Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: 1022 - 1029
(c) TÜBİTAK
doi:10.3906/mat-1206-39

On quotients of i th affine surface areas

Chang-Jian ZHAO*
Department of Mathematics, China Jiliang University, Hangzhou, P.R. China

Received: 26.06.2012 • Accepted: 27.01.2013 • Published Online: 23.09.2013 • Printed: 21.10 .2013

Abstract

Following the volume difference function, we first introduce the notion of the affine surface area quotient function. We establish Brunn-Minkowski type inequalities for the affine surface area quotient function, which in special cases yield some well-known results.

Key words: Volume difference function, affine surface area quotient function, Blaschke sum, Brunn-Minkowski inequality

1. Introduction and statement of results

The well-known classical Brunn-Minkowski inequality can be stated as follows:
If K and L are convex bodies in \mathbb{R}^{n}, then (see, e.g., [16])

$$
\begin{equation*}
V(K+L)^{1 / n} \geq V(K)^{1 / n}+V(L)^{1 / n} \tag{1.1}
\end{equation*}
$$

with equality if and only if K and L are homothetic. Here, + is the usual Minkowski sum.
Let K and L be star bodies in \mathbb{R}^{n}, then the dual Brunn-Minkowski inequality states that (see [8])

$$
\begin{equation*}
V(K \tilde{+} L)^{1 / n} \leq V(K)^{1 / n}+V(L)^{1 / n} \tag{1.2}
\end{equation*}
$$

with equality if and only if K and L are dilates. Here, $\tilde{+}$ is the radial Minkowski sum.
A vector addition was defined on \mathbb{R}^{n} which we call radial Minkowski addition, as follows. If $x, y \in \mathbb{R}^{n}$, then $x \tilde{+} y$ is defined to be the usual vector sum of x, y provided x, y both lie in a 1 -dimensional subspace of \mathbb{R}^{n} and as the zero vector otherwise. If K, L are star bodies and $\lambda, \mu \in \mathbb{R}$, then the radial Minkowski linear combination, $\lambda K \tilde{+} \mu L$, is defined by $\lambda K \tilde{+} \mu L=\{\lambda x \tilde{+} \mu y: x \in K, y \in L\}$. The expression $K \tilde{+} L$ is called the radial Minkowski sum of the star bodies K and L (see [5]).

In 2004, Leng [6] defined the volume difference function of compact domains D and K, where $D \subseteq K$, by

$$
D_{V}(K, D)=V(K)-V(D)
$$

The following Brunn-Minkowski type inequality for volume difference functions was also established by Leng [6].

[^0]Theorem A If K, L, and D are compact domains, $D \subseteq K, D^{\prime} \subseteq L, D^{\prime}$ is a homothetic copy of D, then

$$
\begin{equation*}
\left(V(K+L)-V\left(D+D^{\prime}\right)\right)^{1 / n} \geq(V(K)-V(D))^{1 / n}+\left(V(L)-V\left(D^{\prime}\right)\right)^{1 / n} \tag{1.3}
\end{equation*}
$$

with equality if and only if K and L are homothetic and $(V(K), V(D))=\mu\left(V(L), V\left(D^{\prime}\right)\right)$, where μ is a constant.

Recently, Lv [13] introduced the dual volume difference function for star bodies and established the following dual Brunn-Minkowski type inequality for dual volume difference functions:

Theorem B If K, D, and D^{\prime} are star bodies in \mathbb{R}^{n}, and $D \subseteq K, D^{\prime} \subseteq L, L$ is a dilation of K, then

$$
\begin{equation*}
\left(V(K \tilde{+} L)-V\left(D \tilde{+} D^{\prime}\right)\right)^{1 / n} \geq(V(K)-V(D))^{1 / n}+\left(V(L)-V\left(D^{\prime}\right)\right)^{1 / n} \tag{1.4}
\end{equation*}
$$

with equality if and only if D and D^{\prime} are dilates and $(V(K), V(D))=\mu\left(V(L), V\left(D^{\prime}\right)\right)$, where μ is a constant.
In fact, some more general versions on these types of inequalities were proved in [6] and [13], respectively.
In 2005, Zhao [19] defined the volume sum function of star bodies D and K, by

$$
S_{V}(K, D)=V(K)+V(D)
$$

The Minkowski inequality for volume sums of mixed intersection bodies was also established in [19].
Motivated by the work of Leng, Lv, and Zhao, we give the following definition:
Definition 1.1 Let K be a convex body in \mathbb{R}^{n}, then the affine surface area quotient function of K, $Q_{\Omega_{i, j}}(K)(i, j \in \mathbb{R})$, can be defined by

$$
\begin{equation*}
Q_{\Omega_{i, j}}(K)=\frac{\Omega_{i}(K)}{\Omega_{j}(K)} \tag{1.5}
\end{equation*}
$$

If $i=0$ and $j=n$ in (1.5), then we get the affine surface area quotient of the convex body K and the unit n-ball B :

$$
Q_{\Omega_{0, n}}(K)=\frac{\Omega(K)}{\Omega(B)}
$$

where $\Omega(B)$ is the surface area of the unit n-ball B.
A convex body K is said to have a continuous curvature function,

$$
f(K, \cdot): S^{n-1} \rightarrow[0, \infty)
$$

if for each $L \in \mathbb{C}^{n}$, the mixed volume $V_{1}(K, L)$ has the integral representation

$$
V_{1}(K, L)=\frac{1}{n} \int_{S^{n-1}} f(K, u) h(L, u) d S(u)
$$

see [9].
The subset of \mathcal{K}^{n} consisting of all bodies that have a positive continuous curvature function will be denoted by κ^{n}.

The Brunn-Minkowski inequality for the affine surface area of a Blaschke sum was established by Lutwak [10] as follows:

If $K, L \in \kappa^{n}$, then for $i<-1$,

$$
\begin{equation*}
\Omega_{i}(K \ddot{+} L)^{\frac{n+1}{n-i}} \leq \Omega_{i}(K)^{\frac{n+1}{n-i}}+\Omega_{i}(L)^{\frac{n+1}{n-i}}, \tag{1.6}
\end{equation*}
$$

with equality if and only if K and L are homothetic, where $\ddot{+}$ is Blaschke addition (see Section 2).
The first aim of this paper is to establish the following Brunn-Minkowski type inequality for the affine surface area quotient functions.

Theorem 1.2 If $K, L \in \kappa^{n}$ and $i \leq-1 \leq j \leq n, i, j \in \mathbb{R}$, then for $i \neq j$

$$
\begin{equation*}
\left(\frac{\Omega_{i}(K \ddot{+} L)}{\Omega_{j}(K \ddot{+} L)}\right)^{\frac{n+1}{j-i}} \leq\left(\frac{\Omega_{i}(K)}{\Omega_{j}(K)}\right)^{\frac{n+1}{j-i}}+\left(\frac{\Omega_{i}(L)}{\Omega_{j}(L)}\right)^{\frac{n+1}{j-i}} \tag{1.7}
\end{equation*}
$$

In fact, Theorem 1.2 is a special case of Theorem 3.2 established in Section 3.
Remark 1.3 Taking $j=n$ and $i<-1$ in (1.7), and in view of the fact that $\int_{S^{n-1}} d S(u)=n \omega_{n}$ is a constant (where ω_{n} is the volume of the unit n-ball), (1.7) changes to (1.6).

The class ν^{n} is defined as follows:

$$
\nu^{n}=\left\{K \in \kappa^{n}: f(K, \cdot)^{-1 /(n+1)}=h(Q, \cdot) \text { for some } Q \in \mathcal{K}^{n}\right\}
$$

The class ν^{n} has been extensively investigated by Petty [15].
In 1990, Lutwak [9] established the following Brunn-Minkowski type inequality for the affine surface area:
If $K, L \in \nu^{n}$, then

$$
\begin{equation*}
\Omega(K \check{+} L)^{-\frac{1}{n}} \geq \Omega(K)^{-\frac{1}{n}}+\Omega(L)^{-\frac{1}{n}}, \tag{1.8}
\end{equation*}
$$

with equality if and only if K and L are homothetic, where $\check{+}$ is the Lutwak linear sum (see Section 2).
In 2005, an inverse form of (1.8) was established in [20] as follows:
If $K, L \in \nu^{n}$, then for $i>n+1$,

$$
\begin{equation*}
\Omega_{i}(K \check{+} L)^{-\frac{1}{n-i}} \leq \Omega_{i}(K)^{-\frac{1}{n-i}}+\Omega_{i}(L)^{-\frac{1}{n-i}} \tag{1.9}
\end{equation*}
$$

with equality if and only if K and L are homothetic.
The second aim of this paper is to establish the following Brunn-Minkowski type inequality for affine surface area quotient functions.

Theorem 1.4 If $K, L \in \kappa^{n}$ are symmetric and $i \geq n+1 \geq j \geq n, i, j \in \mathbb{R}$, then for $i \neq j$

$$
\begin{equation*}
\left(\frac{\Omega_{i}(K \check{+} L)}{\Omega_{j}(K \check{+} L)}\right)^{\frac{1}{i-j}} \leq\left(\frac{\Omega_{i}(K)}{\Omega_{j}(K)}\right)^{\frac{1}{i-j}}+\left(\frac{\Omega_{i}(L)}{\Omega_{j}(L)}\right)^{\frac{1}{i-j}} \tag{1.10}
\end{equation*}
$$

In fact, Theorem 1.4 is a special case of Theorem 3.3 established in Section 3.
Remark 1.5 Taking $j=n$ in (1.10) and in view of the fact that $\int_{S^{n-1}} d S(u)=n \omega_{n}$ is a constant, (1.10) changes to (1.9).

2. Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space $\mathbb{R}^{n}(n>2)$. Let \mathbb{C}^{n} denote the set of nonempty convex figures (compact, convex subsets) and \mathcal{K}^{n} denote the subset of \mathbb{C}^{n} consisting of all convex bodies (compact, convex subsets with nonempty interiors) in \mathbb{R}^{n}. We reserve the letter u for unit vectors and the letter B for the unit ball centered at the origin. The surface of B is S^{n-1}. The volume of the unit n-ball is denoted by ω_{n}.

We use $V(K)$ for the n-dimensional volume of a convex body K. Let $h(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$ denote the support function of $K \in \mathcal{K}^{n}$; i.e. for $u \in S^{n-1}$,

$$
h(K, u)=\operatorname{Max}\{u \cdot x: x \in K\}
$$

where $u \cdot x$ denotes the usual inner product of u and x in \mathbb{R}^{n}.
Let δ denote the Hausdorff metric on \mathcal{K}^{n}, i.e. for $K, L \in \mathcal{K}^{n}, \delta(K, L)=\left|h_{K}-h_{L}\right|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C\left(S^{n-1}\right)$.

Associated with a nonempty compact subset K of \mathbb{R}^{n}, which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$, defined for $u \in S^{n-1}$ by

$$
\rho(K, u)=\operatorname{Max}\{\lambda \geq 0: \lambda u \in K\}
$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let \mathcal{S}^{n} denote the set of star bodies in \mathbb{R}^{n}. Let $\tilde{\delta}$ denote the radial Hausdorff metric as follows: if $K, L \in \mathcal{S}^{n}$, then $\tilde{\delta}(K, L)=\left|\rho_{K}-\rho_{L}\right|_{\infty}$.

2.1. Blaschke linear combination and mixed affine surface area

For $K \in \kappa^{n}$, we have (see [9])

$$
\begin{equation*}
\int_{S^{n-1}} u f(K, u) d S(u)=0 \tag{2.1}
\end{equation*}
$$

Suppose $K, L \in \kappa^{n}$ and $\lambda, \mu \geq 0$ (not both zero). From (2.1) it follows that the function $\lambda f(K, \cdot)+\mu f(L, \cdot)$ satisfies the hypothesis of Minkowski's existence theorem (see [3]). The solution of the Minkowski problem for this function is denoted by $\lambda \cdot K \ddot{+} \mu \cdot L$; that is,

$$
\begin{equation*}
f(\lambda \cdot K \ddot{+} \mu \cdot L, \cdot)=\lambda f(K, \cdot)+\mu f(L, \cdot), \tag{2.2}
\end{equation*}
$$

where the linear combination $\lambda \cdot K \ddot{+} \mu \cdot L$ is called a Blaschke linear combination.
The relationship between Blaschke and Minkowski scalar multiplication is given by

$$
\begin{equation*}
\lambda \cdot K=\lambda^{1 /(n-1)} K \tag{2.3}
\end{equation*}
$$

The affine surface area of $K, \Omega(K)$, is defined by

$$
\begin{equation*}
\Omega(K)=\int_{S^{n-1}} f(K, u)^{\frac{n}{n+1}} d S(u), \quad K \in \kappa^{n} \tag{2.4}
\end{equation*}
$$

It is well known that this functional is invariant under unimodular affine transformations. For $K, L \in \kappa^{n}$, and $i \in \mathbb{R}$, the i th mixed affine surface area of K and $L, \Omega_{i}(K, L)$, is defined by (see [10])

$$
\begin{equation*}
\Omega_{i}(K, L)=\int_{S^{n-1}} f(K, u)^{\frac{n-i}{n+1}} f(L, u)^{\frac{i}{n+1}} d S(u) \tag{2.5}
\end{equation*}
$$

For $K \in \kappa^{n}$, we define the i th affine surface area of $K, \Omega_{i}(K)$, by (see also [15])

$$
\begin{equation*}
\Omega_{i}(K)=\int_{S^{n-1}} f(K, u)^{\frac{n-i}{n+1}} d S(u), \quad i \in \mathbb{R} \tag{2.6}
\end{equation*}
$$

2.2. Lutwak linear combination

The class ν^{n} is defined as follows:

$$
\begin{equation*}
\nu^{n}=\left\{K \in \kappa^{n}: f(K, \cdot)^{-\frac{1}{n+1}}=h(Q, \cdot) \text { for some } Q \in \mathcal{K}^{n}\right\} \tag{2.7}
\end{equation*}
$$

Lutwak defined a new linear combination $\lambda \circ K \check{+} \mu \circ L \in \nu^{n}$. (This is called Lutwak linear combination throughout the article.) For centrally symmetric $K, L \in \nu^{n}$ (see [9]),

$$
\begin{equation*}
f(K \check{+} L, \cdot)^{-1 /(n+1)}=f(K, \cdot)^{-1 /(n+1)}+f(L, \cdot)^{-1 /(n+1)} . \tag{2.8}
\end{equation*}
$$

For our purposes it is more natural to use the set of all symmetric convex bodies in κ^{n} and to just define the addition by (2.8).

3. Main results

An extension of Beckenbach's inequality (see [2], p.27) was obtained by Dresher [4] by means of moment-space techniques:

Lemma 3.1 (The Beckenbach-Dresher inequality) Let $p \geq 1 \geq r \geq 0$ and f, g be measurable and nonnegative functions. If ϕ is a distribution function, then for $p \neq r$

$$
\begin{equation*}
\left(\frac{\int_{\mathbb{E}}|f+g|^{p} d \phi}{\int_{\mathbb{E}}|f+g|^{r} d \phi}\right)^{\frac{1}{p-r}} \leq\left(\frac{\int_{\mathbb{E}} f^{p} d \phi}{\int_{\mathbb{E}} f^{r} d \phi}\right)^{\frac{1}{p-r}}+\left(\frac{\int_{\mathbb{E}} g^{p} d \phi}{\int_{\mathbb{E}} g^{r} d \phi}\right)^{\frac{1}{p-r}} \tag{3.1}
\end{equation*}
$$

Here \mathbb{E} is a bounded measurable subset of \mathbb{R}^{n}.
We will need the above inequality in Lemma 3.1 to prove our main theorems. Our main results are given in the following theorems.

Theorem 3.2 If $K, L \in \kappa^{n}$ and $0 \leq r \leq n+1 \leq p, p, r \in \mathbb{R}$, then for $p \neq r$

$$
\begin{equation*}
\left(\frac{\Omega_{n-p}(K \ddot{+} L)}{\Omega_{n-r}(K \ddot{+} L)}\right)^{\frac{n+1}{p-r}} \leq\left(\frac{\Omega_{n-p}(K)}{\Omega_{n-r}(K)}\right)^{\frac{n+1}{p-r}}+\left(\frac{\Omega_{n-p}(L)}{\Omega_{n-r}(L)}\right)^{\frac{n+1}{p-r}} . \tag{3.2}
\end{equation*}
$$

Proof From (2.2), (2.3), and (2.6), we have

$$
\begin{equation*}
\Omega_{n-p}(K \ddot{+} L)=\int_{S^{n-1}} f(K \ddot{+} L, u)^{\frac{p}{n+1}} d S(u)=\int_{S^{n-1}}(f(K, u)+f(L, u))^{\frac{p}{n+1}} d S(u) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{n-r}(K \ddot{+} L)=\int_{S^{n-1}}(f(K, u)+f(L, u))^{\frac{r}{n+1}} d S(u) . \tag{3.4}
\end{equation*}
$$

Since $0 \leq r \leq n+1 \leq p$, we have

$$
\begin{equation*}
0 \leq \frac{r}{n+1} \leq 1 \leq \frac{p}{n+1} \tag{3.5}
\end{equation*}
$$

From (3.3), (3.4), and (3.5) and in view of the Beckenbach-Dresher inequality for integrals, we obtain that

$$
\begin{gathered}
\left(\frac{\Omega_{n-p}(K \ddot{+} L)}{\Omega_{n-r}(K \ddot{+} L)}\right)^{\frac{n+1}{p-r}}=\left(\frac{\int_{S^{n-1}}(f(K, u)+f(L, u))^{p /(n+1)} d S(u)}{\int_{S^{n-1}}(f(K, u)+f(L, u))^{r /(n+1)} d S(u)}\right)^{\frac{p}{\frac{p}{n+1}-\frac{r}{n+1}}} \\
\leq\left(\frac{\int_{S^{n-1}} f(K, u)^{\frac{p}{n+1}} d S(u)}{\int_{S^{n-1}} f(K, u)^{\frac{r}{n+1}} d S(u)}\right)^{\frac{n+1}{p-r}}+\left(\frac{\int_{S^{n-1}} f(L, u)^{\frac{p}{n+1}} d S(u)}{\int_{S^{n-1}} f(L, u)^{\frac{r}{n+1}} d S(u)}\right)^{\frac{n+1}{p-r}} \\
=\left(\frac{\Omega_{n-p}(K)}{\Omega_{n-r}(K)}\right)^{\frac{n+1}{p-r}}+\left(\frac{\Omega_{n-p}(L)}{\Omega_{n-r}(L)}\right)^{\frac{n+1}{p-r}}
\end{gathered}
$$

Let $p=n-i$ and $r=n-j$, then

$$
r \leq n+1 \leq p \Leftrightarrow i \leq-1 \leq j, \quad 0 \leq r \Leftrightarrow j \leq n
$$

Namely,

$$
\begin{equation*}
i \leq-1 \leq j \leq n \tag{3.6}
\end{equation*}
$$

Taking $p=n-i$ and $r=n-j$ in (3.2) and using (3.6), (3.2) changes to the inequality in Theorem 1.2 stated in Section 1.

Taking $p=n-i$ and $r=0$ in (3.2), (3.2) changes to (1.6) stated in Section 1.
Taking $p=n+1$ and $r=n$ in (3.2) and in view of (2.4), (3.2) changes to the following result.

$$
\begin{equation*}
\left(\frac{\Omega_{-1}(K \ddot{+} L)}{\Omega(K \ddot{+} L)}\right)^{n+1} \leq\left(\frac{\Omega_{-1}(K)}{\Omega(K)}\right)^{n+1}+\left(\frac{\Omega_{-1}(L)}{\Omega(L)}\right)^{n+1} . \tag{3.7}
\end{equation*}
$$

Taking $p=2 n$ and $r=n$ in (3.2) and in view of (2.4), (3.2) changes to the following result.

$$
\left(\frac{\Omega_{-n}(K \ddot{+} L)}{\Omega(K \ddot{+} L)}\right)^{\frac{n+1}{n}} \leq\left(\frac{\Omega_{-n}(K)}{\Omega(K)}\right)^{\frac{n+1}{n}}+\left(\frac{\Omega_{-n}(L)}{\Omega(L)}\right)^{\frac{n+1}{n}} .
$$

Taking $p=2 n$ and $r=n+1$ in (3.2), (3.2) changes to the following result.

$$
\left(\frac{\Omega_{-n}(K \ddot{+} L)}{\Omega_{-1}(K \ddot{+} L)}\right)^{\frac{n+1}{n-1}} \leq\left(\frac{\Omega_{-n}(K)}{\Omega_{-1}(K)}\right)^{\frac{n+1}{n-1}}+\left(\frac{\Omega_{-n}(L)}{\Omega_{-1}(L)}\right)^{\frac{n+1}{n-1}}
$$

Theorem 3.3 If $K, L \in \kappa^{n}$ are symmetric and $0 \geq r \geq-1 \geq p, p, r \in \mathbb{R}$, then for $p \neq r$

$$
\begin{equation*}
\left(\frac{\Omega_{n-p}(K \check{+} L)}{\Omega_{n-r}(K \check{+} L)}\right)^{\frac{1}{r-p}} \leq\left(\frac{\Omega_{n-p}(K)}{\Omega_{n-r}(K)}\right)^{\frac{1}{r-p}}+\left(\frac{\Omega_{n-p}(L)}{\Omega_{n-r}(L)}\right)^{\frac{1}{r-p}} \tag{3.8}
\end{equation*}
$$

Proof From (2.6) and (2.8), we have

$$
\begin{equation*}
\Omega_{n-p}(K \check{+} L)=\int_{S^{n-1}} f(K \check{+} L, u)^{p /(n+1)} d S(u)=\int_{S^{n-1}}\left(f(K, u)^{-\frac{1}{n+1}}+f(L, u)^{-\frac{1}{n+1}}\right)^{-p} d S(u) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{n-r}(K \check{+} L)=\int_{S^{n-1}}\left(f(K, u)^{-\frac{1}{n+1}}+f(L, u)^{-\frac{1}{n+1}}\right)^{-r} d S(u) . \tag{3.10}
\end{equation*}
$$

Since $0 \geq r \geq-1 \geq p$, we have

$$
\begin{equation*}
0 \leq-r \leq 1 \leq-p \tag{3.11}
\end{equation*}
$$

From (3.9), (3.10), and (3.11) and in view of the Beckenbach-Dresher inequality for integrals, we obtain that

$$
\begin{gathered}
\left(\frac{\Omega_{n-p}(K \check{+} L)}{\Omega_{n-r}(K \check{+} L)}\right)^{\frac{1}{r-p}}=\left(\frac{\int_{S^{n-1}}\left(f(K, u)^{-\frac{1}{n+1}}+f(L, u)^{-\frac{1}{n+1}}\right)^{-p} d S(u)}{\int_{S^{n-1}}\left(f(K, u)^{-\frac{1}{n+1}}+f(L, u)^{-\frac{1}{n+1}}\right)^{-r} d S(u)}\right)^{\frac{1}{-p-(-r)}} \\
\leq\left(\frac{\int_{S^{n-1}} f(K, u)^{\frac{p}{n+1}} d S(u)}{\int_{S^{n-1}} f(K, u)^{\frac{r}{n+1}} d S(u)}\right)^{\frac{1}{r-p}}+\left(\frac{\int_{S^{n-1}} f(L, u)^{\frac{p}{n+1}} d S(u)}{\int_{S^{n-1}} f(L, u)^{\frac{r}{n+1}} d S(u)}\right)^{\frac{1}{r-p}} \\
=\left(\frac{\Omega_{n-p}(K)}{\Omega_{n-r}(K)}\right)^{\frac{1}{r-p}}+\left(\frac{\Omega_{n-p}(L)}{\Omega_{n-r}(L)}\right)^{\frac{1}{r-p}}
\end{gathered}
$$

Let $p=n-i$ and $r=n-j$, then

$$
r \geq-1 \geq p \Leftrightarrow i \geq n+1 \geq j, \quad 0 \geq r \Leftrightarrow j \geq n
$$

Namely,

$$
\begin{equation*}
i \geq n+1 \geq j \geq n \tag{3.12}
\end{equation*}
$$

Taking $p=n-i$ and $r=n-j$ in (3.8) and using (3.12), (3.8) changes to the inequality in Theorem 1.4 stated in Section 1.

Taking $p=-n$ and $r=-1$ in (3.8), (3.8) changes to the following result.

$$
\begin{equation*}
\left(\frac{\Omega_{2 n}(K \check{+} L)}{\Omega_{n+1}(K \check{+} L)}\right)^{\frac{1}{n-1}} \leq\left(\frac{\Omega_{2 n}(K)}{\Omega_{n+1}(K)}\right)^{\frac{1}{n-1}}+\left(\frac{\Omega_{2 n}(L)}{\Omega_{n+1}(L)}\right)^{\frac{1}{n-1}} \tag{3.13}
\end{equation*}
$$

Finally, we remark that the Aleksandrov-Fenchel inequality for volume difference was established in [21]. Inequalities for the volume differences of radial Blaschke-Minkowski homomorphisms were established in [22]. Inequalities for the volume sum function were given in [23,24]. Moreover, some interrelated results have appeared in $[1,11,12,14,17,18]$.

Acknowledgments

The author expresses his grateful thanks to the referee for his many excellent suggestions and comments toward improving the original manuscript.

ZHAO/Turk J Math

References

[1] Alesker, S., Bernig, A., Schuster, F.E.: Harmonic analysis of translation invariant valuations. Geom. Func. Anal. 21, 751-773 (2011).
[2] Beckenbach, E.F., Bellman, R.: Inequalities. Berlin. Springer 1961.
[3] Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Berlin. Springer 1934.
[4] Dresher, M.: Moment spaces and inequalities. Duke Math. J. 20, 261-271 (1953).
[5] Gardner, R.J.: Geometric Tomography. New York. Cambridge University Press 1996.
[6] Leng, G.S.: The Brunn-Minkowski inequality for volume differences. Adv. Appl. Math. 32, 615-624 (2004).
[7] Ludwig, M., Reitzner, M.: A classification of $S L(n)$ invariant valuations. Ann. Math. 172, 1219-1267 (2010).
[8] Lutwak, E.: Dual mixed volumes. Pacific J. Math. 58, 531-538 (1975).
[9] Lutwak, E.: Centroid bodies and dual mixed volumes. Proc. London Math. Soc. 60, 365-391 (1990).
[10] Lutwak, E.: Mixed affine surface area. J. Math. Anal. Appl. 125, 351-360 (1987).
[11] Lutwak, E.: On some affine isoperimetric inequalities. J. Diff. Geom. 23, 1-13 (1986).
[12] Lutwak, E.: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244-294 (1996).
[13] Lv, S.: Dual Brunn-Minkowski inequality for volume differences. Geom. Dedicata 145, 169-180 (2010).
[14] Parapatits, L., Schuster, F.E.: The Steiner formula for Minkowski valuations. Adv. Math. 230, 978-994 (2012).
[15] Petty, C.M.: Geominimal surface area. Geom. Dedicata 3, 77-97 (1974).
[16] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge. Cambridge University Press 1993.
[17] Schuster, F.E.: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010).
[18] Werner, E., Ye, D.: Inequalities for mixed p-affine surface area. Math. Ann. 347, 703-737 (2010).
[19] Zhao, C.J., Leng, G.: Inequalities for dual quermassintegrals of mixed intersection bodies. Proc. Indian Math. Sci. (Math. Sci.) 115, 79-91 (2005).
[20] Zhao, C.J., Leng, G., Debnath, L.: Some new Brunn-Minkowski-type inequalities in convex bodies. Inter. J. Math. Math. Sci. 2005, 895-915 (2005).
[21] Zhao, C.J., Bencze, M.: The Aleksandrov-Fenchel type inequalities for volume differences. Balkan J. Geom. Appl. 15, 163-172 (2010).
[22] Zhao, C.J.: Radial Blaschke-Minkowski homomorphisms and volume differences. Geom. Dedicata 154, 81-91 (2011).
[23] Zhao, C.J.: Lp-dual quermassintegral sums. Sci. China 50, 1347-1360 (2007).
[24] Zhao, C.J, Bencze, M.: Lp-Minkowski and Aleksandrov-Fenchel type inequalities. Balkan J. Geom. Appl. 14, 128137 (2009).

[^0]: *Correspondence: chjzhao@yahoo.com.cn
 This research was supported by the National Natural Science Foundation of China (10971205).
 2010 AMS Mathematics Subject Classification: 52A30, 52A40.

