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Abstract: In this article, given a category X , with Ω the subobject classifier in SetX
op

, we set up a one-to-one

correspondence between certain (i) classes of X -morphisms, (ii) Ω-subpresheaves, (iii) Ω-automorphisms, and (iv)

universal operators.

As a result we give necessary and sufficient conditions on a morphism class so that the associated (i) Ω-subpresheaf

is a (weak) Grothendieck topology, (ii) Ω-automorphism is a (weak) Lawvere–Tierney topology, and (iii) universal

operation is an (idempotent) universal closure operation.

We also finally give several examples of morphism classes yielding (weak) Grothendieck topologies, (weak)

Lawvere–Tierney topologies, and (idempotent) universal closure operations.

Key words: (Preordered) morphism class, Ω-subpresheaf, (weak) Grothendieck topology, Ω-automorphism, (weak)

Lawvere–Tierney topology, universal operation, (idempotent) universal closure operation

1. Morphism classes, subpresheaves of Ω

Let X be a category. The collection, X1/x , of all the X -morphisms with codomain x is a preordered class by

the relation f ≤ g if there exists a morphism h such that f = g ◦ h . The equivalence relation generated by

this preorder is f ∼ g if f ≤ g and g ≤ f . For a class M of X -morphisms, we write f ∼ M whenever f ∼ m

for some m ∈ M . We say M is saturated provided that f ∈ M whenever f ∼ M .

Denoting the domain and codomain of a morphism f by d0f and d1f respectively, recall that a sieve in X
[5], generated by one morphism f , is called a principal sieve and is denoted by ⟨f⟩ , so ⟨f⟩ = {f◦g | d1g = d0f} ;
and for a sieve S on x and a morphism f with d1f = x , S · f = {g : f ◦ g ∈ S} . Also recall that X is said to

be M-wellpowered [2], provided that for each object x ∈ X , {[f ] | d1f = x, f ∈ M} is a set, where [f ] is the

class of all morphisms with codomain x isomorphic to f .

We say X is weakly M-wellpowered provided that for each x ∈ X , {⟨f⟩ | d1f = x, f ∈ M} is a set.

Obviously X is weakly M-wellpowered if it is M-wellpowered.

For a class S ⊆ X1/x , and a morphism f with codomain x , the class of all the largest elements w in

X1/d0f satisfying f ◦ w ≤ s for some s ∈ S is denoted by (f ⇒ S). Obviously for a sieve S on x , see [5],

(f ⇒ S) is just the class of maximums of S · f .
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Definition 1.1 A class M of X−morphisms is said to satisfy the principality property, if for each x , f ∈ X1/x

and m ∈ M/x , (f ⇒ ⟨m⟩) ∩M/d0f ̸= ∅ .

The principality property is equivalent to the fact that for each m ∈ M/x and f with codomain x ,

⟨m⟩ · f has a maximum in M/d0f , or equivalently ⟨m⟩ · f = ⟨n⟩ for some n in M/d0f .

If X1 satisfies the principality and is weakly X1−wellpowered, the map P : X op → Set with P (x) =

{⟨f⟩|f ∈ X1/x} and for f : y → x , P (f) : P (x) → P (y) the function taking ⟨g⟩ to ⟨g⟩ · f is a functor.

Proposition 1.2 Suppose that X1 satisfies the principality property and X is weakly X1−wellpowered:

(a) Every class M of morphisms of X that satisfies the principality property yields a subobject M : X op → Set

of P .

(b) Every subobject M of P yields a class M of morphisms of X that satisfies the principality property and

is saturated.

(c) Saturated classes M that satisfy the principality property correspond bijectively to subfunctors of P .

Proof (a) Define M to take each object x ∈ X to M(x) = {⟨m⟩ | d1m = x,m ∈ M} and each morphism

f : x → y to M(f) : M(y) → M(x) taking ⟨m⟩ , with m ∈ M , to ⟨m⟩ · f . It follows easily that M is a

subobject of P .

(b) Define M =
∪

x∈X0
{f | ⟨f⟩ ∈ M(x)} .

(c) Follows easily from parts (a) and (b). 2

Definition 1.3 Let M be a class of X -morphisms. M is said to have:

(a) enough retractions, if for all objects x in X , M/x has a retraction.

(b) almost enough retractions, if for all objects x in X , M/x = ∅ or M/x has a retraction.

(c) the identity property if for all objects x in X and for all sieves S on x whenever MS = {f ∈ X1/x | (f ⇒
S) ∩M/d0f ̸= ∅} has a maximum in M/x , then MS ∋ 1x .

(d) the maximum property if for all objects x in X and for all sieves S on x , whenever S ∩M/x ̸= ∅ , then
S has a maximum in M/x .

(e) the quasi-meet property if for all objects x in X and m1,m2 ∈ M/x , there exists n ∈ (m1 ⇒ ⟨m2⟩) such

that m1 ◦ n ∼ M/x .

Remark 1.4 In the above Definition:

(a) Obviously (a) implies (b). Also (d) implies (b), because if M/x ̸= ∅ , then Tx ∩M/x ̸= ∅ and therefore

there is m ∈ M/x such that Tx = ⟨m⟩ . But then m is a retraction and is in M/x . Finally we note that

principality and (d) imply (e). To see this, suppose m1,m2 ∈ M/x . By principality, there is n ∈ M/x

such that ⟨m2⟩ ·m1 = ⟨n⟩ . It then follows that ⟨m1⟩ ∩ ⟨m2⟩ = ⟨m1 ◦ n⟩ . Setting S = ⟨m1⟩ ∪ ⟨m2⟩ , (d)
gives m1 ≤ m2 or m2 ≤ m1 . So m1 ◦ n ∼ m1 or m1 ◦ n ∼ m2 , yielding the required conclusion.
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(b) Note that if there exists n in (m1 ⇒ ⟨m2⟩) such that m1 ◦ n ∼ M/x , then every k in (m1 ⇒ ⟨m2⟩)
satisfies m1 ◦ k ∼ M/x . Also if n1 ∈ (m1 ⇒ ⟨m2⟩) and n2 ∈ (m2 ⇒ ⟨m1⟩) , then m1 ◦ n1 ∼ m2 ◦ n2 .

Let X be a small category and Ω be the subobject classifier of SetX
op

, see [5], we have:

Definition 1.5 A subobject A : X op → Set of Ω in SetX
op

is said to be:

(a) a filter provided that for each object x in X , A(x) is a filter (i.e. for 2 sieves S1, S2 on x , if S1 ⊆ S2

and S1 ∈ A(x) then S2 ∈ A(x)).

(b) closed under binary intersection provided that for each object x in X , A(x) is closed under binary

intersection (i.e. for 2 sieves S1, S2 on x , if S1, S2 ∈ A(x) then S1 ∩ S2 ∈ A(x)).

Given a subobject A of Ω, each sieve S on an object x yields a sieve SA on x given by SA = {f | d1f =

x, S ·f ∈ A(d0f)} . Since SA ·f = (S ·f)A , Â defined to take each object x to Â(x) = {SA | S is a sieve on x}

and each morphism g : x → y to Â(g) : Â(y) → Â(x) taking SA to SA · g is easily seen to be a subobject of Ω.

Lemma 1.6 Let S be a sieve on x in X . Whether M is a collection of morphisms that satisfies the principality

property and M is the associated presheaf, or M is a subobject of P and M is the associated collection of

morphisms, we have:

SM = {f ∈ X1/x | (f ⇒ S) ∩M/d0(f) ̸= ∅} .

Proof Follows from straightforward calculations. 2

For presheavesA,B : X op // Set, we write A ≤ B if for all x ∈ X , A(x) ⊆ B(x) and we write A ∧B

for pointwise intersection, i.e. (A ∧B)(x) = A(x) ∩B(x).

With T : X op → Set the terminal object defined by T (x) = {Tx} , where Tx is the maximal sieve on x ,

we have:

Theorem 1.7 If M satisfies the principality property, X is weakly M−wellpowered and M is the associated

presheaf, or if M is a subobject of P and M is the associated saturated class, then:

(a) T ≤ M if and only if M has enough retractions;

(b) M̂ ∧ T ≤ M if and only if M has almost enough retractions;

(c) M̂ ∧M ≤ T if and only if M has the identity property;

(d) M is a filter if and only if M has the maximum property;

(e) M is closed under binary intersection if and only if M has the quasi-meet property.

Proof

(a) T ≤ M if and only if for each x in X , Tx ∈ M(x) if and only if there is f ∈ M/x such that ⟨f⟩ = Tx

if and only if there is f ∈ M/x such that 1x ∈ ⟨f⟩ if and only if there is f ∈ M/x such that f is a retraction

if and only if M has enough retractions.

(b) First notice that M̂(x) ∩ T (x) ̸= ∅ if and only if Tx ∈ M̂(x) if and only if there is a sieve S on x

such that Tx = SM if and only if there is S such that S ∈ M(x) if and only if M/x ̸= ∅ . Now M̂ ∧ T ≤ M
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if and only if for each x , M̂(x) ∩ T (x) ⊆ M(x) if and only if M̂(x) ∩ T (x) = ∅ or Tx ∈ M(x) if and only if

M/x = ∅ or M/x contains a retraction if and only if M has almost enough retractions.

(c) First note that SM ∈ M̂(x) ∩ M(x) if and only if there is m ∈ M/x such that SM = ⟨m⟩ if and

only if SM has a maximum in M/x . Now M̂ ∧M ≤ T if and only if for each x , M̂(x) ∩M(x) ⊆ T (x) if and

only if SM ∈ M̂(x) ∩M(x) implies SM = Tx if and only if SM has a maximum in M/x implies SM ∋ 1x , by

Lemma 1.6, if and only if M has the identity property.

(d) M is a filter if and only if for each x ∈ X , ⟨m⟩ ∈ M(x), and ⟨m⟩ ⊆ S implies S ∈ M(x) if and only

if there is m ∈ M such that ⟨m⟩ ⊆ S implies S = ⟨n⟩ for some n ∈ M if and only if S ∩M ̸= ∅ implies S

has a maximum in M if and only if M has the maximum property.

(e) M is closed under binary intersection if and only if for each x ∈ X , ⟨m⟩ , ⟨n⟩ in M(x) implies

⟨m⟩ ∩ ⟨n⟩ ∈ M(x) if and only if m,n ∈ M/x implies there exists f ∈ (m ⇒ ⟨n⟩), since M is a functor, such

that m ◦ f ∼ M/x if and only if M has the quasi-meet property. 2

Corollary 1.8 Let M be a class of X -morphisms satisfying the principality property. The induced Ω-subobject

M is a (weak) Grothendieck topology ([3, 5]) if and only if M satisfies ((a) and (d)) (a), (c), and (d) of

Definition 1.3.

Proof Follows from Remark 1.4 and Theorem 1.7. 2

2. Subpresheaves of Ω , automorphisms on Ω

With X a small category, we know subobjects i : M // // Ω in SetX
op

are in one-to-one correspondence with

Ω-automorphisms j via the following pullback square, see [5].

M

p.b.

��

i

��

!M // 1��

t

��
Ω

j
// Ω

(I)

Note that for a given M , j is defined by the maps jx that take each sieve S on x to SM ; and for a

given j , M is defined by M(x) = {S : jx(S) = Tx} .
With M and j corresponding to each other, we obviously have jx(S) = Tx if and only if S ∈ M(x).

For parallel morphisms Φ,Ψ : A → Ω in SetX
op

define Φ ⪯ Ψ if Φx(s) ⊆ Ψx(s) for all x in X and

s ∈ A(x). The meet Φ ∧Ψ = ∧ ◦ ⟨Φ,Ψ⟩ , where ∧ : Ω × Ω → Ω is the internal meet (see [5]), is obviously the

one induced by the partial order ⪯ .

Theorem 2.1 With j : Ω // Ω and subobject M of Ω corresponding to each other, we have:

(a) j ◦ t = t if and only if T ≤ M ;

(b) j ⪯ j ◦ j if and only if M̂ ∧ T ≤ M ;

(c) j ◦ j ⪯ j if and only if M̂ ∧M ≤ T ;
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(d) j ◦ ∧ ⪯ ∧ ◦ (j × j) if and only if M is a filter;

(e) ∧ ◦ (j × j) ⪯ j ◦ ∧ if and only if M is closed under binary intersection.

Proof

(a) Suppose that j ◦ t = t . Let x ∈ X , so jx(Tx) = Tx and so by the above statements Tx ∈ M(x).

Suppose that T ≤ M . It is enough to show that jx(Tx) = Tx for all x ∈ X . Since Tx ∈ M(x) for all

x ∈ X , the result follows.

(b) Suppose that j ⪯ j◦j . For x ∈ X , if SM = Tx for a sieve S on x , then S ∈ M(x). Hence jx(S) = Tx

and since by assumption jx(S) ⊆ jx(jx(S)), jx(jx(S)) = Tx . So jx(S) ∈ M(x) and since jx(S) = SM , the

result follows.

Suppose that M̂ ∧ T ≤ M . For x ∈ X and S ∈ Ω(x), if f ∈ jx(S), then S · f ∈ M(d0f), and so

jd0f (S ·f) = Td0f . Since jd0f (S ·f) ∈ M̂(d0f), by assumption jd0f (S ·f) ∈ M(d0f) and since SM ·f = (S ·f)M ,

jx(S) · f ∈ M(d0f) and this means f ∈ jx(jx(S)).

(c) Suppose that j◦j ⪯ j . For x ∈ X and S ∈ Ω(x), if SM ∈ M(x) then S(SM ) = Tx , since S(SM ) ⊆ SM ,

SM = Tx .

Suppose that M̂ ∧M ≤ T . Let x ∈ X and S ∈ Ω(x). If f ∈ jx(jx(S)), then jx(S) · f ∈ M(d0f) and so

jd0f (S ·f) ∈ M(d0f). Since jd0f (S ·f) ∈ M̂(d0f), by assumption jd0f (S ·f) = Td0f . Therefore S ·f ∈ M(d0f),

and thus f ∈ jx(S).

(d) Suppose that j ◦ ∧ ⪯ ∧ ◦ (j × j). Let x ∈ X and S1, S2 ∈ Ω(x). If S1 ⊆ S2 and S1 ∈ M(x), then

jx(S1 ∩ S2) = jx(S1) = Tx and so by assumption jx(S2) = Tx . Hence S2 ∈ M(x).

Suppose that M is a filter. Let x ∈ X and S1, S2 ∈ Ω(x). If f ∈ jx(S1∩S2), then (S1∩S2)·f ∈ M(d0f).

So (S1 · f) ∩ (S2 · f) ∈ M(d0f). Since (S1 · f) ∩ (S2 · f) ⊆ S1 · f and M is a filter, S1 · f ∈ M(d0f). Similarly

S2 · f ∈ M(d0f). Therefore f ∈ jx(S1) ∩ jx(S2).

(e) Suppose that ∧ ◦ (j × j) ⪯ j ◦ ∧ . Let x ∈ X and S1, S2 ∈ Ω(x). If S1, S2 ∈ M(x), then

jx(S1) = jx(S2) = Tx . So by assumption jx(S1 ∩ S2) = Tx and therefore S1 ∩ S2 ∈ M(x).

Suppose that M is closed under binary intersection. Let x ∈ X and S1, S2 ∈ Ω(x). If f ∈ jx(S1)∩jx(S2),

then S1 · f and S2 · f are in M(d0f). So by assumption (S1 · f) ∩ (S2 · f) ∈ M(d0f), and therefore

(S1 ∩ S2) · f ∈ M(d0f). Hence f ∈ jx(S1 ∩ S2). 2

Corollary 2.2 Let M be a class of X -morphisms that satisfies the principality property. The induced map

j : Ω // Ω is a (weak) Lawvere–Tierney topology ([3, 5]) if and only if M satisfies ((a) and (d)) (a), (c),

and (d) of Definition 1.3.

Proof Follows from Remark 1.4 and Theorems 1.7 and 2.1. 2

3. Automorphisms on Ω , universal operations

We call a collection of functions−X : Sub(X) // Sub(X) indexed on objects X an operation. An operation

is called universal if for each arrow f : x // y and each α ∈ Sub(X), f−1(α) = f−1(α). A universal (or

natural) closure operation, see [4, 5], is a universal operation that satisfies extensive and monotone properties.
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It is known that, in any topos, the Lawvere–Tierney topologies correspond to universal closure operations,

see [4, 5].

This correspondence also holds between arrows j :Ω
. // Ω and universal operations “−”. Here is how

this correspondence works. For a given j : Ω // Ω, for each X ,− : Sub(X) // Sub(X) is defined by the

following pullbacks:

A

p.b.

��

α

��

!A // 1��

t

��
X

α̂
// Ω

(I)

Ā

p.b.

��

ᾱ

��

!Ā // 1��

t

��
X

j◦α̂
// Ω

(II)

where α̂c(x) = {f : a → c ∈ X1 | X(f)(x) ∈ αa(A(a))} and we have ˆ̄α = j ◦ α̂ .
Conversely given a universal operation “−”, the Ω-automorphism j is obtained by the following pullback.

1̄

p.b.

��

t̄
��

!1̄ // 1��

t

��
Ω

j
// Ω

(III)

Now if j induces the universal operation “−” and this operation induces the map j′ , then j′ = ˆ̄t = j ◦ t̂
and since t̂ = 1, j′ = j . Conversely, if the universal operation “−” induces the map j and this map induces

the universal operation “˜”, then for any subobject α of any X we have, α̃ = (j ◦ α̂)−1(t) = α̂−1(j−1(t)) =

α̂−1(t̄) = α̂−1(t) = ᾱ .

Lemma 3.1 Let X be an object in SetX
op

. We have:

(a) For 2 subobjects α : A ↣ X and β : B ↣ X of X ,

α ≤ β if and only if α ∧ β = α .

(b) For 2 parallel morphisms Φ,Ψ : X → Ω in SetX
op

,

Φ ⪯ Ψ if and only if Φ ∧Ψ = Φ .

Proof

(a) Suppose that α ≤ β . So there exists γ such that β ◦ γ = α . Since β is a mono, the following is a

pullback square.

A

p.b.1

��

γ // B��

β

��
A //

α
// X

Hence α ∧ β = α .

Suppose that α ∧ β = α . We have α = α ∧ β = β ◦ β−1(α). So α ≤ β .

(b) Suppose that Φ ⪯ Ψ for 2 parallel morphisms Φ,Ψ : X → Ω. Therefore (Φ∧Ψ)x(s) = Φx(s)∩Ψx(s)

and since Φx(s) ⊆ Ψx(s), Φx(s) ∩Ψx(s) = Φx(s). Thus Φ ∧Ψ = Φ.

Suppose that Φ ∧ Ψ = Φ. For each object x ∈ X and sieve S ∈ Ω(x), (Φ ∧ Ψ)x(S) = Φx(S), i.e.

Φx(S) ∩Ψx(S) = Φx(S). So Φx(S) ⊆ Ψx(S) and therefore Φ ⪯ Ψ. 2
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Lemma 3.2 Let the morphism j : Ω // Ω and the universal operation “−” correspond to each other. For

each object X in SetX
op

and α, β ∈ Sub(X) , we have:

(a) α̂ ∧ β = α̂ ∧ β̂ ;

(b) α̂ ∧ β = j ◦ (α̂ ∧ β̂) ;

(c) ̂̄α ∧ β̄ = (j ◦ α̂) ∧ (j ◦ β̂) .

Proof

(a) Using the pullbacks:

A

p.b.

��

α

��

!A // 1��

t

��
X

α̂
// Ω

B

p.b.

��

β

��

!A // 1��

t

��
X

β̂

// Ω

A ∩B

p.b.

��

π1

��

// π2 // B��

β

��
A //

α
// X

and that α ∧ β = α ◦ π1 = β ◦ π2 , one can show the following is a pullback square.

A ∩B

///

��

α◦π1

��

! // 1��

⟨t,t⟩
��

X
⟨α̂,β̂⟩

// Ω× Ω

The result then follows from the fact that the classifying map of ⟨t, t⟩ is the internal meet ∧ : Ω×Ω → Ω.

(b) Since the classifying map of α ∧ β is j ◦ (α̂ ∧ β), the result follows by part (a).

(c) Follows from part (a) and the equality ˆ̄α = j ◦ α̂ .
2

Lemma 3.3 Let “−” be a universal operation.

(a) Let X ∈ SetX
op

and α, β ∈ Sub(X) . Then α ≤ β if and only if α̂ ⪯ β̂ ;

(b) Let X ∈ SetX
op

. For all α, β ∈ Sub(X) , (α ≤ β ⇒ ᾱ ≤ β̄) if and only if for all α, β ∈ Sub(X) ,

α ∧ β ≤ ᾱ ∧ β̄ .

Proof

(a) Using the previous Lemma, α ≤ β if and only if α ∧ β = α if and only if α̂ ∧ β = α̂ if and only if

α̂ ∧ β̂ = α̂ if and only if α̂ ⪯ β̂ .

(b) Suppose that for all α, β , α ≤ β ⇒ ᾱ ≤ β̄ . Given α, β , since α ∧ β ≤ α and α ∧ β ≤ β , by

assumption α ∧ β ≤ ᾱ and α ∧ β ≤ β̄ . Hence α ∧ β ≤ ᾱ ∧ β̄ .

Conversely, suppose for all α, β , α ∧ β ≤ ᾱ ∧ β̄ . Given α, β , such that α ≤ β , we have α ∧ β = α and

so α ∧ β = ᾱ . Hence ᾱ ≤ ᾱ ∧ β̄ . Since ᾱ ∧ β̄ ≤ β̄ , ᾱ ≤ β̄ . 2
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Theorem 3.4 Let the morphism j : Ω // Ω and the universal operation “−” correspond to each other. We

have:

(a) For all X in SetX
op

and α ∈ Sub(X) , α ≤ ᾱ if and only if t ≤ t̄ if and only if j ◦ t = t ;

(b) For all X in SetX
op

and α ∈ Sub(X) , ᾱ ≤ ¯̄α if and only if t̄ ≤ ¯̄t if and only if j ⪯ j ◦ j ;

(c) For all X in SetX
op

and α ∈ Sub(X) , ¯̄α ≤ ᾱ if and only if ¯̄t ≤ t̄ if and only if j ◦ j ⪯ j ;

(d) For all X in SetX
op

and α, β ∈ Sub(X) , α ∧ β ≤ ᾱ ∧ β̄ if and only if ⟨t, t⟩ ≤ ⟨1, t◦!Ω⟩ ∧ ⟨t◦!Ω, 1⟩ if and

only if j ◦ ∧ ⪯ ∧ ◦ (j × j) ;

(e) For all X in SetX
op

and α, β ∈ Sub(X) ᾱ ∧ β̄ ≤ α ∧ β if and only if ⟨1, t◦!Ω⟩ ∧ ⟨t◦!Ω, 1⟩ ≤ ⟨t, t⟩ if and

only if ∧ ◦ (j × j) ⪯ j ◦ ∧ .

Proof

(a) Suppose that for all X in SetX
op

and α ∈ Sub(X), α ≤ ᾱ . Choose α = t to get the result.

Suppose that t ≤ t̄ . So there is γ : 1 → 1̄ such that t̄ ◦ γ = t . Since j ◦ t̄ = t◦!1̄ , j ◦ t̄ ◦ γ = t◦!1̄ ◦ γ and

so j ◦ t = t ◦ 1 = t .

Suppose that j ◦ t = t . Let α : A → X be a subobject of X for some object X . If α̂ is the classifying

map of α , then α̂ ◦ α = t◦!A . So j ◦ α̂ ◦ α = j ◦ t◦!A = t◦!A , i.e. the following square commutes.

A

///

��

α

��

!A // 1��

t

��
X

j◦α̂
// Ω

Since j ◦ α̂ is the classifying map of ᾱ , there exists a unique γ : A → Ā such that ᾱ ◦ γ = α . Thus

α ≤ ᾱ .

(b) To get the first implication, choose α = t .

Suppose that t̄ ≤ ¯̄t . Since ˆ̄t = j and ˆ̄̄t = j ◦ j , the result follows from Lemma 3.3-(a).

Suppose that j ⪯ j ◦ j . Let X be an object in SetX
op

and α be in Sub(X). For each object x in X
and S ∈ Ω(x), α̂x(S) ∈ Ω(x) and so jx(α̂x(S)) ⊆ (jx ◦ jx)(α̂x(S)). Thus (j ◦ α̂)x(S) ⊆ (j ◦ j ◦ α̂)x(S) and

therefore j ◦ α̂ ⪯ j ◦ j ◦ α̂ . Hence ˆ̄α ⪯ ˆ̄̄α and so by Lemma 3.3-(a), we have ᾱ ≤ ¯̄α .

(c) The proof follows by arguments similar to part (b).

(d) Suppose that for all X in SetX
op

and α, β ∈ Sub(X), α ∧ β ≤ ᾱ ∧ β̄ . We know ⟨t, t⟩ =

⟨t◦!Ω, 1⟩ ∧ ⟨1, t◦!Ω⟩ . The result then follows by assumption.

Suppose that ⟨t, t⟩ ≤ ⟨1, t◦!Ω⟩ ∧ ⟨t◦!Ω, 1⟩ . Let α = ⟨t◦!Ω, 1⟩ and β = ⟨1, t◦!Ω⟩ . One can easily verify

that α̂ = π1 : Ω× Ω // Ωand β̂ = π2 : Ω× Ω // Ωare the projections, and α∧ β = ⟨t, t⟩ . By assumption,

α ∧ β ≤ ᾱ∧ β̄ . By Lemma 3.3-(a), α̂ ∧ β ⪯ ̂̄α ∧ β̄ . By Lemma 3.2-(b) and (c), j ◦∧◦⟨α̂, β̂⟩ ⪯ ∧◦ (j×j)◦⟨α̂, β̂⟩ .

Since ⟨α̂, β̂⟩ is the identity, the result follows.

Suppose that j ◦ ∧ ⪯ ∧ ◦ (j × j). Let X be an object in SetX
op

and α, β ∈ Sub(X). We have

j ◦ ∧ ◦ ⟨α̂, β̂⟩ ⪯ ∧ ◦ (j × j) ◦ ⟨α̂, β̂⟩ . By Lemma 3.2-(b) and (c), α̂ ∧ β ⪯ ̂̄α ∧ β̄ and by Lemma 3.3-(a),
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α ∧ β ⪯ ᾱ ∧ β̄ .

(e) The proof follows by arguments similar to part (d).

2

Corollary 3.5 Let M be a class of X -morphisms that satisfies the principality property. The induced universal

operation “−” is a universal closure operation if and only if M satisfies (a) and (d) of Definition 1.3. In

addition, “−” is idempotent if and only if M satisfies (c) as well.

Proof Follows from Remark 1.4 and Theorems 1.7, 2.1, and 3.4. 2

4. Examples

Throughout this section, the collection of all the identity morphisms, all the retractions, all the monomorphisms,

all the epimorphisms, and all the isomorphisms, in a category X is denoted by Ids(X ), Ret(X ), Mono(X ),

Epi(X ), and Iso(X ), respectively.

We also assume X is a small category and so for any collection M ⊆ X1 , X is M-wellpowered.

Example 4.1 Let X be a category. Consider M ⊆ Ret(X ) (in particular M = Iso(X ) or M = Ids(X )).

It is easy to verify that the principality property holds if and only if for all morphisms f ∈ X1 , M/d1f ̸= ∅
implies that M/d0f ̸= ∅ ; M has enough retractions if and only if for all objects x ∈ X , M/x ̸= ∅ ; that M
does have almost enough retractions; and that the identity property, the maximum property, and the quasi-meet

property all hold.

Assuming the principality, the induced presheaf M : X op → Set , where for each x , M(x) = {Tx} or

M(x) = ∅ , satisfies all the conditions of Theorem 1.7 but (a). If for all x , M/x ̸= ∅ , then (a) holds, too, and

M is the smallest Grothendieck topology.

With N/x = {f : d1f = x,M/d0f ̸= ∅} , the induced automorphism j : Ω // Ω is obtained by

jx(S) = S ∩ N/x and by Theorem 2.1, we have j = j ◦ j and j ◦ ∧ = ∧ ◦ (j × j) . Since M/x ̸= ∅ is

equivalent to N/x = X1/x , in case for all x , M/x ̸= ∅ , j reduces to the identity Lawvere–Tierney topology.

The induced universal operation “−” on SetX
op

sends a subobjectα : A // X of X to ᾱ : Ā // X,

which is determined for each x , by the inclusion ᾱx : Ā(x) �
� // X(x) , where Ā(x) = {u ∈ X(x) : α̂x(u) ∩

N/x = Tx} =

{
αx(A(x)) if M/x ̸= ∅
∅ if M/x = ∅

. This universal operation satisfies all the properties listed in Theorem

3.4 but (a). In case for all x , M/x ̸= ∅ , then (a) holds too and “−” is isomorphic to the identity universal

closure operation.

As special cases, let X be any small full subcategory of groupoids and M be any collection of morphisms,

or let X be the category of finite ordinals and M ⊆ Epi(X ) = Ret(X ) , or let X be the category Mat , see [1],

and M = Ret(X ) = {A : A is an m× n matrix with rank n} .

Example 4.2 Let X be a category and M ⊆ Epi(X ) be pullback stable. The principality property holds by

pullback stability and the fact that for every m ∈ M/x and f ∈ X1/x , the pullback, f−1(m) , of m along f

is in (f ⇒ ⟨m⟩) . If furthermore M has enough retractions and is weakly closed under composition (i.e. for 2
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composable morphisms f and g , f ◦ g ∼ M), which both hold for M = Epi(X ) , then the identity property as

well as the quasi-meet property hold.

Thus, under the above hypothesis, the induced functor M , map j , and universal operation “−” satisfy

(a), (b), (c), and (e) of Theorems 1.7, 2.1, and 3.4, respectively.

As a special case let X be the full subcategory of Top consisting of finite ordinal topological spaces and

M = Epi(X ) .

Example 4.3 Let X be a category and M ⊆ Mono(X ) be pullback stable, which is the case for M =

Mono(X ) . The principality property holds by pullback stability and the fact that for every m ∈ M/x and

f ∈ X1/x , f−1(m) is in (f ⇒ ⟨m⟩) . If furthermore M has enough retractions and is weakly closed under

composition (i.e. for 2 composable morphisms f and g , f ◦ g ∼ M), which holds for M = Mono(X ) , then

the identity property and the quasi-meet property hold.

Under the above hypothesis, the induced M , j , and “−” satisfy (a), (b), (c), and (e) of Theorems 1.7,

2.1, and 3.4, respectively.

As special cases let X be the full subcategory of Top consisting of finite ordinal topological spaces

and M = Mono(X ) , or let X be the category Mat , see [1], and M = Mono(X ) = {A : A is an m ×
n matrix with rank m} .

Example 4.4 Let (X,≤) be a preordered set and X = C(X,≤) be the category it induces, see [1]. We know

in case x ≤ y , Hom(x, y) has a unique morphism, which we denote by (x, y) . It is not hard to see that

⟨(a, x)⟩ · (b, x) = {(c, b) : c ≤ b and c ≤ a} and that ((b, x) ⇒ ⟨(a, x)⟩) ̸= ∅ if and only if a meet a ∧ b exists, in

which case (a ∧ b, b) ∈ ((b, x) ⇒ ⟨(a, x)⟩) or equivalently ⟨(a, x)⟩ · (b, x) = ⟨(a ∧ b, b)⟩ .
Let M be a class of morphisms of X . One can verify that M satisfies the principality property if

and only if for each (a, x) ∈ M/x and (b, x) ∈ X1/x , a meet a ∧ b exists and (a ∧ b, b) ∈ M/b ; M
has enough retractions (almost enough retractions) if and only if for each x , M/x ∋ 1x (M/x = ∅ or

M/x ∋ 1x ); M has the identity property if and only if for all x and for all sieves S on x , if the set MS =

{(a, x) | ∃ya ≤ a ∋: (ya, a) ∈ M, (ya, x) ∈ S and ∀y ≤ a ((y, x) ∈ S ⇒ y ≤ ya)} has a maximum in M , then

it contains 1x ; M has the maximum property if and only if for all x , (M/x,≤op) is weakly well-ordered (i.e.

every nonempty subset of M/x has a maximum) and also for all x and (a, x) ∈ X1/x , either there is (b, x) in

M/x such that b ∼= a or for all (b, x) ∈ M/x , b ≥ a ; and finally M has the quasi-meet property if and only

if M has local binary meet (i.e. for all objects x , M/x has binary meet).

In case (X,≤) is a partially ordered set, every maximum or meet that exists is unique and if (X,≤) is

a lattice then every binary meet exists and is unique.

As special cases consider the following examples.

(a) Let (X,≤) be any partially ordered set such that every nonempty subset of X has a maximum (≤op

is then indeed a total order and (X,≤op) is well-ordered). Obviously every sieve on an object x ∈ X is principal

and ⟨(b, x)⟩ · (a, x) = ⟨(a ∧ b, a)⟩ . For M ⊆ X1 , M⟨(b,x)⟩ = {(a, x) | (a ∧ b, a) ∈ M} . Now suppose for all x ,

M/x ̸= ∅ and for a ≤ b ≤ x , (a, x) ∈ M if and only if (a, b) ∈ M and (b, x) ∈ M . One can then verify that

M satisfies the principality as well as all the properties listed in Definition 1.3; and that ⟨(a, x)⟩M = ⟨(â, x)⟩ ,
where â ≥ a is the largest element of X with (a, â) ∈ M .

So by Theorems 1.7, 2.1, and 3.4, the induced presheaf M , where M(x) = {⟨(a, x)⟩ : (a, x) ∈ M} ,
is a Grothendieck topology; the induced j , where jx(⟨(a, x)⟩) = ⟨(â, x)⟩ is a Lawvere–Tierney topology; and
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the induced universal operation “−”, which takesα : A // // X to ᾱ : Ā // // X , where ᾱx : Ā(x) �
� // X(x)

is the inclusion with Ā(x) = {u : (ẋ, x) ∈ M where ẋ ≤ x is the largest with X(ẋ, x)(u) ∈ αẋ(Aẋ)} , is an

idempotent universal closure operation.

As a special case one can take X = {· · · ,−3,−2,−1} in the usual order and M/n = {(k, n)|−5 ≤ k ≤ n}
for −5 ≤ n ≤ −1 , M/n = {(n, n)} otherwise.

(b) With N the set of natural numbers and ≤ the usual order, let X = C(N,≤op) . In this category all

the sieves are principal. For each n , set M/n = {1n, fn} , where fn ∈ HomX (n + 1, n) . It is not hard to

verify that M has the principality property and satisfies all the conditions of Definition 1.3 except the identity

property. The latter property does not hold, since if S = ⟨fn ◦ fn+1⟩ is a sieve on n , then SM = ⟨fn⟩ has the

maximum fn ∈ M/n but S does not have a maximum in M/n .

The induced functor M , where M(n) = {Tn, ⟨fn⟩} , the induced map j that sends each member of M(n)

to the total sieve and for m,n ∈ N , jn(⟨fn ◦ fn+1 ◦ . . . ◦ fn+m⟩) = ⟨fn ◦ fn+1 ◦ . . . ◦ fn+m−1⟩ and the induced

universal operation “−”, satisfy (a), (b), (d), and (e) of Theorems 1.7, 2.1, and 3.4, respectively. So M is a

weak Grothendieck topology and j is a weak Lawvere–Tierney topology, see [3].

(c) Let X = C(X,≤) , where X = {n−1
n | n ∈ N} ∪ {1} is the semilattice in the usual order. All the

sieves are principal except S = {(n−1
n , 1) | n ≥ 1} = T1 − {(1, 1)} , and we have the following.

⟨(x, t)⟩ · (y, t) =

{
⟨(x, y)⟩ if x < y

Ty if x ≥ y
and S · (y, 1) =

{
Ty if y < 1

S if y = 1

(1) Set M/t = {(x, t) | x ∈ X, 4
5 ≤ x ≤ t} for 4

5 < t ∈ X and M/t = {1t} for t ≤ 4
5 . We have the

following.

⟨(x, t)⟩M =

{
⟨(x, t)⟩ if x < 4

5

Tt if x ≥ 4
5

and SM = S

(2) Set M/t = {(x, t) | x ∈ X, 0 ≤ x ≤ t} for 4
5 ≥ t ∈ X and M/t = {1t} for t > 4

5 . Denoting by

x ∨ ( 45 ) the maximum of x and 4
5 , we have:

⟨(x, t)⟩M =

{
⟨(x ∨ ( 45 ), t)⟩ if t >

4
5

Tt if t ≤ 4
5

and SM = S .

It is then easy to see that in both cases M has the principality property and satisfies all the properties listed

in Definition 1.3. So by Theorems 1.7, 2.1, and 3.4, M is a Grothendieck topology, j is a Lawvere–Tierney

topology, and “−” is an idempotent universal closure operation.

(d) Let X = {x0, x1, x2, x3, x4, x5} with x1 ≤ x0 , x2 ≤ x1 , x3 ≤ x2 , x4 ≤ x2 , and x5 ≤ x3 . Then

the category X is generated by the morphisms f0 : x1 // x0, f1 : x2 // x1, f2 : x3 // x2, f3 : x4 // x2,

and f4 : x5 // x3.

Now let M/x0 = {1x0 , f0, f0 ◦ f1} , M/x1 = {1x1 , f1} , M/x2 = {1x2} , M/x3 = {1x3 , f4} , M/x4 =

{1x4
} , and M/x5 = {1x5

} .
It is easy to see that M satisfies the principality property as well as all the properties listed in Definition

1.3. Hence the induced functor M , where M(x0) = {Tx0 , ⟨f0⟩, ⟨f0◦f1⟩} , M(x1) = {Tx1 , ⟨f1⟩} , M(x2) = {Tx2} ,
M(x3) = {Tx3 , ⟨f4⟩} , M(x4) = {Tx4} , and M(x5) = {Tx5} , is a Grothendieck topology, j is a Lawvere–Tierney

topology, and “−” is an idempotent universal closure operation.
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Example 4.5 Let X be the category generated by the morphisms w
k // z, z

g // y, z
h // y, y

f // x,

and w
n // x, with f ◦ g = f ◦h and g ◦k = h ◦k . Set M = {1x, 1y, 1z, 1w, f, k} . It is easy to see that M has

the principality property and satisfies all the conditions of Definition 1.3; thus, M is a Grothendieck topology,

j is a Lawvere–Tierney topology, and “−” is an idempotent universal closure operation.
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