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Abstract: Following the volume difference function, we first introduce the notion of the affine surface area quotient

function. We establish Brunn–Minkowski type inequalities for the affine surface area quotient function, which in special

cases yield some well-known results.
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1. Introduction and statement of results

The well-known classical Brunn–Minkowski inequality can be stated as follows:

If K and L are convex bodies in Rn , then (see, e.g., [16])

V (K + L)1/n ≥ V (K)1/n + V (L)1/n, (1.1)

with equality if and only if K and L are homothetic. Here, + is the usual Minkowski sum.

Let K and L be star bodies in Rn , then the dual Brunn–Minkowski inequality states that (see [8])

V (K+̃L)1/n ≤ V (K)1/n + V (L)1/n, (1.2)

with equality if and only if K and L are dilates. Here, +̃ is the radial Minkowski sum.

A vector addition was defined on Rn which we call radial Minkowski addition, as follows. If x, y ∈ Rn ,

then x+̃y is defined to be the usual vector sum of x, y provided x, y both lie in a 1-dimensional subspace of

Rn and as the zero vector otherwise. If K,L are star bodies and λ, µ ∈ R , then the radial Minkowski linear

combination, λK+̃µL , is defined by λK+̃µL = {λx+̃µy : x ∈ K, y ∈ L}. The expression K+̃L is called the

radial Minkowski sum of the star bodies K and L (see [5]).

In 2004, Leng [6] defined the volume difference function of compact domains D and K , where D ⊆ K ,

by

DV (K,D) = V (K)− V (D).

The following Brunn–Minkowski type inequality for volume difference functions was also established by Leng

[6].
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Theorem A If K,L, and D are compact domains, D ⊆ K,D′ ⊆ L , D′ is a homothetic copy of D , then

(V (K + L)− V (D +D′))1/n ≥ (V (K)− V (D))1/n + (V (L)− V (D′))1/n, (1.3)

with equality if and only if K and L are homothetic and (V (K), V (D)) = µ(V (L), V (D′)), where µ is a

constant.

Recently, Lv [13] introduced the dual volume difference function for star bodies and established the

following dual Brunn–Minkowski type inequality for dual volume difference functions:

Theorem B If K,D , and D′ are star bodies in Rn , and D ⊆ K,D′ ⊆ L , L is a dilation of K , then

(V (K+̃L)− V (D+̃D′))1/n ≥ (V (K)− V (D))1/n + (V (L)− V (D′))1/n, (1.4)

with equality if and only if D and D′ are dilates and (V (K), V (D)) = µ(V (L), V (D′)), where µ is a constant.

In fact, some more general versions on these types of inequalities were proved in [6] and [13], respectively.

In 2005, Zhao [19] defined the volume sum function of star bodies D and K , by

SV (K,D) = V (K) + V (D).

The Minkowski inequality for volume sums of mixed intersection bodies was also established in [19].

Motivated by the work of Leng, Lv, and Zhao, we give the following definition:

Definition 1.1 Let K be a convex body in Rn , then the affine surface area quotient function of K ,

QΩi,j (K)(i, j ∈ R), can be defined by

QΩi,j
(K) =

Ωi(K)

Ωj(K)
. (1.5)

If i = 0 and j = n in (1.5), then we get the affine surface area quotient of the convex body K and the unit

n-ball B :

QΩ0,n(K) =
Ω(K)

Ω(B)
,

where Ω(B) is the surface area of the unit n -ball B .

A convex body K is said to have a continuous curvature function,

f(K, ·) : Sn−1 → [0,∞),

if for each L ∈ Cn , the mixed volume V1(K,L) has the integral representation

V1(K,L) =
1

n

∫
Sn−1

f(K,u)h(L, u)dS(u),

see [9].

The subset of Kn consisting of all bodies that have a positive continuous curvature function will be

denoted by κn .

The Brunn–Minkowski inequality for the affine surface area of a Blaschke sum was established by Lutwak

[10] as follows:
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If K , L ∈ κn , then for i < −1,

Ωi(K+̈L)
n+1
n−i ≤ Ωi(K)

n+1
n−i +Ωi(L)

n+1
n−i , (1.6)

with equality if and only if K and L are homothetic, where +̈ is Blaschke addition (see Section 2).

The first aim of this paper is to establish the following Brunn–Minkowski type inequality for the affine

surface area quotient functions.

Theorem 1.2 If K , L ∈ κn and i ≤ −1 ≤ j ≤ n, i, j ∈ R , then for i ̸= j

(
Ωi(K+̈L)

Ωj(K+̈L)

)n+1
j−i

≤
(
Ωi(K)

Ωj(K)

)n+1
j−i

+

(
Ωi(L)

Ωj(L)

)n+1
j−i

. (1.7)

In fact, Theorem 1.2 is a special case of Theorem 3.2 established in Section 3.

Remark 1.3 Taking j = n and i < −1 in (1.7), and in view of the fact that
∫
Sn−1 dS(u) = nωn is a constant

(where ωn is the volume of the unit n -ball), (1.7) changes to (1.6).

The class νn is defined as follows:

νn = {K ∈ κn : f(K, ·)−1/(n+1) = h(Q, ·) for some Q ∈ Kn}.

The class νn has been extensively investigated by Petty [15].

In 1990, Lutwak [9] established the following Brunn–Minkowski type inequality for the affine surface area:

If K , L ∈ νn , then

Ω(K+̌L)−
1
n ≥ Ω(K)−

1
n +Ω(L)−

1
n , (1.8)

with equality if and only if K and L are homothetic, where +̌ is the Lutwak linear sum (see Section 2).

In 2005, an inverse form of (1.8) was established in [20] as follows:

If K , L ∈ νn , then for i > n+ 1,

Ωi(K+̌L)−
1

n−i ≤ Ωi(K)−
1

n−i +Ωi(L)
− 1

n−i , (1.9)

with equality if and only if K and L are homothetic.

The second aim of this paper is to establish the following Brunn–Minkowski type inequality for affine

surface area quotient functions.

Theorem 1.4 If K , L ∈ κn are symmetric and i ≥ n+ 1 ≥ j ≥ n, i, j ∈ R , then for i ̸= j

(
Ωi(K+̌L)

Ωj(K+̌L)

) 1
i−j

≤
(
Ωi(K)

Ωj(K)

) 1
i−j

+

(
Ωi(L)

Ωj(L)

) 1
i−j

. (1.10)

In fact, Theorem 1.4 is a special case of Theorem 3.3 established in Section 3.

Remark 1.5 Taking j = n in (1.10) and in view of the fact that
∫
Sn−1 dS(u) = nωn is a constant, (1.10)

changes to (1.9).
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2. Notations and preliminaries

The setting for this paper is n -dimensional Euclidean space Rn (n > 2). Let Cn denote the set of nonempty

convex figures (compact, convex subsets) and Kn denote the subset of Cn consisting of all convex bodies

(compact, convex subsets with nonempty interiors) in Rn . We reserve the letter u for unit vectors and the

letter B for the unit ball centered at the origin. The surface of B is Sn−1 . The volume of the unit n-ball is

denoted by ωn.

We use V (K) for the n -dimensional volume of a convex body K . Let h(K, ·) : Sn−1 → R denote the

support function of K ∈ Kn ; i.e. for u ∈ Sn−1 ,

h(K,u) = Max{u · x : x ∈ K},

where u · x denotes the usual inner product of u and x in Rn .

Let δ denote the Hausdorff metric on Kn , i.e. for K,L ∈ Kn, δ(K,L) = |hK − hL|∞, where | · |∞
denotes the sup-norm on the space of continuous functions C(Sn−1).

Associated with a nonempty compact subset K of Rn , which is star-shaped with respect to the origin,

is its radial function ρ(K, ·) : Sn−1 → R, defined for u ∈ Sn−1 by

ρ(K,u) = Max{λ ≥ 0 : λu ∈ K}.

If ρ(K, ·) is positive and continuous, K will be called a star body. Let Sn denote the set of star bodies in Rn .

Let δ̃ denote the radial Hausdorff metric as follows: if K,L ∈ Sn , then δ̃(K,L) = |ρK − ρL|∞.

2.1. Blaschke linear combination and mixed affine surface area

For K ∈ κn , we have (see [9]) ∫
Sn−1

uf(K,u)dS(u) = 0. (2.1)

Suppose K,L ∈ κn and λ, µ ≥ 0 (not both zero). From (2.1) it follows that the function λf(K, ·) + µf(L, ·)
satisfies the hypothesis of Minkowski’s existence theorem (see [3]). The solution of the Minkowski problem for

this function is denoted by λ ·K+̈µ · L; that is,

f(λ ·K+̈µ · L, ·) = λf(K, ·) + µf(L, ·), (2.2)

where the linear combination λ ·K+̈µ · L is called a Blaschke linear combination.

The relationship between Blaschke and Minkowski scalar multiplication is given by

λ ·K = λ1/(n−1)K. (2.3)

The affine surface area of K , Ω(K), is defined by

Ω(K) =

∫
Sn−1

f(K,u)
n

n+1 dS(u), K ∈ κn. (2.4)

It is well known that this functional is invariant under unimodular affine transformations. For K,L ∈ κn , and

i ∈ R , the ith mixed affine surface area of K and L , Ωi(K,L), is defined by (see [10])

Ωi(K,L) =

∫
Sn−1

f(K,u)
n−i
n+1 f(L, u)

i
n+1 dS(u). (2.5)
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For K ∈ κn , we define the ith affine surface area of K , Ωi(K), by (see also [15])

Ωi(K) =

∫
Sn−1

f(K,u)
n−i
n+1 dS(u), i ∈ R. (2.6)

2.2. Lutwak linear combination

The class νn is defined as follows:

νn = {K ∈ κn : f(K, ·)−
1

n+1 = h(Q, ·) for some Q ∈ Kn}. (2.7)

Lutwak defined a new linear combination λ ◦K+̌µ ◦ L ∈ νn. (This is called Lutwak linear combination

throughout the article.) For centrally symmetric K,L ∈ νn (see [9]),

f(K+̌L, ·)−1/(n+1) = f(K, ·)−1/(n+1) + f(L, ·)−1/(n+1). (2.8)

For our purposes it is more natural to use the set of all symmetric convex bodies in κn and to just define

the addition by (2.8).

3. Main results

An extension of Beckenbach’s inequality (see [2], p.27) was obtained by Dresher [4] by means of moment-space

techniques:

Lemma 3.1 (The Beckenbach–Dresher inequality) Let p ≥ 1 ≥ r ≥ 0 and f , g be measurable and nonnegative

functions. If ϕ is a distribution function, then for p ̸= r

(∫
E |f + g|pdϕ∫
E |f + g|rdϕ

) 1
p−r

≤
(∫

E f
pdϕ∫

E f
rdϕ

) 1
p−r

+

(∫
E g

pdϕ∫
E g

rdϕ

) 1
p−r

, (3.1)

Here E is a bounded measurable subset of Rn .

We will need the above inequality in Lemma 3.1 to prove our main theorems. Our main results are given

in the following theorems.

Theorem 3.2 If K,L ∈ κn and 0 ≤ r ≤ n+ 1 ≤ p , p, r ∈ R , then for p ̸= r

(
Ωn−p(K+̈L)

Ωn−r(K+̈L)

)n+1
p−r

≤
(
Ωn−p(K)

Ωn−r(K)

)n+1
p−r

+

(
Ωn−p(L)

Ωn−r(L)

)n+1
p−r

. (3.2)

Proof From (2.2), (2.3), and (2.6), we have

Ωn−p(K+̈L) =

∫
Sn−1

f(K+̈L, u)
p

n+1 dS(u) =

∫
Sn−1

(f(K,u) + f(L, u))
p

n+1 dS(u) (3.3)

and

Ωn−r(K+̈L) =

∫
Sn−1

(f(K,u) + f(L, u))
r

n+1 dS(u). (3.4)

Since 0 ≤ r ≤ n+ 1 ≤ p , we have

0 ≤ r

n+ 1
≤ 1 ≤ p

n+ 1
. (3.5)
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From (3.3), (3.4), and (3.5) and in view of the Beckenbach–Dresher inequality for integrals, we obtain that

(
Ωn−p(K+̈L)

Ωn−r(K+̈L)

)n+1
p−r

=

(∫
Sn−1(f(K,u) + f(L, u))p/(n+1)dS(u)∫
Sn−1(f(K,u) + f(L, u))r/(n+1)dS(u)

) 1
p

n+1
− r

n+1

≤

(∫
Sn−1 f(K,u)

p
n+1 dS(u)∫

Sn−1 f(K,u)
r

n+1 dS(u)

)n+1
p−r

+

(∫
Sn−1 f(L, u)

p
n+1 dS(u)∫

Sn−1 f(L, u)
r

n+1 dS(u)

)n+1
p−r

=

(
Ωn−p(K)

Ωn−r(K)

)n+1
p−r

+

(
Ωn−p(L)

Ωn−r(L)

)n+1
p−r

.

Let p = n− i and r = n− j , then

r ≤ n+ 1 ≤ p ⇔ i ≤ −1 ≤ j, 0 ≤ r ⇔ j ≤ n.

Namely,

i ≤ −1 ≤ j ≤ n. (3.6)

Taking p = n− i and r = n− j in (3.2) and using (3.6), (3.2) changes to the inequality in Theorem 1.2

stated in Section 1.

Taking p = n− i and r = 0 in (3.2), (3.2) changes to (1.6) stated in Section 1.

Taking p = n+ 1 and r = n in (3.2) and in view of (2.4), (3.2) changes to the following result.

(
Ω−1(K+̈L)

Ω(K+̈L)

)n+1

≤
(
Ω−1(K)

Ω(K)

)n+1

+

(
Ω−1(L)

Ω(L)

)n+1

. (3.7)

Taking p = 2n and r = n in (3.2) and in view of (2.4), (3.2) changes to the following result.

(
Ω−n(K+̈L)

Ω(K+̈L)

)n+1
n

≤
(
Ω−n(K)

Ω(K)

)n+1
n

+

(
Ω−n(L)

Ω(L)

)n+1
n

.

Taking p = 2n and r = n+ 1 in (3.2), (3.2) changes to the following result.

(
Ω−n(K+̈L)

Ω−1(K+̈L)

) n+1
n−1

≤
(
Ω−n(K)

Ω−1(K)

) n+1
n−1

+

(
Ω−n(L)

Ω−1(L)

) n+1
n−1

.

2

Theorem 3.3 If K,L ∈ κn are symmetric and 0 ≥ r ≥ −1 ≥ p , p, r ∈ R, then for p ̸= r

(
Ωn−p(K+̌L)

Ωn−r(K+̌L)

) 1
r−p

≤
(
Ωn−p(K)

Ωn−r(K)

) 1
r−p

+

(
Ωn−p(L)

Ωn−r(L)

) 1
r−p

. (3.8)

Proof From (2.6) and (2.8), we have

Ωn−p(K+̌L) =

∫
Sn−1

f(K+̌L, u)p/(n+1)dS(u) =

∫
Sn−1

(f(K,u)−
1

n+1 + f(L, u)−
1

n+1 )−pdS(u) (3.9)
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and

Ωn−r(K+̌L) =

∫
Sn−1

(f(K,u)−
1

n+1 + f(L, u)−
1

n+1 )−rdS(u). (3.10)

Since 0 ≥ r ≥ −1 ≥ p , we have

0 ≤ −r ≤ 1 ≤ −p. (3.11)

From (3.9), (3.10), and (3.11) and in view of the Beckenbach–Dresher inequality for integrals, we obtain that

(
Ωn−p(K+̌L)

Ωn−r(K+̌L)

) 1
r−p

=

(∫
Sn−1(f(K,u)−

1
n+1 + f(L, u)−

1
n+1 )−pdS(u)∫

Sn−1(f(K,u)−
1

n+1 + f(L, u)−
1

n+1 )−rdS(u)

) 1
−p−(−r)

≤

(∫
Sn−1 f(K,u)

p
n+1 dS(u)∫

Sn−1 f(K,u)
r

n+1 dS(u)

) 1
r−p

+

(∫
Sn−1 f(L, u)

p
n+1 dS(u)∫

Sn−1 f(L, u)
r

n+1 dS(u)

) 1
r−p

=

(
Ωn−p(K)

Ωn−r(K)

) 1
r−p

+

(
Ωn−p(L)

Ωn−r(L)

) 1
r−p

.

Let p = n− i and r = n− j , then

r ≥ −1 ≥ p ⇔ i ≥ n+ 1 ≥ j, 0 ≥ r ⇔ j ≥ n.

Namely,

i ≥ n+ 1 ≥ j ≥ n. (3.12)

Taking p = n− i and r = n− j in (3.8) and using (3.12), (3.8) changes to the inequality in Theorem 1.4

stated in Section 1.

Taking p = −n and r = −1 in (3.8), (3.8) changes to the following result.

(
Ω2n(K+̌L)

Ωn+1(K+̌L)

) 1
n−1

≤
(

Ω2n(K)

Ωn+1(K)

) 1
n−1

+

(
Ω2n(L)

Ωn+1(L)

) 1
n−1

. (3.13)

Finally, we remark that the Aleksandrov–Fenchel inequality for volume difference was established in [21].

Inequalities for the volume differences of radial Blaschke–Minkowski homomorphisms were established in [22].

Inequalities for the volume sum function were given in [23,24]. Moreover, some interrelated results have ap-

peared in [1,11,12,14,17,18]. 2
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