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Abstract: In this paper, we explore when the lattice of invariant subspaces of a structural matrix algebra can be

complemented. We give several equivalent conditions for this lattice to be a Boolean algebra.
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1. Introduction

Let V denote a vector space of finite dimension n over a field F . Let L(V ) denote the set of all subspace of

V . Then L(V ) is a modular lattice under the operations ∩ and +. If W is a sublattice, it is also modular.

Let Hom(V ) denote the algebra of all linear transformations of V onto itself. As usual, Hom(V ) can

be identified with Mn(F ), the algebra of all n× n matrices over F . We assume that all algebras contain the

identity map, I .

Definition 1.1 Let V be a sublattice of L(V ) and let R be a subalgebra of Hom(V ) . We define

AlgV = {θ ∈ Hom(V ) : Wθ ⊂ W, for every W ∈ V}

and
LatR = {W ∈ L(V ) : Wθ ⊂ W, for every θ ∈ R}.

AlgV is a subalgebra of Hom(V ) and LatR is a sublattice of L(V ) .

In general, the containments LatAlgV ⊇ V and AlgLatR ⊇ R are proper. If equality holds, then V
(respectively R) is called reflexive (see [5]).

Let F be a field and let ρ be a reflexive transitive relation on the set N = {1, ..., n} for some n ≥ 2

(more information about ρ will be given in Section 2). The set

Mn(F, ρ) = {A ∈ Mn(F ) : aij = 0 whenever (i, j) /∈ ρ}

is a subalgebra of Mn(F ) and we call Mn(F, ρ) the algebra of n× n structural matrices over F (with identity

I ).
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Let X be a subset of a set S . If X ∪X = S and X ∩X = ∅ for X ⊆ S , then X is called a complement

of X in S .

Recall that a lattice L is called a complemented lattice if L has a greatest element and least element,

and each element has at least one complement; that is, for b ∈ L , there exists a ∈ L such that a ∨ b = 1 and

a ∧ b = 0.

This work is a follow-up paper of [1], and in this paper we explore when the lattice of invariant subspaces

of a structural matrix algebra can be complemented. We recall that a Boolean algebra is a complemented

distributive lattice, and we concentrate on the relation between the structural matrix algebra and Boolean

algebra. Our aim is to study when the lattice of invariant subspaces of a structural matrix algebra is a Boolean

algebra. We give several equivalent conditions for this to hold.

We first prove that a finite sublattice V of the set L(V ) of all subspaces of a finite dimension vector space

V is a Boolean algebra if and only if Alg(V) is a structural matrix algebra Mn(F, ρ), with ρ symmetric. Then,

by asking a question with respect to whether we have a necessary and sufficient condition for a subspace to have

a complement in a subspace lattice for a structural algebra, we partially answer the question in Propositions

3.6 and 3.7.

Finally, we prove that any basis of a Boolean algebra satisfies the complementation property, and,

conversely, if a basis of a lattice of subspaces of a structural algebra satisfies the complementation property,

then the lattice is a Boolean algebra.

At the end of the paper, we discuss briefly the structure of the algebra if the finite distributive lattice

(i.e. finite reflexive lattice) L(V ) is a Boolean algebra.

2. Preliminaries

Let ρ (or C or ∼) be a reflexive transitive relation (i.e. quasi-order relation) on the set N = {1, ..., n} for some

n ≥ 2, and then (N, ρ) is called a quasi -ordered set (abbreviated as quoset). This is also in accordance with [9].

Note that each quoset (N, ρ) gives rise to the partition J = {[i] : i ∈ N} of N whereby [i] := {j | (i, j) ∈ ρ

and (j, i) ∈ ρ}, and that (J,≤), [i] ≤ [j] defined by (i, j) ∈ ρ , is a partially ordered set (abbreviated as

poset). Thus, the relation ≤ is reflexive and antisymmetric (i.e. [i] ≤ [j], [j] ≤ [i] implies [i] = [j]). A subset

X of a quoset (N, ρ) is an order ideal if for all j ∈ X it follows from (i, j) ∈ ρ that also i ∈ X. The

family L(N, ρ) of all order ideals is obviously a sublattice of the powerset lattice P(N) and thus necessarily

distributive. Conversely, for any finite distributive lattice L let the poset (N,≤) mimic the order relation

among the join irreducible elements of L . Then L(N,≤) is isomorphic to L (Birkhoff’s Theorem, [4, p. 61]).

We let V denote a sublattice of L(V ). Recall that an element W ∈ V is (join) irreducible if and only

if W = W1 + W2 always implies W = W1 or W = W2 where W1 ∈ V and W2 ∈ V . We also say that W

covers W0 if and only if W ⊇ W0,W ̸= W0 , and there is no W1 ∈ V distinct from W and W0 such that

W ⊇ W1 ⊇ W0 .

The following theorem is implied by [2, Theorem 3.4], but we have a different approach and proof of the

result under discussion.

Theorem 2.1 Let ρ be a quasi-ordered relation on the set N = {1, . . . , n}. Let F be a field and Mn(F, ρ) be

a structural matrix algebra over F. If Mn(F, ρ) is simple, then Mn(F, ρ) = Mn(F ).

Proof Let Mn(F, ρ) = M be a structural matrix algebra that is simple. We may, without loss of generality,

assume the algebra to be in block upper triangular form. We see from consideration of the properly nilpotent
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elements that the radical, J , is the ideal of all matrices in M that are block strictly upper triangular. Since

M is simple, it is semisimple, and so J = {0} . Then M is block diagonal, that is, a direct sum of full matrix

algebras. But since M is simple, it has no proper ideals, and thus consists of a single block. That is, M is the

full matrix algebra of order n over F . This completes the proof. 2

Corollary 2.2 Let ρ be a quasi-ordered relation on the set N = {1, . . . , n} and let Mn(F, ρ) be the structural

algebra for ρ . The following statements are equivalent:

(1) Mn(F, ρ) is simple,

(2) Mn(F, ρ) = Mn (F ) ,

(3) ρ is the trivial relation, that is, (i, j) ∈ ρ for all i, j.

The property isolated in the next definition is central in the study of structural algebras (cf. [7, 8, 9]).

Definition 2.3 A lattice V ⊂ L(V ) satisfies the base property if and only if there is a basis B of V such

that B ∩W is a basis of W for every W ∈ V .

Remark 2.4 A finite lattice V ⊂ L(V ) satisfies the base property if and only if it is distributive [1, Theorem

1].

3. Boolean algebras of subspaces

Recall that a Boolean algebra is a complemented distributive lattice. Since we are considering invariant subspace

lattices of structural matrix algebras, we want the invariant subspace to have a complement that is also an

invariant subspace.

Theorem 3.1 Let V be a finite sublattice of L(V ) with dim(V ) = n . Then the following statements are

equivalent:

(1) V is a Boolean algebra;

(2) R = Alg(V) is a structural n× n matrix algebra Mn(F, ρ) with ρ symmetric;

(3) R = Alg(V) is a semisimple structural matrix algebra Mn(F, ρ).

Proof As to (1) ⇒ (2), when V is a Boolean algebra it is distributive; by [1, Theorem 3] we have R = Alg(V).
With exactly same idea as in the proof of [1, Theorem 3], the argument is (ehi , e

k
j ) ∈ ρ ⇔ Pi ⊆ Pj ⇔ Pi = Pj ⇔

Pj ⊆ Pi ⇔ (ekj , e
h
i ) ∈ ρ , and so ρ is symmetric.

As to (2) ⇒ (1), by [1, Theorem 3] V = Lat(R) = Lat(Mn(F, ρ)) is isomorphic to the lattice of all order

ideals Y of the quoset (B, ρ) where B is as in the proof of [1, Theorem 3]. Since ρ symmetric, these Y are

exactly the 2s unions of sets Bi = {ehi | 1 ≤ h ≤ n(i)} (1 ≤ i ≤ s). So V is a Boolean algebra.

As to (2) ⇒ (3), obviously Mn(F, ρ) ≃ Mn(1)(F )× · · · ×Mn(s)(F ), so Mn(F, ρ) is semisimple.

The direction (3) ⇒ (2) is slightly less obvious and is proven in [2]. 2
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We shall give an alternate proof that (3) implies (2). Let M = Mn(F, ρ) be a structural matrix algebra.

We are to show that if M is semisimple then ρ is symmetric (i.e. it is an equivalence relation). By relabeling,

if necessary, the indices, we may assume that M is in block upper triangular form where the blocks on the

diagonal are full matrix algebras and correspond to the equivalence classes of ρ. If A is a matrix in M whose

diagonal blocks are zero, then A is properly nilpotent [3, p. 120]. But if M is semisimple, then its radical is

zero. However, the radical consists of all properly nilpotent elements [3, Theorem 4.4], whence A = 0. Thus,

M consists of the block diagonal elements, and so ρ is symmetric.

Theorem 3.2 Let R be a subalgebra of Mn(F ) .

(1) If R is a semisimple structural matrix algebra, then LatR is a Boolean algebra.

(2) If L is a Boolean algebra of subspaces of Fn , then AlgL is conjugate to a semisimple structural matrix

algebra.

(3) If LatR is a Boolean algebra and if F is algebraically closed, then R is conjugate to a semisimple structural

matrix algebra.

Proof (1) Let R be a semisimple structural matrix algebra, say R = Mn(F, ρ). By Theorem 1 of [1] and

Theorem 1.1 of [9], LatR is a distributive lattice and satisfies the base property with some basis B . In fact, we

may take B = {e1, . . . , en}, the standard basis vectors of Fn . Let W ∈ LatR and B∩W = {ej1 , . . . , ejp} . Let
W ′ be the subspace spanned by the subset of B complementary to {ej1 , . . . , ejp} . We claim W ′ ∈ LatR . If

W ′ = span{ek1 , . . . , ekq} , p+q = n , then it suffices to show that for any (i, j) ∈ ρ , ekl
Eij ∈ W ′ for l = 1, . . . , q .

So let (i, j) ∈ ρ . Then if kl ̸= i , we have ekl
Eij = 0 ∈ W ′ . If kl = i , then ekl

Eij = ej . Suppose ej ∈ W .

Since R is semisimple, ρ is symmetric [2, Theorem 3.4], such that Eji ∈ R as well. Hence, ejEji ∈ W as

W ∈ LatR . But W ∩W ′ = {0} . Thus, ej ∈ W ′ and so W ′ ∈ LatR . Therefore, LatR is complemented.

(2) Now suppose L is a Boolean algebra of subspaces of Fn . Then by Theorem 1 of [1], L satisfies the

base property for some basis B . If we utilize the construction in the proof of Theorem 1 of [7], we may assume

that B consists of the standard unit vectors, that ρ is the defining relation for AlgL , and (i, j) ∈ ρ if and

only if Eij ∈ AlgL . Thus, AlgL is a structural matrix algebra. Since L is a Boolean algebra with, say, 2m

elements, then

Fn = V1 ⊕ · · · ⊕ Vm

where each Vj is a join irreducible element of L . Then

AlgL = AlgV1 ⊕ . . .⊕AlgVm,

where each AlgVj is the algebra of all endomorphisms of Vj and is therefore simple. Hence, AlgL is semisimple.

(3) Suppose R is an algebra such that LatR is a Boolean algebra. As in (2), we can write

Fn = V1 ⊕ · · · ⊕ Vm

where the Vj are join irreducible. Then

R = R1 ⊕ · · · ⊕ Rm,

where Rj is the restriction of R to Vj . The join irreducibility of Vj as an element of LatR means that Rj

has no invariant subspaces other than Vj and {0} since LatR is complemented. That is, Rj is an irreducible
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algebra. Since F is algebraically closed, by Burnside’s theorem Rj = Hom(Vj). The result follows. 2

Example 3.3 The algebraic closure of F is needed in (3) of Theorem 3.2. For if F = R , the real numbers,

and if

R(θ) =

(
cosθ sinθ
−sinθ cosθ

)
,

we let R be the subalgebra of M2(R) generated by the R(θ) . Then R is irreducible and is in fact a field,

and hence simple. However, R cannot be isomorphic with a structural ring M2(R, ρ) of 2 × 2 matrices since

M2(R, ρ) has zero divisors.

We know that the complement of an element in a Boolean algebra is unique [6, p. 40]. Then we can give

the following proposition. Proof is sufficiently obvious by the base property.

Proposition 3.4 If the lattice of subspaces of a structural algebra is complemented, then the complement is

unique.

Question: If we have a subspace lattice for a structural algebra, do we have necessary and sufficient

conditions for a subspace to have a complement?

Remark 3.5 L is the lattice of invariant subspace for A = Mn(F, ρ). Let V ∈ L and let B be a basis for L .

Then B1 = B ∩ V is a basis for V. Put B2 = B\B1. V has a complement in L if and only if spanB2 ∈ L.

Proposition 3.6 Let Mn (F, ρ) be a structural matrix algebra with subspace lattice L. Let V ∈ L and suppose

V is a sum of minimal subspaces, each of which is contained in no other irreducible subspace. Then V has a

complement in L.
Proof Recall first that a minimal nonzero element of L is irreducible. First suppose V is a minimal subspace

that is contained in no other irreducible subspace. Let W =
∑

j {Vj : Vj is irreducible, Vj ̸= V } .

We claim W is a complement of V. First Fn = V +W since any element of L is the sum of irreducible

elements. By minimality of V we have V ∩ Vj = {0} for all j. Thus, V ∩W = V ∩

(∑
j

Vj

)
=

(∑
j

V ∩ Vj

)
=

{0} . The claim follows.

Now suppose V is the sum of minimal subspaces, none of which is contained in another irreducible

subspace, say

V = U1 + · · ·+ Us.

By the first part, each Uj has a complement Wj . Put

W = W1 ∩ · · · ∩Ws ∈ L

a.

V ∩W = (U1 + · · ·+ Us) ∩W ⊆ (U1 ∩W1) + · · ·+ (Us ∩Ws) = {0}

b.

V +W = V + (W1 ∩ · · · ∩Ws) ⊇ (U1 +W1) ∩ · · · ∩ (Us +Ws) = Fn
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The result is established. 2

We do not have a necessary condition for subspaces that each satisfy the hypotheses of some V to have

a complement. However, if we replace “some V ” by “all V ”, then we have the next result.

Proposition 3.7 Let L be the lattice of subspaces of the structural matrix algebra A. L is a Boolean algebra

if and only if there is no chain of nonzero irreducible elements, that is, if and only if V1, V2 are irreducible and

0 ̸= V1 ⊆ V2 implies V1 = V2.

Proof Suppose first that L is a Boolean algebra and 0 ̸= V1 ⊆ V2 where V1 and V2 are distinct irre-

ducible subspaces. If B is a basis for L , let Si = B ∩ Vi, i = 1, 2. Let B ∩ V1 = {v1, v2, . . . , vr} , B ∩ V2 =

{v1, v2, . . . , vr, t1, . . . , ts} . Let W be the complement of V1 in L . If B = {v1, v2, . . . , vr, t1, . . . , ts, w1, . . . , wq} ,then
B ∩W ⊆ {t1, . . . , ts, w1, . . . , wq} . But B ∩W is a basis for W. Thus,

dim(span (B ∩W ) = dimW − dimV1 = s+ q.

Hence:
B∩W = {t1, . . . , ts, w1, . . . , wq} . Now V2 = span {v1, v2, . . . , vr, t1, . . . , ts} , so by Remark 3.5, span {w1, . . . , wq} ∈
L. Consequently V1 + span {w1, . . . , wq} ∈ L. So again by Remark 3.5, V = span {t1, . . . , ts} ∈ L , as well.

Clearly V + V1 = V2, V ∩ V1 = {0} . This contradicts the irreducibility of V2 .

For the converse, note that every element V ∈ L is a sum of irreducible subspaces of Proposition 3.6.

The converse follows. 2

Corollary 3.8 Let Mn (F, ρ) be a structural matrix algebra with L =Lat (Mn (F, ρ)) its lattice. Then L is a

Boolean algebra if and only if L is an atomic lattice (point lattice).

Recall that L is distributive and that an atom (or point) is an element that covers {0} . The lattice is

atomic if and only if every element of L is the join of the points it contains.

Proof Observe first that the points are the minimal subspaces. A minimal (nonzero) subspace is necessarily

join irreducible.

Suppose first that L is a Boolean algebra and let W ∈ L . We are to show that W is the join of the

points it contains. If W is itself irreducible, then by proposition 3.7, W is a point and there is nothing to

prove. Otherwise W = V1 + ...+ Vk , where {Vj}kj=1 is the collection of the irreducible subspaces contained in

W. But again by proposition 3.7, each of these is a point, so we are done.

Conversely, suppose L is a point lattice. From the observation, the points are join irreducible subspaces.

Since L is distributive, then W is the join of points and the converse follows. 2

Recall that if B is a basis of Fn , we say that B is a basis of L if and only if for any V ∈ L, B ∩ V is a

basis for V . We know that for any lattice L of invariant subspaces for a structural algebra A , there is a B of

L.

Definition 3.9 Let L be a lattice of subspaces of a structural algebra A and let B be a basis for L . We say

that B satisfies the complementation property if for any S ⊆ B , the span of S is an element of L; then the

complement S′ of S in B also spans an element of L.

Remark 3.10 If S ⊆ B is such that spanS = V ∈ L, then B ∩ V = S.
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Proposition 3.11 (1) If L is a Boolean algebra, then any basis B of L satisfies the complementation

property.

(2) If some basis B of L satisfies the complementation property, then L is a Boolean algebra.

Remark 3.12 We have seen already that complements, if they exist, in L are unique.

Proof (proof of proposition) (1) First suppose that L is a Boolean algebra and that B is a basis for L . Let

V ∈ L and S = B∩V, say S = {x1, x2, . . . , xm} with the complements S′ = {xm+1, xm+2, . . . , xn} . If W is the

complement of V in L , then for any j = 1, 2, . . . ,m, xj /∈ B ∩W, since xj ∈ B ∩ V and V ∩W = {0} . Thus,
S′ ⊇ B ∩ W. However, dim spanS′ = n − m = dimW so spanS′ = W and B satisfies the complementation

property.

(2) Now suppose B is a basis of L that satisfies the complementation property. If V ∈ L , let S = B∩V,

say S = {x1, x2, . . . , xm} . Then S′ = {xm+1, xm+2, . . . , xn} is a complement of S in B. Put W = spanS′. By

the hypothesis W ∈ L . Clearly V + W ⊇ span (S ∪ S′) = Fn. Also, V ∩ W = spanS ∩ spanS′ = {0} since

B = S ∪ S′ is linearly independent. Thus, L is a Boolean algebra. 2

Let L(V ) be a finite distributive lattice of subspace of the vector space V where dimV = n. If A = AlgL,
we know that A is (isomorphic with) a structural matrix algebra Mn (F, ρ) . Furthermore, L(V ) and Alg L are

reflexive. If L(V ) is a Boolean algebra (or equivalently if AlgL is semisimple), then V = V1 ⊕ V2 ⊕ · · · ⊕ Vm ,

where {V1, V2, . . . , Vm} is the complete set of join irreducible elements of L. If Ak = A |Vk
, then A =

⊕
Ak.

Consequently, A ∈ A has a block diagonal representation:

A =



A1 0 0 · · · 0
0 A2 0 · · · 0

0 0
. . . · · ·

...
...

... · · · Am−1 0
0 0 · · · 0 Am

 .

We have that LatAk = {0, Vk} , so that Ak is transitive on Vk . If dimVk = nk , then Ak is nk × nk. Ak is

more than transitive, however, since Ak is (isomorphic with) AlgVk . Thus, Ak is isomorphic with Mnk
(F ),

k = 1, ...,m and

A = AlgL = Mn1 (F, ρ)⊕ · · · ⊕Mnm (F, ρ) .

Now consider Φ ∈ Aut (A) . We know from [2] Theorem A that Φ = Θ ◦ Π where Θ is inner and Π is a

permutation. The equivalence classes of ρ are the set

[i] := {j | (i, j) ∈ ρ and (j, i) ∈ ρ}.

Then the admissible permutations must permute the indices of 2 classes, that is, must permute the diagonal

blocks. But we can, for instance, permute 2 such diagonal blocks only when np = nq (compare [2, Theorem

B]).
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