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2Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town, Lahore, Pakistan

Received: 10.07.2012 • Accepted: 01.11.2012 • Published Online: 23.09.2013 • Printed: 21.10.2013

Abstract: In this paper we deal with the problem of labeling the vertices, edges, and faces of a toroidal fullerene Hn
m

with mn hexagons by the consecutive integers from 1 up to |V (Hn
m)|+ |E(Hn

m)|+ |F (Hn
m)| in such a way that the set of

face-weights of 6-sided faces forms an arithmetic progression with common difference d , where by face-weight we mean

the sum of the label of that face and the labels of vertices and edges surrounding that face.

The paper examines the existence of such labelings for several differences d .
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1. Introduction

Let G be a family of cubic graphs embedded on the surface of a sphere or a torus such that each face is

a hexagon. Let V , E , and F be the vertex set, the edge set, and the face set of a graph G ∈ G .

A labeling of type (1, 1, 1) assigns labels from the set {1, 2, . . . , |V (G)| + |E(G)| + |F (G)|} into the

vertices, edges, and faces of a graph G in such a way that each vertex, edge, and face receives exactly one label

and each number is used exactly once as a label.

The weight of a 6-sided face under a labeling of type (1, 1, 1) is the sum of labels carried by that face

and the edges and vertices on its boundary.

A labeling of type (1, 1, 1) of a graph G ∈ G is called d-antimagic if weights of 6-sided faces form

an arithmetic sequence starting from a and having common difference d , where a > 0 and d ≥ 0 are 2 given

integers.

The concept of the d-antimagic labeling of the plane graphs was defined in [9]. The d-antimagic labelings

of type (1, 1, 1) for the generalized Petersen graph P (n, 2), the hexagonal planar maps, and the grids can be

found in [6], [7], and [8].

In particular for d = 0, Lih [12] called such labeling magic and described magic (0-antimagic) labelings

for the wheels, the friendship graphs, and the prisms. However, the subject of magic labeling can be traced back

to the 13th century when similar notions were investigated in very classical Chinese mathematics (see [12]).

The magic (0-antimagic) labelings for grid graphs and honeycombs are given in [2] and [3], respectively.

A d-antimagic labeling is called super if the smallest possible labels appear on the vertices. The super

d-antimagic labelings of type (1, 1, 1) for antiprisms are described in [4], and for disjoint union of prisms, they
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are given in [1]. The existence of super d-antimagic labeling of type (1, 1, 1) for the plane graphs containing

a special Hamilton path is examined in [5] and for disconnected plane graphs is investigated in [10].

In this paper we study d-antimagic labelings for toroidal fullerenes. Classical fullerene is an all-carbon

molecule in which the atoms are arranged on a pseudospherical framework made up entirely of pentagons and

hexagons. Its molecular graph is a finite trivalent graph embedded on the surface of a sphere with only hexagonal

and (exactly 12) pentagonal faces. Deza et al. [11] considered fullerene’s extension to other closed surfaces

and showed that only 4 surfaces are possible, namely sphere, torus, Klein bottle, and projective plane. Unlike

spherical fullerenes, toroidal and Klein bottle fullerenes have been regarded as tessellations of entire hexagons

on their surfaces since they must contain no pentagons; see [11] and [13].

A toroidal fullerene (toroidal polyhex) is a cubic bipartite graph embedded on the torus such that each

face is a hexagon. Note that the torus is a closed surface that can carry the graph of a toroidal polyhex such

that all its vertices have degree 3 and all faces of the embedding are hexagons; see Figure 1.

More precisely, let L be a regular hexagonal lattice and Pn
m be an m× n quadrilateral section (with m

hexagons on the top and bottom sides and n hexagons on the lateral sides, n is even) cut from the regular

hexagonal lattice L . First identify 2 lateral sides of Pn
m to form a cylinder, and finally identify the top and

bottom sides of Pn
m at their corresponding points; see Figure 2. From this we get a toroidal polyhex Hn

m with

mn hexagons, 2mn vertices, and 3mn edges.

Figure 1. Toroidal polyhex.

There have been a few works on the enumeration of perfect matchings of toroidal polyhexes by applying

various techniques, such as the transfer matrix [14, 15]. In [16, 17, 18], a k -resonance of toroidal polyhexes was

studied.

2. Necessary conditions

In this section we shall find bounds for a feasible value of d for the super d -antimagic labeling of type (1, 1, 1)

of the toroidal polyhex Hn
m .

Theorem 1 For every toroidal polyhex Hn
m , n even and m,n ≥ 2 , there is no super d-antimagic labeling of

type (1, 1, 1) with d ≥ 41 .

Proof Suppose that Hn
m with 2mn vertices, 3mn edges, and mn faces has a super d -antimagic labeling of

type (1, 1, 1), g : V (Hn
m)∪E(Hn

m)∪F (Hn
m) → {1, 2, . . . , 6mn} , and {a, a+ d, a+2d, . . . , a+ (mn− 1)d} is the

set of face-weights.

The minimum possible face-weight of a 6-sided face is the sum of the 6 smallest possible vertex labels,

namely 1, 2, . . . , 6, and the 7 smallest possible labels from the set {2mn+1, 2mn+2, . . . , 6mn} for 6 edges and

1 face. Thus,
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a ≥
6∑

i=1

i+

7∑
j=1

(2mn+ j) = 14mn+ 49.

Figure 2. Quadrilateral section Pn
m cuts from the regular hexagonal lattice.

To calculate all the face-weights each vertex label is used 3 times, each edge label is used twice, and each

face label is used once. In this case the vertices receive the smallest possible labels 1, 2, . . . , 2mn . The edges

could conceivably receive the 3mn smallest labels from the set {2mn+1, 2mn+2, . . . , 6mn} and faces receive

the remaining labels from the set or, at the other extreme, the faces receive mn smaller labels from the set and

the edges can receive 3mn largest labels or anything in between. Thus, we get:

1

2
(65m2n2 + 13mn) ≤ 3

∑
v∈V

g(v) + 2
∑
e∈E

g(e) +
∑
f∈F

g(f)

≤ 1

2
(71m2n2 + 13mn). (1)

The sum of all the face-weights is

a+ (a+ d) + · · ·+ (a+ (mn− 1)d) = mna+
(mn− 1)mnd

2
. (2)
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Since the minimum possible face-weight is at least 14mn + 49, from Eqs. (1) and (2) we get the following

inequality:

(mn− 1)d ≤ 71mn+ 13− 2a

and

d ≤ 43− 42

mn− 1
< 43.

On the other hand, the maximum possible face-weight is the sum of the 6 largest possible vertex labels,

namely 2mn − 5, 2mn − 4, . . . , 2mn , and 7 largest possible labels from the set {2mn + 1, 2mn + 2, . . . , 6mn}
for 6 edges and 1 face. It is no more than

6∑
i=1

(2mn− i+ 1) +
7∑

j=1

(6mn− j + 1) = 54mn− 36.

Then we get an upper bound on the parameter d as

a+ (mn− 1)d ≤ 54mn− 36

and

d ≤ 40− 45

mn− 1
< 40.

Thus, we have arrived at the desired result. 2

3. Results on super d-antimagic labelings of toroidal polyhex

Since Hn
m is 2-colorable cubic graph, there exist a 1-factor (perfect matching) and a 2-factor (a collection of

n cycles on 2m vertices each). Denote the edges in 1-factor by the symbols uj
iv

j
i , for 0 ≤ i ≤ m − 1 and

0 ≤ j ≤ n − 1. Let uj
0v

j−1
0 uj

1v
j−1
1 uj

2v
j−1
2 . . . vj−1

m−2u
j
m−1v

j−1
m−1u

j
0 and vj0u

j+1
0 vj1u

j+1
1 vj2u

j+1
2 . . . uj+1

m−2v
j
m−1u

j+1
m−1v

j
0

be the 2m-cycles in 2-factor for j even, 0 ≤ j ≤ n− 2. Let zji , 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1 be the 6-sided

face of Hn
m ; see Figure 2.

For 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1, we construct the vertex labeling g : V (Hn
m) → {1, 2, . . . , 2mn} in

the following way:

g(uj
i ) = mj + i+ 1 and

g(vji ) = (n+ j)m+ i+ 1.

Now, we label by consecutive values 3mn+ 1, 3mn+ 2, . . . , 5mn the edges of 2m -cycles as follows:

h(uj
iv

j−1
i ) = (5n− j)m− i if j is even,

h(uj
iv

j−1
i+1 ) = (5n− j)m− i if j is odd,

h(vji u
j+1
i+1 ) = (4n− j)m− i if j is odd,

h(vji u
j+1
i ) = (4n− j)m− i if j is even,

where 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1 and i is taken modulo m , j is taken modulo n .

With the vertex labeling g and the edge labeling h in hand, we prove the following lemmas.
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Lemma 1 Let w(zji ) = g(uj
i ) + h(uj

iv
j−1
i+1 ) + g(vj−1

i+1 ) + h(vj−1
i+1 u

j
i+1) + g(uj

i+1) + g(vji ) + h(vji u
j+1
i+1 ) + g(uj+1

i+1 ) +

h(uj+1
i+1v

j
i+1) + g(vji+1) be a partial weight of the face zji for j odd, 1 ≤ j ≤ n − 1 , and 0 ≤ i ≤ m − 1 .

For n even, n ≥ 2 and m ≥ 2 , the partial weight w(zji ) = (21n + 2j)m + 2i + 8 , 0 ≤ i ≤ m − 2 , and

w(zjm−1) = (21n+ 2j)m+ 6 .

Proof By direct computation for the partial weight of the face zji , j odd, we obtain:

w(zji ) = mj+i+1+(5n−j)m−i+(n+j−1)m+(i+1)+1+(4n−j+1)m−(i+1)+mj+(i+1)+1+(n+

j)m+i+1+(4n−j)m−i+(j+1)m+(i+1)+1+(5n−j−1)m−(i+1)+(n+j)m+(i+1)+1 = (21n+2j)m+2i+8

for 0 ≤ i ≤ m− 2 and

w(zjm−1) = mj + (m− 1) + 1+ (5n− j)m− (m− 1) + (n+ j − 1)m+1+ (4n− j +1)m+mj +1+ (n+

j)m+ (m− 1) + 1+ (4n− j)m− (m− 1) +m(j +1)+ 1+ (5n− j − 1)m+m(n+ j) + 1 = (21n+2j)m+6. 2

Lemma 2 Let w(zji ) = g(uj
i ) + h(uj

iv
j−1
i ) + g(vj−1

i ) + h(vj−1
i uj

i+1) + g(uj
i+1) + g(vji ) + h(vji u

j+1
i ) + g(uj+1

i ) +

h(uj+1
i vji+1) + g(vji+1) be a partial weight of the face zji for j even, 0 ≤ j ≤ n − 2 , and 0 ≤ i ≤ m − 1 .

For n even, n ≥ 2 and m ≥ 2 , the partial weight w(zji ) = (21n + 2j)m + 2i + 8 , 0 ≤ i ≤ m − 2 , and

w(zjm−1) = (21n+ 2j)m+ 6 .

Proof It is easily seen that for the partial weight of the face zji , j even, we have:

w(zji ) = mj + i+ 1+ (5n− j)m− i+ (n+ j − 1)m+ i+ 1+ (4n− j + 1)m− i+mj + (i+ 1) + 1+ (n+

j)m+ i+1+(4n− j)m− i+m(j+1)+ i+1+(5n− j− 1)m− i+(n+ j)m+(i+1)+1 = (21n+2j)m+2i+8

for 0 ≤ i ≤ m− 2 and

w(zjm−1) = mj+(m−1)+1+(5n−j)m−(m−1)+(n+j−1)m+(m−1)+1+(4n−j+1)m−(m−1)+mj+

1+(n+j)m+(m−1)+1+(4n−j)m−(m−1)+m(j+1)+(m−1)+1+(5n−j−1)m−(m−1)+(n+j)m+1 =

(21n+ 2j)m+ 6. 2

By Lemmas 1 and 2, we get:

Theorem 2 For n even, n ≥ 2 , and m ≥ 2 , the toroidal polyhex Hn
m has a super 1-antimagic labeling and

a super 3-antimagic labeling of type (1, 1, 1) .

Proof Label the vertices of Hn
m by the labeling g and the edges of 2m-cycles by the labeling h . From the

previous lemmas it follows that the partial weights of faces zji , 0 ≤ j ≤ n − 1, 0 ≤ i ≤ m − 1, constitute

an arithmetic sequence of difference 2, namely the sequence 21mn+ 6, 21mn+ 8, . . . , 23mn+ 2, 23mn+ 4.

Let us distinguish 2 cases.

Case 1. d = 1 . If we label the edges in 1-factor with values in the set {2mn + 1, 2mn + 2, . . . , 3mn}
such that

h(uj
iv

j
i ) = (3n− j)m− i for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1, then

w′(zji ) = w(zji )+h(uj
iv

j
i )+h(uj

i+1v
j
i+1) = (21n+2j)m+2i+8+(3n−j)m−i+(3n−j)m−(i+1) = 27mn+7

for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 2 and

w′(zjm−1) = w(zjm−1)+ h(uj
m−1v

j
m−1)+ h(uj

0v
j
0) = (21n+2j)m+6+ (3n− j)m− (m− 1)+ (3n− j)m =

(27n− 1)m+ 7 for 0 ≤ j ≤ n− 1.
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If we complete the face labeling with values in the set {5mn+1, 5mn+2, . . . , 6mn} such that the every

face zji receives a value

f(zji ) = (5n+ j)m+ i+ 1, for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1,

then for face-weights we have

wt(zji ) = w′(zji ) + f(zji ) = 27mn + 7 + (5n + j)m + i + 1 = (32n + j)m + i + 8, for 0 ≤ j ≤ n − 1,

0 ≤ i ≤ m−2 and wt(zjm−1) = w′(zjm−1)+f(zjm−1) = (27n−1)m+7+(5n+j)m+(m−1)+1 = (32n+j)m+7,

for 0 ≤ j ≤ n− 1.

It can be seen that face-weights successively attain values from 32mn+ 7 up to 33mn+ 6. This implies

that the resulting labeling of type (1, 1, 1) is a super 1-antimagic.

Case 2. d = 3 . Complete the edge labeling h by labels of edges in 1-factor such that

h(uj
iv

j
i ) = (2n+ j)m+ i+ 1 for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1.

Now, define a face labeling in the following way:

f(zji ) = (6n− j)m− i , for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1.

Observe that labels of edges in 1-factor are from the set {2mn+1, 2mn+2, . . . , 3mn} and labels of faces

are from the set {5mn+ 1, 5mn+ 2, . . . , 6mn} . For face-weights we get:

wt(zji ) = w(zji )+h(uj
iv

j
i )+h(uj

i+1v
j
i+1)+ f(zji ) = (21n+2j)m+2i+8+(2n+ j)m+ i+1+(2n+ j)m+

(i+ 1) + 1 + (6n− j)m− i = (31n+ 3j)m+ 3i+ 11, for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 2 and

wt(zjm−1) = w(zjm−1) + h(uj
m−1v

j
m−1) + h(uj

0v
j
0) + f(zjm−1) = (21n+ 2j)m+ 6 + (2n+ j)m+ (m− 1) +

1 + (2n+ j)m+ 1 + (6n− j)m− (m− 1) = (31n+ 3j)m+ 8, for 0 ≤ j ≤ n− 1.

We can see that face-weights constitute a set {31mn+ 8, 31mn+ 11, . . . ,

34mn + 5} , i.e. constitute the arithmetic sequence of difference 3. Thus, the resulting labeling is a super

3-antimagic labeling of type (1, 1, 1). 2

Next, we are going to show a super 5-antimagic labeling of type (1, 1, 1) for the toroidal polyhex Hn
m .

Let uj
iv

j−1
i+1 and vji u

j+1
i+1 be edges in a 1-factor of Hn

m for j odd, 1 ≤ j ≤ n − 1, 0 ≤ i ≤ m − 1. Let

u0
i v

0
i u

1
i v

1
i u

2
i v

2
i . . . u

n−2
i vn−2

i un−1
i vn−1

i be 2n -cycles in a 2-factor of Hn
m for 0 ≤ i ≤ m− 1.

For 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1, define the bijection α : V (Hn
m) → {1, 2, . . . , 2mn} as follows:

α(uj
i ) = 2ni+ 2j + 2,

α(vji ) =

{
2ni+ 2j + 3, if 0 ≤ j ≤ n− 2

2ni+ 1, if j = n− 1.

The edges of 2n -cycles, for 0 ≤ i ≤ m−1, we label by the consecutive integers 2mn+1, 2mn+2, . . . , 4mn

such that

β(uj
iv

j
i ) = 2n(2m− i)− 2j − 1 if 0 ≤ j ≤ n− 1,

β(vji u
j+1
i ) = 2n(2m− i)− 2j − 2 if 0 ≤ j ≤ n− 2,

β(vn−1
i u0

i ) = 2n(2m− i), where j is taken modulo n .

Lemma 3 Let w(zji ) = α(uj
i ) + β(uj

iv
j
i ) + α(vji ) + β(vji u

j+1
i ) + α(uj+1

i ) + α(vji+1) + β(vji+1u
j
i+1) + α(uj

i+1) +
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α(vj−1
i )+β(vj−1

i uj
i ) be a partial weight of the face zji of Hn

m for j even, 0 ≤ j ≤ n−2 , and 0 ≤ i ≤ m−1 . For

n even, n ≥ 2 and m ≥ 2 , the partial weight w(zji ) = 2n(8m+2i+1)+4j+11 , 0 ≤ i ≤ m−2 , 0 ≤ j ≤ n−2 ,

and w(zjm−1) = 2n(9m− 1) + 4j + 11 , 0 ≤ j ≤ n− 2 .

Proof Suppose that j is even. For 0 ≤ j ≤ n− 2 and 0 ≤ i ≤ m− 2 the partial weights of zji are

w(zji ) = 2ni+2j+2+2n(2m−i)−2j−1+2ni+2j+3+2n(2m−i)−2j−2+2ni+2(j+1)+2+2n(i+1)+2j+

3+2n(2m−i−1)−2j−1+2n(i+1)+2j+2+2ni+2(j−1)+3+2n(2m−i)−2(j−1)−2 = 2n(8m+2i+1)+4j+11.

For 0 ≤ j ≤ n− 2 we have w(zjm−1) = 2n(m− 1)+ 2j +2+2n(2m−m+1)− 2j − 1+ 2n(m− 1)+ 2j +

3+ 2n(2m−m+ 1)− 2j − 2 + 2n(m− 1) + 2(j + 1) + 2 + 2j + 3+ 4mn− 2j − 1 + 2j + 2+ 2n(m− 1) + 2(j −
1) + 3 + 2n(2m−m+ 1)− 2(j − 1)− 2 = 2n(9m− 1) + 4j + 11. 2

Lemma 4 Let w(zji ) = α(uj
i ) + β(uj

iv
j
i ) + α(vji ) + α(uj+1

i+1 ) + β(uj+1
i+1v

j
i+1) + α(vji+1) + β(uj

i+1v
j
i+1) + α(uj

i+1) +

β(uj
i+1v

j−1
i+1 ) + α(vj−1

i+1 ) be a partial weight of the face zji for j odd, 1 ≤ j ≤ n− 1 , and 0 ≤ i ≤ m− 1 . For n

even, n ≥ 2 and m ≥ 2 , the partial weight w(zji ) = 2n(8m+ 2i+ 1) + 4j + 11 , 0 ≤ i ≤ m− 2 , 1 ≤ j ≤ n− 3 ,

w(zjm−1) = 2n(9m − 1) + 4j + 11 , 1 ≤ j ≤ n − 3 , w(zn−1
i ) = 2n(8m + 2i + 1) + 7 , 0 ≤ i ≤ m − 2 , and

w(zn−1
m−1) = 2n(9m− 1) + 7 .

Proof Assume that j is odd. For the partial weights of zji we have

w(zji ) = 2ni+2j+2+2n(2m− i)−2j−1+2ni+2j+3+2n(i+1)+2(j+1)+2+2n(2m− i−1)−2j−2+

2n(i+1)+2j+3+2n(2m−i−1)−2j−1+2n(i+1)+2j+2+2n(2m−i−1)−2(j−1)−2+2n(i+1)+2(j−1)+3 =

2n(8m+ 2i+ 1) + 4j + 11 for 1 ≤ j ≤ n− 3, 0 ≤ i ≤ m− 2,

w(zjm−1) = 2n(m−1)+2j+2+2n(2m−m+1)−2j−1+2n(m−1)+2j+3+2(j+1)+2+4mn−2j−
2+2j+3+4mn− 2j− 1+2j+2+4mn− 2(j− 1)− 2+2(j− 1)+3 = 2n(9m− 1)+4j+11 for 1 ≤ j ≤ n− 3,

w(zn−1
i ) = 2ni+2(n−1)+2+2n(2m− i)−2(n−1)−1+2ni+1+2n(i+1)+2+4mn−2n(i+1)+2n(i+

1)+1+2n(2m−i−1)−2(n−1)−1+2n(i+1)+2(n−1)+2+2n(2m−i−1)−2(n−2)−2+2n(i+1)+2(n−2)+3 =

2n(8m+ 2i+ 1) + 7 for 0 ≤ i ≤ m− 2 and

w(zn−1
m−1) = 2n(m− 1) + 2(n− 1) + 2 + 2n(2m−m+ 1)− 2(n− 1)− 1 + 2n(m− 1) + 1 + 2+ 4mn+ 1+

4mn− 2(n− 1)− 1 + 2(n− 1) + 2 + 4mn− 2(n− 2)− 2 + 2(n− 2) + 3 = 2n(9m− 1) + 7. 2

Note that from Lemmas 3 and 4 it follows that partial weights of the faces zji constitute 2 arithmetic

progressions with difference 4, namely 2n(8m+1)+7, 2n(8m+1)+11, . . . , 2n(10m− 1)+3 and 2n(9m− 1)+

7, 2n(9m− 1) + 11, . . . , 2n(9m+ 1) + 3.

Theorem 3 For n even, n ≥ 2 , and m ≥ 2 , the toroidal polyhex Hn
m has a super 5-antimagic labeling of type

(1, 1, 1) .

Proof Label the vertices of Hn
m by the labeling α and the edges of 2n-cycles by the labeling β . Complete

the edge labeling β by labels of edges in the 1-factor such that

β(uj
i+1v

j−1
i ) = n(4m+ i) + j + 1 if 1 ≤ i ≤ m− 2 and 1 ≤ j ≤ n− 3,

β(u0
i+1v

n−1
i ) = n(4m+ i) + 1 if 0 ≤ i ≤ m− 2,
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β(uj+1
i vji+1) = n(4m+ i) + j + 2 if 0 ≤ i ≤ m− 2 and 1 ≤ j ≤ n− 1,

β(u0
0v

n−1
m−1) = n(6m− 1) + 1,

β(uj
0v

j−1
m−1) = n(6m− 1) + j + 1 if 0 ≤ j ≤ n− 2, and

β(uj+1
m−1v

j
0) = n(6m− 1) + j + 2 if 0 ≤ j ≤ n− 2.

The face values we arranged in such a way that

γ(zji ) = n(6m− i− 1)− j for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1.

There is no problem in seeing that the completed edge labels and face labels use consecutive integers

from the set {4mn+ 1, 4mn+ 2, . . . , 6mn} . If j is even, then for face-weights we get

wt(zji ) = w(zji ) + β(uj
i+1v

j−1
i ) + β(vji+1u

j+1
i ) + γ(zji ) = 2n(8m+ 2i+ 1) + 4j + 11 + n(4m+ i) + j + 1+

n(4m+ i) + j + 2 + n(6m− i− 1)− j = n(30m+ 5i+ 1) + 5j + 14 for 0 ≤ j ≤ n− 2, 0 ≤ i ≤ m− 2, and

wt(zjm−1) = w(zjm−1) + β(uj
0v

j−1
m−1) + β(vj0u

j+1
m−1) + γ(zjm−1) = 2n(9m − 1) + 4j + 11 + n(6m − 1) + j +

1 + n(6m− 1) + j + 2 + n(6m− (m− 1)− 1)− j = n(35m− 4) + 5j + 14 for 0 ≤ j ≤ n− 2.

If j is odd, then for face-weights we have

wt(zji ) = w(zji ) + β(uj
iv

j−1
i+1 ) + β(vji u

j+1
i+1 ) + γ(zji ) = 2n(8m+2i+1)+ 4j +11+n(4m+ i) + (j − 1)+ 2+

n(4m+ i) + (j + 1) + 1+ n(6m− i− 1)− j = n(30m+ 5i+ 1) + 5j + 14 for 1 ≤ j ≤ n− 3 and 0 ≤ i ≤ m− 2,

wt(zjm−1) = w(zjm−1) + β(uj
m−1v

j−1
0 ) + β(vjm−1u

j+1
0 ) + γ(zjm−1) = 2n(9m− 1) + 4j + 11 + n(6m− 1) +

(j − 1) + 2 + n(6m− 1) + (j + 1) + 1 + n(6m− (m− 1)− 1)− j = n(35m− 4) + 5j + 14 for 1 ≤ j ≤ n− 3,

wt(zn−1
i ) = w(zn−1

i ) + β(un−1
i vn−2

i+1 ) + β(vn−1
i u0

i+1) + γ(zn−1
i ) = 2n(8m+ 2i+ 1) + 7+ n(4m+ i) + (n−

2) + 2 + n(4m+ i) + 1 + n(6m− i− 1)− (n− 1) = n(30m+ 5i+ 1) + 9 for 0 ≤ i ≤ m− 2,

wt(zn−1
m−1) = w(zn−1

m−1) + β(un−1
m−1v

n−2
0 ) + β(vn−1

m−1u
0
0) + γ(zn−1

m−1) = 2n(9m− 1) + 7+ n(6m− 1) + (n− 2) +

2 + n(6m− 1) + 1 + n(6m− (m− 1)− 1)− (n− 1) = n(35m− 4) + 9.

It is not difficult to see that the face-weights constitute the arithmetic progression with the first term

n(30m + 1) + 9 and common difference 5, which implies that the resulting labeling is a super 5-antimagic

labeling of type (1, 1, 1). 2

4. Concluding remarks

In the foregoing section we studied the existence of super d-antimagic labelings of type (1, 1, 1) for the toroidal

polyhex Hn
m . We labeled the edges of a 1-factor by consecutive integers and then in successive steps we labeled

the edges of 2m-cycles (respectively 2n-cycles) in a 2-factor by consecutive integers. This technique allows us

to construct super d-antimagic labelings of type (1, 1, 1) for d ∈ {1, 3, 5} . We did not solve the existence of such

labelings for d ∈ {0, 2, 4} . We think that in general such labelings exist, but the corresponding labelings have

to be constructed by other methods than those described in this article. Therefore, we suggest the following

open problem.

Open Problem 1 Find other possible values of the parameter d and corresponding super d-antimagic labelings

of type (1, 1, 1) for the toroidal polyhex Hn
m .
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[4] Bača, M., Bashir, F., Semaničová, A.: Face antimagic labelings of antiprisms. Utilitas Math. 84, 209–224 (2011).
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