1)⊗S C
f1∗⊗1C−→ HomR(C,C0)⊗S C

f0∗⊗1C−→ HomR(C,M)⊗S C → 0. (3.3)

Note that the functor − ⊗S C is right exact, and so we have the following commutative diagram with exact
rows:

C1

νC1

��

f1 // C0

νC0

��

f0 // M

νM

��

// 0

HomR(C,C1)⊗S C
f1∗⊗S1C// HomR(C,C0)⊗S C

f0∗⊗S1C// HomR(C,M)⊗S C // 0.

By Lemma 2.2, νC0 , νC1 are isomorphisms, and hence νM is an isomorphism, by the Five Lemma. Since νCi :

HomR(C,Ci)⊗S C → Ci is an isomorphism for all i ≥ 0, we can obtain that the complex (3.3) is isomorphic to

the long exact sequence (3.1). This immediately yields TorSi≥1(HomR(C,M), C) = 0. Therefore, M ∈ BC(R).

Conversely, let X ∈ BC(R), and there is an AddR C -precover g0 : C0 → X , which induces an epimor-

phism g0∗ ⊗ 1: HomR(C,C0)⊗S C → HomR(C,X)⊗S C , by Lemma 2.1. Furthermore we have the following

commutative diagram:

C0

νC0

��

g0 // X

νX

��
HomR(C,C0)⊗S C

g0∗⊗S1C// HomR(C,X)⊗S C // 0.

Since νC0 , νX are isomorphisms, g0 is an epimorphism.
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Taking K0 = Ker g0 , there exists an exact sequence

0 → K0 → C0
g0−→ X → 0. (3.4)

Applying the functor HomR(C,−) to the sequence (3.4), we get a long exact sequence:

0 → HomR(C,K0) → HomR(C,C0)
g0∗−→ HomR(C,X) → Ext1R(C,K0) → Ext1R(C,C0).

Since g0 is an AddR C -precover, g0∗ is an epimorphism, and Exti≥1
R (C,C0) = 0 because C0 ∈ BC(R). Hence,

Ext1R(C,K0) = 0, and that X,C0 ∈ C⊥ implies K0 ∈ C⊥ .

We claim that K0 ∈ BC(R). Applying the functor HomR(C,−)⊗S C to the sequence (3.4), we have the

following commutative diagram with exact rows:

0 // K0

νK0

��

// C0

νC0

��

g0 // X

νX

��

// 0

0 // HomR(C,K0)⊗S C // HomR(C,C0)⊗S C
g0∗⊗1C// HomR(C,X)⊗S C // 0

The Five Lemma shows that νK0 is an isomorphism. We obtain TorSi (HomR(C,K0), C) ∼= TorSi+1

(HomR(C,X), C) = 0, for all i ≥ 1. Thus we get our claim.

Repeating the same argument on K0 , and so on, we have X ∈ CX .

(2) We first claim that ProdS C
+ ⊆ AC(S). Indeed, it is enough to show (SC

+)J ∈ AC(S) for any index

set J . Since SC ∈ gen∗ S , we have isomorphisms

TorSi ((C
+)J , C) ∼= (TorSi (C

+, C))J and (TorSi (C
+, C))J ∼= ((ExtiS(C,C)

+)J = 0 for any i ≥ 1, by Lemma

2.3. Also, ExtiR(C, (C
+)

J ⊗S C) ∼= ExtiR(C, (C
+ ⊗S C)

J ) ∼= ExtiR(C, (R
+)J) = 0, since R+ is an injective

cogenerator of ModR , and the natural map γ(C+)J : (C+)J → HomR(C, (C
+)J ⊗S C) is an isomorphism by

Lemma 2.2. Thus, we get our claim.

Given any X ∈ Y
SC+ , there is a long exact sequence:

0 → X
f0−→ D0

f1−→ D1
f2−→ D2 → · · · (3.5)

with each Di ∈ ProdS C
+ and each Coker fi ∈ ⊥C+ , which induces an exact sequence

· · · → HomS(D2, C
+)

f∗
2−→ HomS(D1, C

+)
f∗
1−→ HomS(D0, C

+)
f∗
0−→ HomS(X,C

+) → 0,

by applying the functor HomS(−, C+) to this sequence (3.5). Since HomS(Di, C
+) ∼= (Di ⊗S C)

+ for any

i ≥ 0, we have an injective resolution of (X ⊗S C)R in ModR :

0 → X ⊗S C
f0⊗1C−→ D0 ⊗S C

f1⊗1C−→ D1 ⊗S C → · · · . (3.6)
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Applying the functor HomR(C,−) to the left exact sequence 0 → X ⊗S C
f0⊗1C−→ D0 ⊗S C

f1⊗1C−→ D1 ⊗S C , we

obtain the following commutative diagram with exact rows:

0 // X

γX

��

f0 // D0

γD0

��

f1 // D1

γD1

��
0 // HomR(C,X ⊗S C)

(f0⊗1C)∗// HomR(C,D0 ⊗S C)
(f1⊗1C)∗// HomR(C,D1 ⊗S C)

Note that γD0 , γD1 are isomorphisms, so is γX , by the Five Lemma.

By applying HomR(C,−) to the sequence (3.6), we have the complex

0 → HomR(C,X ⊗S C) → HomR(C,D0 ⊗S C) → HomR(C,D1 ⊗S C) → · · · ,

which is isomorphic to the sequence (3.5), is a long exact sequence, since each natural map γDi : HomR(C,Di⊗S

C) → Di is an isomorphism by Lemma 2.2. Therefore, ExtiR(C,X ⊗S C) = 0 for any i ≥ 1.

Conversely, given any Y ∈ AC(S), we first claim Y ∈ Cogen SC
+ . Let g0 : Y → D0 be a ProdS C

+ -

preenvelope of Y by Lemma 2.1. Taking H = Ker g0 , we have an exact sequence:

0 → H → Y
g0−→ D0. (3.7)

Applying the functor HomS(−, C+) to the sequence (3.7), we have an exact sequence: HomS(D0, C
+)

g∗
0−→

HomS(Y,C
+) → 0. Since HomS(−, C+) ∼= (− ⊗S C)

+ , we have an exact sequence: (D0 ⊗S C)
+ (g0⊗1C)+−→

(Y ⊗S C)
+ → 0. And so the sequence 0 → Y ⊗S C

g0⊗1C−→ D0 ⊗S C is exact. Applying the functor HomS(C,−)

to this sequence, we have the following commutative diagram with exact rows:

0 // H // Y

γY

��

g0 // D0

γD0

��
0 // HomR(C, Y ⊗S C)

(g0⊗1C)∗// HomR(C,D0 ⊗S C).

Since γY , γD0 are isomorphisms, g0 is a monomorphism, and so H = 0. Taking L0 = Coker g0 , we have an

exact sequence:

0 → Y
g0−→ D0 → L0 → 0. (3.8)

Applying the functor HomS(−, C+) to the sequence (3.8), we get an exact sequence:

HomS(L0, C
+) → HomS(D0, C

+)
g0

∗

−→ HomS(Y,C
+) → Ext1S(L0, C

+) → Ext1S(D0, C
+).

Since g0 is a ProdS C
+ -preenvelope of Y , g0

∗ is epic. By Lemma 2.3, Ext1S(D0, C
+) ∼= (TorS1 (D0, C))

+ = 0,

because D0 ∈ AC(S). Thus Ext1S(L0, C
+) = 0. And that Y,D0 ∈ ⊥C+ implies L0 ∈ ⊥C+ . By Lemma 2.3,

there is an isomorphism ExtiS(L0, C
+) ∼= (TorSi (L0, C))

+ , and hence we have TorSi (L0, C) = 0 for any i ≥ 1.

Thus there is an exact sequence 0 → Y ⊗S C → D0 ⊗S C → L0 ⊗S C → 0. Applying the functor HomR(C,−)
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to this sequence, we have the following commutative diagram with exact rows:

0 // Y

γY

��

// D0

γD0

��

// L0

γL0

��

// 0

0 // HomR(C, Y ⊗S C) // HomR(C,D0 ⊗S C) // HomR(C,L0 ⊗S C) // 0.

Since γY , γD0 are isomorphisms, we can obtain that γL0 is an isomorphism, by the Five Lemma. And by di-

mension shift we obtain an isomorphism ExtiR(C,L0⊗S C) ∼= Exti+1
R (C, Y ⊗S C) = 0, for any i ≥ 1. Therefore,

L0 ∈ AC(S). Repeating the above process on L0 , and so on, we get our result. 2

Putting CX = C⊥ ∩ gen∗ C, (resp., YC = ⊥C ∩ cogen∗ C ) and Bf
C(R) = BC(R) ∩ gen∗R (resp, Af

C(S) =

AC(S) ∩ cogen∗(S+)), we have the following corollary.

Corollary 3.2 Let SCR be a semidualizing module. Then

(1) Bf
C(R) = CR

X

(2) Af
C(R) = Y

SC+

Proof We have to show (1), the proof of (2) is similar. Because C ∈ gen∗R , for any M ∈ CX , we have

M ∈ gen∗R from ([14], Lemma 3.4). And by Proposition 3.1, we have M ∈ Bf
C(R).

Conversely, let N ∈ Bf
C(R). Since N is finitely generated, there is an addR C -precover g0 : C0 → N ,

which induces an epimorphism g0∗⊗1 : HomR(C,C0)⊗S C → HomR(C,N)⊗S C , by Lemma 2.1. Furthermore

we have the following commutative diagram:

C0

νC0

��

g0 // N

νN

��
HomR(C,C0)⊗S C

g0∗⊗S1C// HomR(C,N)⊗S C // 0.

Since νC0 , νN are isomorphisms, we obtain that g0 is an epimorphism.

Taking K0 = Ker g0 , we have an exact sequence:

0 → K0 → C0
g0−→ N → 0. (3.9)

Applying the functor HomR(C,−) to the sequence (3.9), we get a long exact sequence:

0 → HomR(C,K0) → HomR(C,C0)
g0∗−→ HomR(C,N) → Ext1R(C,K0) → Ext1R(C,C0).

Since g0 is an addR C -precover, g0∗ is an epimorphism. And Exti≥1
R (C,C0) = 0, because C is self-orthogonal.

Hence, Ext1R(C,K0) = 0. And that N,C0 ∈ C⊥ implies K0 ∈ C⊥ . We claim K0 ∈ Bf
C(R). Since N ∈ gen∗R ,

we have an exact sequence 0 → L → P0 → N → 0, where P0 is a finitely generated projective R -module and
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L ∈ gen∗R . Consider the following pullback diagram:

0

��

0

��
L

��

L

��
0 // K0

// Q

��

// P0
//

��

0

0 // K0
// C0

��

g0 // N //

��

0

0 0.

We have Q ∼= K0 ⊕ P and an exact sequence: 0 → L → P0 ⊕K0 → C0 → 0. Note that L,C0 ∈ gen∗R , and

so is K0 , by ([14], Lemma 2.2(2)). Applying the functor HomR(C,−)⊗S C to the sequence (3.9), we have the

following commutative diagram with exact rows:

0 // K0

νK0

��

// C0

νC0

��

g0 // N

νN

��

// 0

0 // HomR(C,K0)⊗S C // HomR(C,C0)⊗S C
g0∗⊗1C// HomR(C,N)⊗S C // 0

The Five Lemma shows that νK0 is an isomorphism. And we obtain TorSi (HomR(C,K0),

C) ∼= TorSi+1(HomR(C,N), C) = 0, for all i ≥ 1. Thus we get our claim.

Repeating the same argument on K0 , and so on, we have N ∈ CX . 2

Lemma 3.3 Let C be a self-orthogonal full subcategory of ModR .

(1) If C is a preenvelope class with Q ∈ gen∗ C , for some injective cogenerator Q , then there exists a

long exact sequence,

· · · f3−→ C2
f2−→ C1

f1−→ C0
f0−→ Q→ 0,

such that YC = ⊥(
∏

i∈N(Ker fi)) ∩ ⊥C .

(2) If C is a precover class with R ∈ cogen∗ C , then there exists a long exact sequence:

0 → R
g0−→ C0

g1−→ C1
g2−→ C2

g3−→ · · · ,

such that CX = (
⨿

i∈N(Coker gi))
⊥ ∩ C⊥ .

Proof We only prove (1), the proof of (2) is similar. Taking Li = Ker fi for any i ≥ 0, we have to verify

that, given any X ∈ YC , X ∈ ⊥Li . Let us consider the exact sequences

(∗) 0 → X
α−→ C0 → X1 → 0 (∗∗) 0 → L0 → C0

f0−→ Q→ 0,

where C0, C0 ∈ C and X1 ∈ YC . Applying HomR(X,−) to (∗∗), we obtain an exact sequence: 0 →

HomR(X,L0) → HomR(X,C0)
f0∗−→ HomR(X,Q) → Ext1R(X,L0) → 0. To prove that Ext1R(X,L0) = 0, it
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suffices to show that f0∗ is an epimorphism. Note that Q is injective, any morphism f ∈ HomR(X,Q)

extends to a morphism f ′ ∈ HomR(C
0, Q). Finally, applying the functor HomR(C

0,−) to (∗∗), we have

that f ′ lifts a morphism f ′′ ∈ HomR(C
0, C0). Thus, αf ′′f0 extends to f . And hence Ext1R(X,L0) = 0.

Moreover, by applying the functor Hom(−, Li+1) to (∗∗) and the functor Hom(X1,−) to the exact sequence

0 → Li+1 → Ci → Li → 0, we obtain that Ext1R(X,Li+1) = Ext2R(X1, Li+1) ∼= Ext1R(X1, Li) for any

i ≥ 0. By induction we conclude that ExtiR(X1, Li) = 0 for any i ≥ 1, and by dimension shift we get

ExtjR(X,Li) ∼= Extj+1
R (X1, Li) = 0 for any i, j ≥ 1.

Conversely, given Y ∈ ⊥(
∏

i∈N Li) ∩ ⊥C , we want to show that Y ∈ Cogen C . Since Q is an injective

cogenerator, there is a monomorphism i : Y → QI for some index set I . Consider the following pullback

diagram:

0

��

0

��
0 // KI

0
// D

��

// Y //

i��

0

0 // KI
0

// CI
0

��

fI
0 // QI //

��

0

L

��

L

��
0 0.

Since Ext1R(Y,K
I
0 )

∼= Ext1R(Y,K0)
I = 0, by ([7], P74 exercise 4), the first row is splits. And so Y is cogenerated

by C . Since C is a preenvelope class, there is a C -preenvelope of Y :

0 → Y
h0−→ C0 → Y0 → 0. (3.10)

For any C ∈ C , applying the functor HomR(−, C) to the sequence (3.10), there exists an exact sequence:

HomR(Y0, C) → HomR(C
0, C)

h0
∗

−→ HomR(Y,C) → Ext1R(Y0, C) → Ext1R(C
0, C)

Because h0 is a C -preenvelope of Y , h0
∗ is epic. And since C is self-orthogonal, we have Ext1R(C

0, C) = 0.

Hence Ext1R(Y0, C) = 0. Furthermore, we have Y0 ∈ ⊥C , because Y ∈ ⊥C . Moreover, by applying the functor

HomR(−, Li) to (†), and applying the functor HomR(Y0,−) to the exact sequence 0 → Li+1 → Ci → Li → 0,

we get isomorphisms ExtjR(Y0, Li) ∼= Extj+1
R (Y0, Li+1) ∼= ExtjR(Y, Li) = 0, for all j ≥ 1 and i ≥ 0. Thus we

have Y0 ∈ ⊥(
∏

i∈N Li)∩⊥C . Repeating the same argument for Y0 , and so on, we have Y ∈ Cogen∗ C . Thus we
complete the proof of (1). 2

Let SCR be a semidualizing bimodule. Following ([14], Lemma 3.2), we have a long exact sequence:

0 → R
f0−→ C0

f1−→ C1
f1−→ C2 → · · ·

with Ci ∈ addR C and Ext1R(Ker fi, C) = 0 for all i ≥ 0. Let Ki = Ker fi and N = C
⨿
(
⨿

i∈NKi).

On the other hand, applying ([14], Lemma 3.2) again, we have S ∈ cogen∗ SC , and so there is an exact
sequence:

0 → S → C ′
0

g0−→ C ′
1

g1−→ C ′
2

g2−→ C ′
3

g3−→→ · · · (3.11)
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with C ′
i ∈ addS C and Ext1S(Coker gi, C) = 0 for all i ≥ 0. Putting Li = Coker gi for all i ≥ 0 and

M = (
⨿

i∈N Li)
⨿
C , we have the following results.

Theorem 3.4 Let SCR be a semidualizing module. Then

(1) BC(R) = N⊥ ;

(2) AC(S) =
⊥M+ .

Proof (1) Taking C = AddR C , C is a precover class, by Lemma 2.1. Since C ∈ gen∗R , C is a self-orthogonal

subcategory of ModR . Thus we obtain our result immediately by Proposition 3.1(1) and Lemma 3.3(2).

(2) By the long exact sequence (3.11), we have a long exact sequence:

· · · → (C ′
2)

+ g+
2−→ (C ′

1)
+ g+

1−→ (C ′
0)

+ f+
0−→ S+ → 0

such that Ker g+i = L+
i . Taking C = ProdS C

+ , we have that C is a preenvelope class, by Lemma 2.1.

And we claim that C is self-orthogonal. Indeed, for any index sets I, J , we have (C+)I ∼= (C(I))+ and

(C+)J ∼= (C(J))+ , by ([7], Proposition 1.2.7). Since SC ∈ gen∗ S , we have isomorphisms ExtiS((C
+)I , (C+)J ) ∼=

ExtiS((C
(I))+, (C(J))+) ∼= TorSi ((C

(J))+, C(I))+ ∼= (TorSi ((C
(J))+, C)+)I ∼= (((ExtIS(C,C

(J)))+)+)I ∼= (((ExtiS(C,

C)(J))+)+)I = 0, by ([7], Theorem 3.2.1) and ([7], Theorem 3.2.15). And we get our claim.

By Proposition 3.1(2) and Lemma 3.3(1), we have AC(S) = Y
SC+ = ⊥(

∏
i∈N (Li)

+∏
C+). On the other hand, by ([7], P74 exercises 4), we have (

∏
i∈N (Li)

+)
∏
C+ ∼= (

⨿
i∈N Li)

⨿
C)+ = M+ .

Hence, AC(S) =
⊥(M+). 2

Corollary 3.5 Let SCR be a semidualizing module, we have

(1) BC(R) is a coresolving preenvelope class with an Ext-projecive generator C ;

(2) AC(S) is a resolving precover class with an Ext-injective cogenerator C .

Proof We have only to show (1). The proof of (2) is similar. By Proposition 3.1, BC(R) = C⊥ ∩ Gen∗ C .

Clearly, C is an Ext-projective generator of BC(R). By Theorem 3.4, we have that BC(R) = N⊥ is a coresolv-

ing subcategory. Therefore, (⊥BC(R),BC(R)) is a complete cotorsion pair by ([9], Theorem 3.2.1). Therefore

we get that BC(R) is a preenvelope class. 2

Proposition 3.6 Let C be a coresolving preenvelope class with an Ext-projective generator C ∈ gen∗R , then

C is a semidualizing module.

Proof Since C is an Ext-projective R -module, we have that C is self-orthogonal. Let g0 : R → T0 be a

C -preenvelope of R , and i : R→ E be the injective envelope of R . Since C is a coresolving subcategory, there

is a morphism g : T0 → E such that i = gg0 . And so g0 is a monomorphism. Since C is an Ext-projective

generator, there is an exact sequence: 0 → Y0 → C ′
0

α−→ T0 → 0 with C ′
0 ∈ AddR C and Y0 ∈ C . There is a

morphism f0 ∈ HomR(R,C
′
0) such that g0 = αf0 . Note that g0 is a C -preenvelope and a monomorphism, so

is f0 . Since R is finitely generated, there exists an R -module C0 ∈ addR C , such that Imf0 ⊆ C0 . And hence

we have an exact sequence 0 → R
f0−→ C0 → K0 → 0. For any X ∈ C , applying the functor HomR(−, X) to
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this sequence, we get an exact sequence:

0 → HomR(K0, X) → HomR(C0, X)
f0

∗

−→ HomR(R,X) → Ext1R(K0, X) → Ext1R(C0, X).

f0
∗ is an epimorphism since f0 is a C -preenvelope of R . And Ext1R(C0, X) = 0, because C is Ext-projective.

And so Ext1R(K0, X) = 0. Hence Ext1R(K0, C) = 0. And that R,C0 ∈ ⊥C implies K0 ∈ ⊥C . Since C0 ∈ gen∗R ,

it is easy to show that K0 ∈ gen∗R . Continuing this process, we have R ∈ cogen∗ C . 2

We call a semidualizing module C minimal, if every proper direct summand of C is not a semidualizing

module. Clearly, every basic Wakamatsu tilting module over an Artin algebra is a minimal semidualizing

module.

Theorem 3.7 Let C be an R -module with S = EndCR ; we have:

(1) C → BC(R) gives a one to one correspondence between the isomorphism classes of minimal semidual-

izing modules and maximal classes among coresolving preenvelope classes of ModR with the same Ext-projective

generators in gen∗R .

(2) C → AC(S) gives a one to one correspondence between the isomorphism classes of minimal semid-

ualizing modules and maximal classes among resolving precover classes of ModS with the same Ext-injective

cogenerators in gen∗ S .

Proof We only show (1). The proof of (2) is similar. We define a map ϕ : C → BC(R). By Corollary 3.5, ϕ is

a map between the isomorphism classes of minimal semidualizing modules and coresolving preenvelope classes

of ModR with Ext-projective generators in gen∗R . On the other hand, for any coresolving preenvelope class C
with an Ext-projective generator in gen∗R , we define ψ : C → C , where C is an Ext-projective generator, such

that there is no proper direct summand T of C which is also an Ext-projective generator of C . By Proposition

3.6, ψ is well-defined. Furthermore, it follows that ψϕ(C) = C for any minimal semidualizing module C .

Let C be a coresolving subcategory with an Ext-projective generator in gen∗R . Then C ⊆ ϕψ(C), by
Proposition 3.1. Thus, for any minimal semidualizing module C , BC(R) is a maximal class among those core-

solving subcategories with the same Ext-projective generator C . Conversely, if C is a maximal class among those

coresolving preenvelope classes of ModR with the same Ext-projective generator in gen∗R , then C = ϕψ(C).
And we complete our theorem. 2

The following corollary follows directly from Theorem 3.7.

Corollary 3.8 Let R be a noetherian ring and C an R-module with S = EndCR . If S is also a noetherian

ring, then:

(1) C → BC(R) gives a one to one correspondnce between the isomorphism classes of minimal semidual-

izing modules and maximal classes among those coresolving preenvelope classes of ModR with the same finitely

generated Ext-projective generators.

(2) C → AC(S) gives a one to one correspondence between the isomorphism classes of minimal semid-

ualizing modules and maximal classes among those resolving precover classes of ModS with the same finitely

generated Ext-injective cogenerators.
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