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Abstract: We prove that on a nearly Kenmotsu manifold a second-order symmetric closed recurrent tensor is a multiple

of the associated metric tensor. We then find the necessary condition under which a vector field on a nearly Kenmotsu

manifold will be a strict contact or Killing vector field. Finally, we prove that every ϕ -recurrent nearly Kenmotsu

manifold is an Einstein manifold and every locally ϕ -recurrent nearly Kenmotsu manifold is a manifold of constant

curvature −1.
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1. Introduction

An almost contact metric manifold (M2m+1, ϕ, ξ, η, g) is called a nearly Kenmotsu manifold by Shukla [9] if

the following relation holds:

(∇Xϕ)Y + (∇Y ϕ)X = −η(Y )ϕX − η(X)ϕY, (1.1)

where ∇ is the Levi–Civita connection of g . Moreover, if M satisfies

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (1.2)

then it is called a Kenmotsu manifold [4]. It is easy to see that every Kenmotsu manifold is a nearly Kenmotsu

manifold but the converse is not true. A nearly Kenmotsu manifold is not a K-contact manifold and hence is

not a Sasakian manifold [8]. Recently, nearly Kenmotsu manifolds have been studied extensively; see [1], [7],

and [11].

Tensor algebras play a prominent role in differential geometry, in particular in Riemannian geometry.

Wong studied recurrent tensor fields on a manifold endowed with a linear connection [12]. Levy showed that

on a space of constant curvature, second-order symmetric parallel nonsingular tensors are constant multiples of

the metric tensor [6]. Here, we prove that on a nearly Kenmotsu manifold, every second-order closed recurrent

tensor whose recurrence covector annihilates ξ is a multiple of the metric tensor (see Theorem 3.1).

It is well known that geometric vector fields on Riemannian manifolds reveal many aspects of those

manifolds. In particular, (strict) contact vector fields on an almost contact manifold represent the symmetries

of that structure on the underlying manifold [3]. Here, we prove that on a nearly Kenmotsu manifold, every

contact vector field on a nearly Kenmotsu manifold leaving the Ricci tensor invariant is a strict contact vector
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field (see Theorem 3.2) and every vector field leaving the curvature tensor invariant is a Killing vector field (see

Theorem 3.3).

Finally, we show that every ϕ -recurrent nearly Kenmotsu manifold is an Einstein manifold (see Theorem

4.2) and every locally ϕ-recurrent nearly Kenmotsu manifold is of constant curvature −1 (see Theorem 4.3).

2. Preliminaries

First, we recall some important identities holding in every n -dimensional nearly Kenmotsu manifold (M,ϕ, η, ξ, g)

(for more details, see [7]):

ϕξ = 0, η(ξ) = 1, ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, (2.1)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.2)

g(X,ϕY ) = −g(ϕX, Y ), (∇Xη)Y = g(X,Y )− η(X)η(Y ), (2.3)

R(ξ,X)Y = −g(X,Y )ξ + η(Y )X, R(X,Y )ξ = η(X)Y − η(Y )X, (2.4)

S(ϕX, ϕY ) = S(X,Y )− (1− n)η(X)η(Y ), (2.5)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X), (2.6)

where R is the Riemannian curvature and S is the Ricci tensor of g .

Let (M,ϕ, η, ξ, g) be a nearly Kenmotsu manifold. In [5], it is proven that the following relations hold:

∇X ξ = X − η(X)ξ, ∇ξ ξ = 0. (2.7)

Hence, the integral curves of ξ are the geodesics of g .

A (0, 2)-tensor field α on a Riemannian manifold (M, g) is said to be a recurrent tensor if α satisfies

∇α = λ⊗α for some 1-form λ . The 1-form λ is called the recurrence covector of α . It is easy to see that every

multiple of the metric tensor is a recurrent tensor. Moreover, if λ is a closed 1-form, then α is called a closed

recurrent tensor. The set of closed recurrent tensors contains the set of parallel tensors (λ = 0) as a subset (for

more details, see 2 often cited papers, [12][13]).

A vector field X on a nearly Kenmotsu manifold (M,ϕ, ξ, η, g) is said to be

• a contact vector field, if
LXη(Y ) = ση(Y ), (2.8)

• or a conformal vector field, if
LXg(Y, Z) = ρg(Y,Z), (2.9)

where σ and ρ are scalar functions on M and LX denotes the Lie derivative along X . X is then called a

strict contact vector field or a Killing vector field if σ = 0 or ρ = 0, respectively [3].

A nearly Kenmotsu manifold is said to be a locally ϕ-symmetric manifold in the sense of Takahashi [10]

if for all vector fields X,Y, Z,W orthogonal to ξ the following holds:

ϕ2((∇WR)(X,Y )Z) = 0, (2.10)

and it is said to be a ϕ-recurrent manifold (locally ϕ-recurrent manifold, resp.) if there exists a nonzero 1-form

B such that

ϕ2((∇WR)(X,Y )Z) = B(W )R(X,Y )Z (2.11)

for arbitrary vector fields X,Y, Z,W (for all X,Y, Z,W orthogonal to ξ , resp.).
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3. Tensor fields on nearly Kenmotsu manifolds

In this section, we study recurrent tensor fields of the second order and some kind of geometric vector fields on

a nearly Kenmotsu manifold.

3.1. Recurrent tensor fields of the second order

Suppose that (M,ϕ, η, ξ, g) is a nearly Kenmotsu manifold and α is a closed recurrent (0, 2)-tensor on M whose

recurrence covector annihilates ξ , i.e. λ(ξ) = 0. Then a straightforward computation yields the following:

α(R(W,X)Y, Z) + α(Y,R(W,X)Z) = λ(W )α(∇X Y, Z)− λ(X)α(∇W Y, Z), (3.1)

for arbitrary vector fields X,Y, Z,W on M . Taking Y = Z = W = ξ in (3.1) and using (2.7), we get

α(R(ξ,X)ξ, ξ) + α(ξ,R(ξ,X)ξ) = 0, (3.2)

in which we have used λ(ξ) = 0. Using (2.4) in (3.2), we have

2g(X, ξ)α(ξ, ξ)− α(X, ξ)− α(ξ,X) = 0. (3.3)

Differentiating (3.3) along Y and using ∇ξξ = 0 yields

2{g(∇Y X, ξ) + g(X,∇Y ξ)}α(ξ, ξ) = α(∇Y X, ξ) + α(X,∇Y ξ)

+α(∇Y ξ,X) + α(ξ,∇Y X). (3.4)

Replacing X by ∇Y X in (3.3), we find

2g(∇Y X,∇Y ξ)α(ξ, ξ)− α(∇Y X, ξ)− α(ξ,∇Y X) = 0. (3.5)

From (3.4) and (3.5), we obtain

2g(X,∇Y ξ)α(ξ, ξ) = α(X,∇Y ξ) + α(∇Y ξ,X). (3.6)

Using (2.7) implies that

2g(X,Y − η(Y )ξ)α(ξ, ξ) = α(X,Y − η(Y )ξ) + α(Y − η(Y )ξ,X). (3.7)

From (3.3) and (3.7), one can obtain

αs(X,Y ) = α(ξ, ξ)g(X,Y ), (3.8)

where αs denotes the symmetric part of α , i.e.

αs(X,Y ) =
1

2
{α(X,Y ) + α(Y,X)}.

On the other hand, using (3.3) and ∇α = λ⊗ α , we get ∇Xµ = λ(X)µ , where X is an arbitrary vector field

on M and µ = α(ξ, ξ). Thus, if α is a parallel tensor or equivalently λ = 0, then µ is a constant function.

However, in general µ is not a constant function. Moreover, if α is symmetric, i.e. α = αs , then we get α = µg ,

and λ = dµ . Hence, we have the following.

Theorem 3.1 On a nearly Kenmotsu manifold (M2m+1, ϕ, ξ, η, g) , a second-order symmetric closed recurrent

tensor whose recurrence covector annihilates ξ is a multiple of the metric tensor g .
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3.2. Geometric vector fields on nearly Kenmotsu manifolds

Suppose that a contact vector field X leaves the Ricci tensor invariant, i.e.

LXS(Y, Z) = 0. (3.9)

It follows from (3.9) that

LX(S(Y, ξ)) = S(LXY, ξ) + S(Y,LXξ). (3.10)

Using (2.5), (2.8), and (3.10) implies that

(1− n)ση(Y ) = S(Y,LXξ)). (3.11)

Putting Y = ξ in (3.11) and using (2.5), we get

σ = η(LXξ). (3.12)

On the other hand, substituting ξ for Y in (2.8) yields

σ = −η(LXξ). (3.13)

Hence, σ = 0.

Theorem 3.2 Every contact vector field on a nearly Kenmotsu manifold leaving the Ricci tensor invariant is

a strict contact vector field.

Now, let X be a vector field on a nearly Kenmotsu manifold (M,ϕ, η, ξ, g) and LXR = 0. It is known that the

curvature tensor of g is antisymmetric in its 2 last arguments with respect to g , i.e.

g(R(U, V )Y, Z) + g(R(U, V )Z, Y ) = 0. (3.14)

Applying LX to (3.14), one can obtain

LX(g(R(U, V )Y,Z)) + LX(g(R(U, V )Z, Y )) = 0. (3.15)

Putting U = Y = Z = ξ in (3.15) and using (2.4), we get

LXg(V, ξ) = η(V )LXg(ξ, ξ). (3.16)

Again putting U = Y = ξ in (3.15) and using (2.4), we get

LXg(V, Z)− η(V )LXg(ξ, Z) + η(Z)LXg(V, ξ)− LXg(ξ, ξ)g(V, Z) = 0. (3.17)

It follows from (3.16) and (3.17) that

LXg = ρg, (3.18)

where ρ = LXg(ξ, ξ). From (2.5) and the assumption LXR = 0, which implies that LXS = 0, we get

ρ = LXg(ξ, ξ) = −2g(LXξ, ξ) =
2

n− 1
S(LXξ, ξ) =

1

1− n
LXS(ξ, ξ) = 0. (3.19)

Theorem 3.3 Every vector field on a nearly Kenmotsu manifold leaving the curvature tensor invariant is a

Killing vector field.
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4. ϕ-Recurrent nearly Kenmotsu manifolds

Let us consider a ϕ-recurrent nearly Kenmotsu manifold (M2m+1, ϕ, η, ξ, g) (m > 1). Then by virtue of (2.4)

and (2.11), we have

(∇WR)(X,Y )Z = η((∇WR)(X,Y )Z)ξ −B(W )R(X,Y )Z. (4.1)

From (4.1) and the Bianchi identity, we get

B(W )η(R(X,Y )Z) +B(X)η(R(Y,W )Z) +B(Y )η(R(W,X)Z) = 0. (4.2)

Let {ei} be an orthonormal basis of the tangent space at any point of the manifold M . Putting Y = Z = ei

in (4.2) and taking summation over i , we get by virtue of (2.4)

B(W )η(X) = B(X)η(W ), (4.3)

for all vector fields X,W . Replacing X by ξ in (4.3), it follows that

B(W ) = η(B̂)η(W ), (4.4)

since B(ξ) = g(ξ, B̂) = η(B̂). Now, suppose that M is η -Einstein, i.e.

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (4.5)

where a and b are 2 scalar functions on M . Putting Y = ξ in both (2.3) and (4.5) yields

a+ b = 1− n. (4.6)

In a local coordinate, (4.5) can be written as follows:

Rij = agij + bηiηj , (4.7)

which implies that

r = (2m+ 1)a+ b. (4.8)

Taking the covariant derivative with respect to g from (4.7) implies that

Rij,k = a,kgij + b,kηiηj + bηi,kηj + bηiηj,k. (4.9)

Contracting (4.9) with gik , we get

Rk
j,k = a,j + b,kξ

kηj + bηi,kg
ikηj + bηiηj,kg

ik. (4.10)

It is well known that Rk
j,k = 1

2r,j . Hence, we get

r,j = 2{a,j + (b,kξ
k + 2mb)ηj}, (4.11)

in which we have used (2.3ii) and ηi,kg
ik = (gik − ηiηk)g

ik = 2m . On the other hand, taking the covariant

derivative of (4.6) and (4.8) yields

r,j = 2ma,j . (4.12)
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Plugging (4.12) into (4.11), we get

ma,j = a,j + (b,kξ
k + 2mb)ηj . (4.13)

Contracting (4.13) with ξj and using (4.6), we get

b,kξ
k = −2b. (4.14)

Moreover, if b or a is a constant function, then (4.14) implies that b = 0. Thus, M is an Einstein manifold.

More precisely, we have the following.

Proposition 4.1 Let (Mn, ϕ, ξ, η, g) be an η -Einstein nearly Kenmotsu manifold (n = 2m + 1,m > 1) .

Suppose that b or a is a constant function. Then M is an Einstein manifold.

From (4.1), we have

−g(∇WR)(X,Y )Z,U) + η((∇WR)(X,Y )Z)η(U) = B(W )g(R(X,Y )Z,U). (4.15)

Let {ei} be an orthonormal basis for the tangent space of M at a point p ∈ M . Putting X = U = ei in (4.15)

and taking summation over i , we get

−(∇WS)(Y,Z) +AW (Y,Z) = B(W )S(Y,Z), (4.16)

where AW (Y, Z) =
∑n

i=1 η((∇WR)(ei, Y )Z)η(ei). We claim that AW (Y, ξ) = 0. First, we recall that

η((∇WR)(ei, Y )ξ) = g((∇WR)(ei, Y )ξ, ξ). Now, we have

g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(∇W ei, Y )ξ, ξ)

−g(R(ei,∇WY )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ). (4.17)

Evaluating (4.17) at p ∈ M and using gij(p) = δij , we get ∇W ei(p) = 0. We also have

g(R(ei,∇WY )ξ, ξ) = −g(R(ξ, ξ)∇WY, ei) = 0, (4.18)

since R is skew-symmetric. Using (4.18) and ∇W ei(p) = 0 in (4.17), we obtain

g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ). (4.19)

By virtue of g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0, we have

g(∇WR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0, (4.20)

which implies

g((∇WR)(ei, Y )ξ, ξ) = −{g(R(ei, Y )ξ,∇W ξ) + g(R(ei, Y )∇W ξ, ξ)} = 0, (4.21)

since R is skew-symmetric. This means that η((∇WR)(ei, Y )ξ) = 0 and consequently AW (Y, ξ) = 0, and from

(4.16)

(∇WS)(Y, ξ) = −B(W )S(Y, ξ). (4.22)

On the other hand, by definition, we have

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ). (4.23)
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Applying (2.3ii), (2.5), and (2.7) in (4.23), we get

(∇WS)(Y, ξ) = −(n− 1)g(Y,W )− S(Y,W ). (4.24)

Substituting (4.24) into (4.22) and using (4.4), we obtain

S(Y,W ) = ag(Y,W ) + bη(Y )η(W ), (4.25)

where a = 1 − n and b = (1 − n)η(B̂). This means that the manifold is an η -Einstein manifold with

a = constant . By Proposition 4.1, it follows that M is an Einstein manifold. Therefore, we have the following.

Theorem 4.2 Every ϕ-recurrent nearly Kenmotsu manifold is an Einstein manifold.

It is known that on a nearly Kenmotsu manifold we have the following [2]:

(∇WR)(X,Y )ξ = g(W,X)Y − g(W,Y )X −R(X,Y )W. (4.26)

By virtue of (2.6), it follows from (4.26) that

η((∇WR)(X,Y )ξ) = 0. (4.27)

In view of (4.26) and (4.27), we obtain from (4.1)

−(∇WR)(X,Y )ξ = B(W )R(X,Y )ξ, (4.28)

from which by using (4.26), it follows that

−g(X,W )Y + g(Y,W )X +R(X,Y )W = B(W )R(X,Y )ξ. (4.29)

Hence, if X and Y are orthogonal to ξ , then we get from (2.4ii)

R(X,Y )ξ = 0. (4.30)

Thus, we obtain

R(X,Y )W = −{g(Y,W )X − g(X,W )Y }, (4.31)

for all X,Y,W . Thus, we have the following.

Theorem 4.3 A locally ϕ-recurrent nearly Kenmotsu manifold (M2m+1, ϕ, ξ, η, g) (m > 1) is a manifold of

constant curvature −1 .
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