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Abstract: In this article, given a category X, with  the subobject classifier in Set“\mp7 we set up a one-to-one
correspondence between certain (i) classes of X -morphisms, (ii) Q-subpresheaves, (iii) Q-automorphisms, and (iv)
universal operators.

As a result we give necessary and sufficient conditions on a morphism class so that the associated (i) Q-subpresheaf
is a (weak) Grothendieck topology, (ii) Q-automorphism is a (weak) Lawvere-Tierney topology, and (iii) universal
operation is an (idempotent) universal closure operation.

We also finally give several examples of morphism classes yielding (weak) Grothendieck topologies, (weak)

Lawvere-Tierney topologies, and (idempotent) universal closure operations.
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Lawvere-Tierney topology, universal operation, (idempotent) universal closure operation

1. Morphism classes, subpresheaves of ()

Let X be a category. The collection, X;/z, of all the X' -morphisms with codomain z is a preordered class by
the relation f < g if there exists a morphism h such that f = g o h. The equivalence relation generated by
this preorder is f ~ g if f < g and g < f. For a class M of X-morphisms, we write f ~ M whenever f ~m
for some m € M. We say M is saturated provided that f € M whenever f ~ M.

Denoting the domain and codomain of a morphism f by dof and d; f respectively, recall that a sieve in X
[5], generated by one morphism f, is called a principal sieve and is denoted by (f),so (f) = {fog | dig=dof};
and for a sieve S on x and a morphism f with dif =z, S-f={g: fog € S}. Also recall that X is said to
be M-wellpowered [2], provided that for each object x € X, {[f] | dif ==, f € M} is a set, where [f] is the
class of all morphisms with codomain = isomorphic to f.

We say X is weakly M-wellpowered provided that for each = € X', {{f) | dif =z, f € M} is a set.
Obviously X is weakly M -wellpowered if it is M -wellpowered.

For a class S C Xj/x, and a morphism f with codomain z, the class of all the largest elements w in
Xy /dof satisfying fow < s for some s € S is denoted by (f = S). Obviously for a sieve S on z, see [5],
(f = S) is just the class of maximums of S - f.
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Definition 1.1 A class M of X— morphisms is said to satisfy the principality property, if for each x, f € Xy /x
and m € M/z, (f = (m))NM/dof #0.

The principality property is equivalent to the fact that for each m € M/x and f with codomain x,
(m) - f has a maximum in M/dyf, or equivalently (m) - f = (n) for some n in M/dyf.

If X satisfies the principality and is weakly X;—wellpowered, the map P : X°? — Set with P(z) =
{{NHIf € X1/z} and for f:y — x, P(f): P(x) — P(y) the function taking (g) to (g) - f is a functor.

Proposition 1.2 Suppose that X| satisfies the principality property and X is weakly X1— wellpowered:

(a) Every class M of morphisms of X that satisfies the principality property yields a subobject M : X°P — Set
of P.

(b) Every subobject M of P yields a class M of morphisms of X that satisfies the principality property and
s saturated.
(c) Saturated classes M that satisfy the principality property correspond bijectively to subfunctors of P.

Proof (a) Define M to take each object x € X to M(z) = {{m) | dym = x,m € M} and each morphism
frxz —yto M(f): M(y) » M(x) taking (m), with m € M, to (m) - f. It follows easily that M is a
subobject of P.

(b) Define M =U,cx, {f | (f) € M(2)}.
(c) Follows easily from parts (a) and (b). O

Definition 1.3 Let M be a class of X -morphisms. M is said to have:
(a) enough retractions, if for all objects x in X, M/x has a retraction.
(b) almost enough retractions, if for all objects x in X, M/x =0 or M/x has a retraction.

(c) the identity property if for all objects x in X and for all sieves S on x whenever Mg ={f € X1/x | (f =
SYNM/dof # 0} has a mazimum in M/x, then Mg > 1,.

(d) the maximum property if for all objects x in X and for all sieves S on x, whenever SNM/x # 0, then

S has a mazimum in M/x.

(e) the quasi-meet property if for all objects x in X and mi,ma € M/x, there exists n € (m1 = (ma)) such
that myon ~ M/x.

Remark 1.4 In the above Definition:

(a) Obviously (a) implies (b). Also (d) implies (b), because if M/x # 0, then T, " M/x # O and therefore
there is m € M/x such that T, = (m). But then m is a retraction and is in M/x. Finally we note that
principality and (d) imply (e). To see this, suppose mi,ms € M/x. By principality, there is n € M/x
such that (mg) -my = (n). It then follows that (m1) N (ma) = (myon). Setting S = (my1) U (ma), (d)

gives my < mo or mo < my. So mion~my or myon ~ ms, yielding the required conclusion.
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(b) Note that if there exists n in (m1 = (ma)) such that my on ~ M/x, then every k in (my = (ma))

satisfies my ok ~ M/x. Also if n1 € (m1 = (mg)) and ng € (Mg = (Mq)), then my ong ~ mgong.
Let X be a small category and € be the subobject classifier of Set*”” | see [5], we have:

Definition 1.5 A subobject A : X°P — Set of Q in Set®” is said to be:

(a) a filter provided that for each object x in X, A(x) is a filter (i.e. for 2 sieves S1,S2 on x, if S; C So
and Sy € A(z) then S € A(x) ).

(b) closed under binary intersection provided that for each object = in X, A(x) is closed under binary
intersection (i.e. for 2 sieves S1,S2 on x, if S1,S2 € A(z) then S1 NSy € A(z) ).

Given a subobject A of 1, each sieve S on an object z yields a sieve S4 on x givenby Sqa ={f | dif =
x,5-f € A(dof)}. Since Sx-f = (S-f)a, A defined to take each object x to A(x) = {S4 | S is a sieve on '}
and each morphism ¢ :x — y to fl(g) : A(y) — A(m) taking S4 to S, -g is easily seen to be a subobject of Q2.

Lemma 1.6 Let S be a sieve on x in X . Whether M is a collection of morphisms that satisfies the principality
property and M is the associated presheaf, or M is a subobject of P and M is the associated collection of
morphisms, we have:

Su={feXijz | (f=S)NM/do(f) #0}.

Proof Follows from straightforward calculations. O

For presheaves A, B : XP — Set, we write A < B if for all z € X, A(z) C B(x) and we write AA B
for pointwise intersection, i.e. (A A B)(z) = A(x) N B(z).
With T : X°P — Set the terminal object defined by T'(x) = {13}, where T, is the maximal sieve on =,

we have:

Theorem 1.7 If M satisfies the principality property, X is weakly M— wellpowered and M 1is the associated
presheaf, or if M is a subobject of P and M is the associated saturated class, then:

(a) T < M if and only if M has enough retractions;

(b) M AT < M if and only if M has almost enough retractions;
(c) M AM <T if and only if M has the identity property;

(d) M is a filter if and only if M has the mazimum property;

(e) M is closed under binary intersection if and only if M has the quasi-meet property.
Proof
(a) T < M if and only if for each = in X', T,, € M(z) if and only if there is f € M /z such that (f) =T
if and only if there is f € M/x such that 1, € (f) if and only if there is f € M/x such that f is a retraction
if and only if M has enough retractions.

(b) First notice that M (x) NT(x) # 0 if and only if T, € M(x) if and only if there is a sieve S on
such that T, = Sy if and only if there is S such that S € M (z) if and only if M/x # 0. Now M AT < M
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if and only if for each 2, M(z) NT(x) € M(z) if and only if M(x)NT(z) =0 or T, € M(z) if and only if
M/z =0 or M/x contains a retraction if and only if M has almost enough retractions.

(c) First note that Sy, € M(z) N M(x) if and only if there is m € M/x such that Sy = (m) if and
only if Sy; has a maximum in M/z. Now M A M < T if and only if for each z, M(z) N M(z) C T(z) if and
only if Sy € M(m) N M (z) implies Sy = T, if and only if Sy, has a maximum in M/x implies Sy 3 1., by
Lemma 1.6, if and only if M has the identity property.

(d) M is afilter if and only if for each z € X', (m) € M(x), and (m) C S implies S € M(z) if and only
if there is m € M such that (m) C S implies S = (n) for some n € M if and only if SN M # () implies S
has a maximum in M if and only if M has the maximum property.

(e) M is closed under binary intersection if and only if for each =z € X, (m), (n) in M(z) implies
(m) N {n) € M(z) if and only if m,n € M/x implies there exists f € (m = (n)), since M is a functor, such
that mo f ~ M/z if and only if M has the quasi-meet property. O

Corollary 1.8 Let M be a class of X -morphisms satisfying the principality property. The induced ) -subobject
M is a (weak) Grothendieck topology ([3, 5]) if and only if M satisfies ((a) and (d)) (a), (c), and (d) of
Definition 1.5.

Proof Follows from Remark 1.4 and Theorem 1.7. O

2. Subpresheaves of (2, automorphisms on ()

With X a small category, we know subobjectsi : M——s € in Set*”” are in one-to-one correspondence with

Q-automorphisms j via the following pullback square, see [5].

Note that for a given M, j is defined by the maps j, that take each sieve S on x to Sj;; and for a
given j, M is defined by M(x) = {S: j,(S) = T,}.
With M and j corresponding to each other, we obviously have j,(S) = T, if and only if S € M(z).

For parallel morphisms ®, ¥ : A — Q in Set®” define ® < ¥ if ®,(s) C V,(s) for all z in X and
s € A(z). The meet DAY = Ao (D, U), where A : Q x Q — Q is the internal meet (see [5]), is obviously the
one induced by the partial order <.

Theorem 2.1 WithJ : 8 —— Q and subobject M of Q corresponding to each other, we have:
(a) jot=t if and only if T < M ;
(b) j=joj ifandonlyif MAT < M:;
(c) joj=j if and only if M AM <T;
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(d) joAN=ANo(jxj) if and only if M is a filter;

(e) No(jxj)=joA ifand only if M is closed under binary intersection.

Proof
(a) Suppose that jot =1t. Let z € X, so j,(T) = T, and so by the above statements T, € M (x).

Suppose that T < M. It is enough to show that j,(7) = T, for all x € X'. Since T, € M (z) for all
x € X, the result follows.

(b) Suppose that j < joj. For z € X, if Spy = T, for asieve S on z, then S € M(z). Hence j,(S5) =Ty
and since by assumption j;(S) C j.(52(5)), j2(jz(S)) = Tp. So j.(S) € M(x) and since j,(S) = Sy, the
result follows.

Suppose that M AT < M. For z € X and S € Q(x), if f € j,(S), then S-f € M(dof), and so
Jaof(S-f) =Tays. Since ja,r(S-f) € M (dyf), by assumption Jaof(S-f) € M(dof) and since Sar-f = (S - f)m
J=(S) - f € M(dpf) and this means f € j,(j.(5)).

(c) Suppose that joj < j. For x € X and S € Q(x), if Sy € M(z) then S(g,,) = T, since S(g,,) € Su,
Sy =T,.

Suppose that MAM <T. Let z € X and S € Q(z). If f € j.(j.(S)), then 5,(S) - f € M(dof) and so
Jaof(S-f) € M(dof). Since ja,7(S-f) € M(dof), by assumption jg, (S~ f) = T, 7. Therefore S-f € M(dof),
and thus f € j,(5).

(d) Suppose that joA = Ao (jxj). Let z € X and S1,52 € Q(z). If S; C Sy and S; € M(z), then
Jz(S1 N S3) = j.(S1) = T, and so by assumption j,(S2) = T,.. Hence Sy € M(x).

Suppose that M is a filter. Let z € X and S1, 52 € Q(x). If f € j,(S1NS2), then (S1NS2)-f € M(dyf).
So (S1-f)N(Se- f) € M(dof). Since (S1-f)N(Sz-f)C Sy f and M is a filter, Sy - f € M(dpf). Similarly
Sa - f € M(dof). Therefore f € j,(S1) N jz(S2).

(e) Suppose that Ao (j x j) X joA. Let z € X and 51,5 € Qz). If 51,5 € M(z), then
Jz(S1) = j2(S2) = T, . So by assumption j,(S1 N Se) =T, and therefore S; NSy € M(x).

Suppose that M is closed under binary intersection. Let « € X and S1,5 € Q(z). If f € j(S1)Nj.(S2),
then S7 - f and Sy - f are in M(dpf). So by assumption (S; - f) N (S2 - f) € M(dof), and therefore
(S1NSy)- feM(dyf). Hence f € 7,(S1NS2). O

Corollary 2.2 Let M be a class of X -morphisms that satisfies the principality property. The induced map
J:Q——= Qs a (weak) Lawvere-Tierney topology ([3, 5]) if and only if M satisfies ((a) and (d)) (a), (c),
and (d) of Definition 1.3.

Proof Follows from Remark 1.4 and Theorems 1.7 and 2.1. O

3. Automorphisms on (), universal operations
We call a collection of functions —x : Sub(X) ——= Sub(X) indexed on objects X an operation. An operation

is called universal if for each arrow f : # —— y and each a € Sub(X), f~1(a) = f~'(@). A universal (or

natural) closure operation, see [4, 5], is a universal operation that satisfies extensive and monotone properties.
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It is known that, in any topos, the Lawvere-Tierney topologies correspond to universal closure operations,
see [4, 5].

This correspondence also holds between arrows j :0 —— ) and universal operations “—”. Here is how
this correspondence works. For a givenJ : 8 ——=Q for each X, —: Sub(X) —— Sub(X) is defined by the
following pullbacks:

4

la A
> —_—
QT pob. L (I) a‘j ». L (I1)
—0 X

b.
X —0

Jo

where a.(z) ={f:a—ce X | X(f)(z) € ay(A(a))} and we have & = j o &.

Conversely given a universal operation “—", the (2-automorphism j is obtained by the following pullback.
o
_—
{j p-b. lt (IIT)
Now if 7 induces the universal operation “—" and this operation induces the map j’, then j' = t= jot

w_»

and since £ = 1, j/ = j. Conversely, if the universal operation induces the map j and this map induces

the universal operation “~”, then for any subobject a of any X we have, & = (jo &)~ 1(t) = & 1(j71(t)) =

a ) =a"1(t) =a.
Lemma 3.1 Let X be an object in Set®”" . We have:

(a) For 2 subobjects a: A— X and 5: B — X of X,
a< B if and only if a N5 = «.

(b) For 2 parallel morphisms ®, ¥ : X — Q in Set*”
S <V if and only if DAV = .
Proof
(a) Suppose that a < 8. So there exists v such that o~y = «. Since 8 is a mono, the following is a
pullback square.

Hence a A B = «a.

Suppose that a A 8 =a. We have a =a A =303 1(a). So a < 3.

(b) Suppose that ® < ¥ for 2 parallel morphisms ®, ¥ : X — Q. Therefore (® A W), (s) = P,(s)NT4(s)
and since @,(s) C U,(s), Pu(s)NT,(s) = Dy(s). Thus DAV = P.

Suppose that ® A U = ®. For each object © € X and sieve S € Q(z), (2 A ¥),(S) = D,(5), ie.
O, (S)NTL(S) = D,(5). So @,(S) C U, (S) and therefore & < U.
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“

Lemma 3.2 Let the morphismJ : 8 —— Q and the universal operation “—” correspond to each other. For

each object X in Set®” and a, € Sub(X), we have:

Q>

(a) aNB=daA

’

(b) aAB=jo(anp);

(c) anB=(joa)A(jop).
Proof
(a) Using the pullbacks:

and that a A f = aom; = oy, one can show the following is a pullback square.

AR B
cxomI (t,t)

X——OxQ

(&.B)
The result then follows from the fact that the classifying map of (¢,¢) is the internal meet A : Q@ xQ — Q.
(b) Since the classifying map of a A is jo (m), the result follows by part (a).
(c) Follows from part (a) and the equality & = j o &.

Lemma 3.3 Let “— 7 be a universal operation.

~

(a) Let X € Set®” and o, € Sub(X). Then o < B if and only if & =< j3;

(b) Let X € Set*". For all o, € Sub(X), (a« < f = a < B) if and only if for all o, € Sub(X),

a) Using the previous Lemma, o < § if and only if a A § = « if and only if oz//\\ﬁ = & if and only if
AP = &fandonly1fa<ﬁ
(b) Suppose that for all o, 3, a < 8 = a < B. Given a,f3, since a A8 < a and a A B < 3, by

assumption o A f < @& and a A S < 3. Hence aAB < aAf.
Conversely, suppose for all o, 3, « < aAf. Given a, 3, such that o < /3, we have a A 8 = o and
so a A =a. Hence a < @A . Since a BgB <A. O
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@

Theorem 3.4 Let the morphismJ : 8 —— Q and the universal operation “— 7 correspond to each other. We

have:

(a) For all X in Set®” and o € Sub(X), o < & if and only if t <t if and only if jot =1t;

(b) For all X in Set®” and o € Sub(X), & < & if and only if t <t if and only if j <joj;

(¢) For all X in Set®” and o € Sub(X), & < a if and only if t <1t if and only if joj < j;

(d) For all X in Set®" and a, € Sub(X), aAB < aAB if and only if {t,t) < (1,tolg) A (tolg, 1) if and
only if joAN=No(jxj);

(e) For all X in Set*” and o, € Sub(X) aAfB < aAp if and only if (1,tolg) A (tolg, 1) < (t,t) if and
only if No(j xj)=3joA.
Proof
(a) Suppose that for all X in Set*” and a € Sub(X), a < a. Choose o =t to get the result.
Suppose that ¢t < t. So thereis v:1 — 1 such that o~y =t¢. Since jot =toly, joto~y =tol; oy and
so jot=tol=t.
Suppose that jot =t. Let a: A — X be a subobject of X for some object X . If & is the classifying

map of a, then Goa =toly. So jodoa =jotoly =toly, ie. the following square commutes.

TA
_—

O:j /77 I/t

X—=0Q
jo&

Since j o & is the classifying map of @&, there exists a unique v : A — A such that @ oy = . Thus
a<a.

(b) To get the first implication, choose o =t.

Suppose that < t. Since f:j and t£: joj, the result follows from Lemma 3.3-(a).

Suppose that j < joj. Let X be an object in Set*”” and « be in Sub(X). For each object x in X
and S € Q(z), 4,(S) € Q(z) and s0 (42 (S)) C (Ju © 42 )(é@x(S)). Thus (j o &).(S) C (jojod).(S) and
therefore jo& < jojoa. Hence @ < & and so by Lemma 3.3-(a), we have & < &.

(c) The proof follows by arguments similar to part (b).

(d) Suppose that for all X in Set¥” and «a,8 € Sub(X), aAB < aAB. We know (t,t) =
(tolg, 1) A (1, tolg). The result then follows by assumption.

Suppose that (t,¢) < (1,tolg) A (tolg,1). Let a = (tolg,1) and S = (1,tolg). One can easily verify

that =m : @ X Q — = Qand § = 71y : Q x Q — Qare the projections, and a A 8 = (t,t). By assumption,

—

aAB<aApB. By Lemma 3.3-(a), a A B < @A 3. By Lemma 3.2-(b) and (c), joAo(d, 8) < Ao(jxj)o(a,B).
Since (d, 3) is the identity, the result follows.
Suppose that j o A < Ao (j x j). Let X be an object in Set®” and a,8 € Sub(X). We have

— -

joAo(a,B) = Ao(jxj)o(a,B). By Lemma 3.2-(b) and (c), aAB < @A S and by Lemma 3.3-(a),
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aNBaNnp.
(e) The proof follows by arguments similar to part (d).

Corollary 3.5 Let M be a class of X -morphisms that satisfies the principality property. The induced universal

“__

operation is a universal closure operation if and only if M satisfies (a) and (d) of Definition 1.3. In
addition, “—7 is idempotent if and only if M satisfies (c) as well.

Proof Follows from Remark 1.4 and Theorems 1.7, 2.1, and 3.4. O

4. Examples

Throughout this section, the collection of all the identity morphisms, all the retractions, all the monomorphisms,
all the epimorphisms, and all the isomorphisms, in a category X is denoted by Ids(X), Ret(X), Mono(X),
Epi(X), and Iso(X), respectively.

We also assume X is a small category and so for any collection M C X}, X is M-wellpowered.

Example 4.1 Let X be a category. Consider M C Ret(X) (in particular M = Iso(X) or M = Ids(X)).
It is easy to verify that the principality property holds if and only if for all morphisms f € X1, M/dif # 0
implies that M/dof # 0; M has enough retractions if and only if for all objects x € X, M/x # 0; that M
does have almost enough retractions; and that the identity property, the mazimum property, and the quasi-meet

property all hold.

Assuming the principality, the induced presheaf M : X°P — Set, where for each x, M(x) = {T,} or
M(z) =0, satisfies all the conditions of Theorem 1.7 but (a). If for all x, M/x # 0, then (a) holds, too, and
M s the smallest Grothendieck topology.

With Njx = {f : dif = x,M/dof # 0}, the induced automorphism Jj:$X ——=Q is obtained by
Jz(S) = SNN/z and by Theorem 2.1, we have j = joj and joA = Ao (j X j). Since M/x # 0 is
equivalent to N'/x = Xy /x, in case for all x, M/x # 0, j reduces to the identity Lawvere—Tierney topology.

The induced universal operation “—” on Set®”" sends a subobject®: A ——= X of X toa: A ——= X,

which is determined for each x, by the inclusion a, : A(x)——= X(z) , where A(z) = {u € X(x) : &,(u) N

oy Jax(A(z) if Mz #D
Nfw=To} = {(/) if Mz =0

3.4 but (a). In case for all x, M/x # 0, then (a) holds too and “— 7 is isomorphic to the identity universal

closure operation.

. This universal operation satisfies all the properties listed in Theorem

As special cases, let X be any small full subcategory of groupoids and M be any collection of morphisms,
or let X be the category of finite ordinals and M C Epi(X) = Ret(X), or let X be the category Mat, see [1],
and M = Ret(X) ={A: A is an m x n matriz with rank n}.

Example 4.2 Let X be a category and M C Epi(X) be pullback stable. The principality property holds by
pullback stability and the fact that for every m € M/x and f € X1/, the pullback, f=*(m), of m along f

is in (f = (m)). If furthermore M has enough retractions and is weakly closed under composition (i.e. for 2
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composable morphisms [ and g, fog~ M), which both hold for M = Epi(X), then the identity property as
well as the quasi-meet property hold.

Thus, under the above hypothesis, the induced functor M, map j, and universal operation “—
(a), (b), (c), and (e) of Theorems 1.7, 2.1, and 3.4, respectively.

As a special case let X be the full subcategory of Top consisting of finite ordinal topological spaces and

M = Epi(X).

” satisfy

Example 4.3 Let X be a category and M C Mono(X) be pullback stable, which is the case for M =
Mono(X). The principality property holds by pullback stability and the fact that for every m € M/x and
f e Xxi/z, f~Y(m) is in (f = (m)). If furthermore M has enough retractions and is weakly closed under
composition (i.e. for 2 composable morphisms [ and g, fog ~ M), which holds for M = Mono(X), then
the identity property and the quasi-meet property hold.

Under the above hypothesis, the induced M, j, and “—7 satisfy (a), (b), (c), and (e) of Theorems 1.7,
2.1, and 3.4, respectively.

As special cases let X be the full subcategory of Top consisting of finite ordinal topological spaces
and M = Mono(X), or let X be the category Mat, see [1], and M = Mono(X) = {A : A is an m X

n matriz with rank m} .

Example 4.4 Let (X,<) be a preordered set and X = C(X, <) be the category it induces, see [1]. We know
in case © <y, Hom(z,y) has a unique morphism, which we denote by (x,y). It is not hard to see that
{(a,2)) - (byx) ={(c,b) : ¢ < b and ¢ < a} and that ((b,x) = ((a,x))) # 0 if and only if a meet a AN'b exists, in
which case (a Ab,b) € ((b,z) = ((a,x))) or equivalently {(a,x)) - (b,x) = ((a Ab,b)).

Let M be a class of morphisms of X. One can verify that M satisfies the principality property if
and only if for each (a,z) € M/x and (b,x) € Xi/x, a meet a Ab exists and (a A b,b) € M/b; M
has enough retractions (almost enough retractions) if and only if for each x, MJx > 1, (M/xz = 0 or
M/x > 1, ); M has the identity property if and only if for all x and for all sieves S on x, if the set Mg =
{(a,2) | Fya < a 3: (Ya,a) € M, (yq,x) € S andVy < a ((y,z) € S =y < y,)} has a mazimum in M, then
it contains 1, ; M has the mazimum property if and only if for all x, (M/x,<P) is weakly well-ordered (i.e.
every nonempty subset of M/x has a mazimum) and also for all © and (a,x) € X1 /x, either there is (b, ) in
M/x such that b = a or for all (b,x) € M/x, b > a; and finally M has the quasi-meet property if and only
if M has local binary meet (i.e. for all objects x, M/x has binary meet).

In case (X,<) is a partially ordered set, every mazimum or meet that exists is unique and if (X, <) is
a lattice then every binary meet exists and is unique.

As special cases consider the following examples.

(a) Let (X, <) be any partially ordered set such that every nonempty subset of X has a mazimum (<°P
is then indeed a total order and (X, <°P) is well-ordered). Obviously every sieve on an object x € X is principal
and ((b,x)) - (a,z) = ((a Ab,a)). For M C X1, Mp) = {(a,z) | (a Ab,a) € M}. Now suppose for all x,
M/z %0 and for a <b< =z, (a,z) € M if and only if (a,b) € M and (b,x) € M. One can then verify that
M satisfies the principality as well as all the properties listed in Definition 1.8; and that {(a,z))p = ((a,2)),
where @ > a 1is the largest element of X with (a,a) € M.

So by Theorems 1.7, 2.1, and 3.4, the induced presheaf M, where M(x) = {{(a,z)) : (a,z) € M},
is a Grothendieck topology; the induced j, where j,({(a,z))) = {((a,z)) is a Lawvere-Tierney topology; and
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the induced universal operation “— ”, which takesa : A——= X toa : A——= X, where @, : A(r)—— X (x)

is the inclusion with A(x) = {u : (Z,2) € M where & < z is the largest with X (i, z)(u) € az(Az)}, is an
idempotent universal closure operation.

As a special case one can take X = {---, =3, -2, —1} in the usual order and M/n = {(k,n)|—5 <k <n}
for =5 <n < -1, M/n={(n,n)} otherwise.

(b) With N the set of natural numbers and < the usual order, let X = C(N,<°P). In this category all
the sieves are principal. For each n, set M/n = {1,, fn}, where f, € Homyx(n + 1,n). It is not hard to
verify that M has the principality property and satisfies all the conditions of Definition 1.8 except the identity
property. The latter property does not hold, since if S = (f, o fni1) is a sieve on n, then Sy = (fy) has the
mazimum f, € M/n but S does not have a mazimum in M/n.

The induced functor M , where M (n) = {T,,(fn)}, the induced map j that sends each member of M (n)
to the total sieve and for m,n € N, 5,({fn o fnt10--.0 fotm)) = {(fn© fat10--.0 fntm—1) and the induced
universal operation “— 7, satisfy (a), (b), (d), and (e) of Theorems 1.7, 2.1, and 3.4, respectively. So M is a
weak Grothendieck topology and j is a weak Lawvere—Tierney topology, see [3].

(c) Let X = C(X,<), where X = {®=L | n € N}U{1} is the semilattice in the usual order. All the

sieves are principal except S = {(%=2,1) | n>1} =Ty — {(1,1)}, and we have the following.

n ?

(@0} 1) = {éf“””’y” A ond S+ (1) = {Z A

(1) Set M/t ={(z,t) | v € X, 2 <x <t} for 2 <te X and M/t ={1,} for t < 2. We have the

5
following.
((,1)) ifx <3
v = d Smy=S5
(2, ) {Tt ifo% an M
(2) Set M/t ={(z,t) | € X,0< 2 <t} for 3 >t € X and M/t ={1,} for t > 2. Denoting by
xV (2) the mazimum of x and %, we have:
((@v(5).1) ift> 3
,t = d Sy =S.
((,0))m {Tt iftg% an M

It is then easy to see that in both cases M has the principality property and satisfies all the properties listed
in Definition 1.3. So by Theorems 1.7, 2.1, and 3.4, M is a Grothendieck topology, j is a Lawvere—Tierney
topology, and “— 7 is an idempotent universal closure operation.

(d) Let X = {xo,x1,22,x3, %4, 25} with x1 < zg, o2 < x1, 3 < g, T4 < x2, and x5 < x3. Then
the category X is generated by the morphismsfo: T1 —— o, f1 172 — =21, fo 1 T3 — > 29, [3 1 T4 —> 25,

and fa: x5 —— 15

Now let M/zo = {1y, fo, foo fi}, M/z1 = {1ay, f1}, M/xa = {1s,}, M/zz = {14y, fa}, M/2y =
{1z}, and M/Jxs = {1,,}.

It is easy to see that M satisfies the principality property as well as all the properties listed in Definition
1.3. Hence the induced functor M , where M (x¢) = {Tx,, (fo), (foof1)}, M(x1) = {Tx,, (1)}, M(x2) ={Ts,},
M(zs) = {Tys, (fa)}, M(zq) ={Ty,}, and M(x5) = {1y, }, is a Grothendieck topology, j is a Lawvere-Tierney

topology, and “—” is an idempotent universal closure operation.
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Example 4.5 Let X be the category generated by the morphisms w b 2, 2 J Y, 2 h Y, Yy ! z,

andw —" z, with fog= foh and gok =hok. Set M = {1,,1,,1,, 1., f, k}. It is easy to see that M has
the principality property and satisfies all the conditions of Definition 1.3; thus, M is a Grothendieck topology,
7 is a Lawvere=Tierney topology, and “—” is an idempotent universal closure operation.
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