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Abstract: The solution of a random semilinear hyperbolic system with singular initial data is sought as a random

Colombeau distribution. The product of 2 additive white noises is well tackled within the theory of random Colombeau

distributions. In the special case of a random predator–prey system, the exact Colombeau solution is obtained under

some assumptions when the process is driven by doubly reflected Brownian motions.
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1. Introduction

This article is concerned basically with the stochastic version of the following deterministic semilinear hyperbolic

system (Lotka–Volterra) in 2 variables [2]:

D1u1(x, t) = (∂t + c1∂x)u1(x, t) = λ1u1(x, t)u2(x, t)

D2u2(x, t) = (∂t + c2∂x)u2(x, t) = λ2u1(x, t)u2(x, t)

uj(x, 0) = γj(x) ; j = 1, 2, λ1λ2 < 0 (1.1)

As a special case γ1(x) = ∆1δ(x− ξ1), γ2(x) = ∆2δ(x− ξ2) and λ1 = 1 = −λ2 represents a predator–

prey system where the initial masses ∆1 and ∆1 of predators and preys have been concentrated at ξ1 and ξ2 ,

respectively, in a one-dimensional space and they move in opposite directions towards each other with velocities

c1 and c2 .

The novelties that also constitute the main features of the present article are as follows:

I) For the stochastic case driven by white noise, a more realistic model could be

D1u1 = λ1(u1 + Ḃ1)(u2 + Ḃ2)

D2u2 = λ2(u1 + Ḃ1)(u2 + Ḃ2) (1.2)

rather than assigning one additive noise to each equation. B : Wiener process (The Brownian motion).
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II) The solutions are expected to be as singular as initial data, e.g., in the case of the Dirac initial data

they would be generalized functions. The product u1u2 on the right-hand side would then have to be

interpreted within a theory of nonlinear distributions, like that of Colombeau algebras. Furthermore, as a

consequence of the extra feature presented in I), we can not attribute any meaning to the product Ḃ1Ḃ2

by visualizing white noises as (linear) generalized processes (i.e. the distributional derivatives of nowhere

differentiable Brownian paths).

Thus, the second important feature of the present paper is the use of the concept of random Colombeau

distributions as worked out by Çapar and Aktuğlu [3],[4] and also by Oberguggenberger and Russo [6] for

obtaining generalized solutions to (1.2) along with initial data.

2. Deterministic and random Colombeau algebras

2.1. Colombeau algebras

2.1.1. Inadequacy of Schwartz distributions

This inadequacy stems mainly from the lack of a suitable multiplication operation. The first remedy to get

around this difficulty could be to imbed D′ (Schwartz distributions) into a differential algebra. However, this

also has limitations in accordance with the celebrated Schwartz impossibility result, which roughly states that

any such imbedding of D′ into an associative, commutative differential algebra has to give some concessions

regarding the natural properties of the derivative and the product rules (like Leibniz, etc.). For instance, such

an algebra can not extend the pointwise multiplication of continuous functions, and it also cannot possess any

element δ satisfying xδ = 0.

It is usually regarded that Colombeau’s differential algebra wards off the consequences of the Schwartz

impossibility result in an optimal manner and the concessions given are minimal in many respects.

In Colombeau’s method, nonlinear distributions are formed by the classes of smooth regularizations and

the space of generalized functions (the Colombeau algebra) is given as a factor algebra:

G(ℜn) = EM (ℜn)/N (ℜn)

where EM (ℜn) is the algebra of moderate functions:

EM (ℜn) = {u ∈ [C∞(ℜn)]A | ∀K ⊂⊂ ℜn, ∀α ∈ Nn, ∃p ≥ 0, such that ∀ϕ ∈ Ap(ℜn),

sup
x∈K

|∂αu(ϕϵ, x)| = O(ϵ−p) as ϵ→ 0}

and where N (ℜn) is the ideal of null germs:

N (ℜn) = {u ∈ EM (ℜn) | ∀K ⊂⊂ ℜn, ∀α ∈ Nn, ∃p ≥ 0 such that ∀q ≥ p,∀ϕ ∈ Aq(Rn),

sup
x∈K

|∂αu(ϕϵ, x)| = O(ϵq−p) as ϵ→ 0}.

In both definitions ϕϵ(x) ≡ ϵ−nϕ(xϵ ) and Aq,A (q ∈ N+) refer to the index sets of test functions given as

Aq = {ϕ ∈ D(ℜn)|
∫
ϕ(x)dx = 1,

∫
xαϕ(x)dx = 0, 1 ≤ |α| ≤ q}, q ∈ N, A1 ≡ A ⊃ A2 ⊃ A3 ⊃ · · · · · · .; ∩qAq =

∅. The set [C∞(ℜn)]A will consist of elements u(ϕ, x), ϕ ∈ A.
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A Colombeau generalized function T has the form

T = fT (a representative) +N .

Algebra and vector operations and differentiation are performed on the representatives.

The imbedding D′(ℜn) ⊂ G(ℜn) is achieved by

T −→ class [ϕ→ T ∗ ϕ], T ∈ D′(ℜn), ϕ ∈ A(ℜn).

This is a vector space imbedding that preserves the distributional derivatives. With this imbedding, for instance,

δ (the Dirac delta) is represented as δ = fδ +N , fδ(ϕ, x) = ϕ(x) and H(Heaviside) = fH +N , fH(ϕ, x) =∫ x

−∞ ϕ(t)dt; ϕ ∈ A(ℜn). C∞ is imbedded as a faithful subalgebra, i.e. T = h ∈ C∞ ⇒ fT (ϕ, x) = h(x) ∀ϕ ∈

A(ℜn).

In Colombeau’s theory xmδ ̸= 0 for m = 1, 2, · · · , in contrast to Schwartz’s theory of linear distributions

where xδ = 0 .

The space of continuous functions C0 can be imbedded as regular distributions, but then in accordance

with the Schwartz impossibility result, the product of continuous functions in G will not correspond to their

ordinary product. However, the 2 product rules are shown to be associated through an equivalence relation

resulting from a specific coupled calculus and this is a bonus in favor of Colombeau’s theory. The details of

such features and also some of the other properties are found in references like [1],[2], and [8].

An element T ∈ G(ℜn) is called nonnegative if it has a nonnegative representative.

Property. An important feature of Colombeau generalized functions is the following: as its construction

suggests, it is only the behavior along delta sequences that matters; namely, for the quotient algebra only the

values fT (ϕϵ, x), ϕ ∈ Aq for q large enough and ϵ > 0 small enough depending on ϕ are significant. Therefore,

in order to assert that a property holds for T ∈ G(ℜn) it is sufficient to verify it on some representative fT for

large q and small ϵ . The following definition utilizes this feature.

A generalized function T ∈ G(ℜn) is said to be of L1
loc -type with respect to variable x1 if it has a

representative fT with the following property:

For every K × Kn−1 ⊂ ℜ × ℜn−1 compact, ∃q ∈ N such that ∀ϕ ∈ Aq(ℜn), ∃M > 0, η > 0 with

supx′∈Kn−1

∫
K
|fT (ϕϵ, x′, x1)|dx1 ≤M, 0 < ϵ < η, where x′ = (x2, · · · , xn).

T ∈ G(ℜn) is said to be of uniform L1
loc type if in this definition M > 0 works out for every ϕ ∈ Aq(ℜn).

2.2. Association with Schwartz distributions

T ∈ G is said to be associated to V ∈ D′, denoted T ≈ V if ∃ a representative fT , T = fT+N such that ∀ψ ∈
D, ∃q ∈ N with limϵ→0

∫
fT (ϕϵ, x)ψ(x)dx = ⟨V, ψ⟩, ∀ϕ ∈ Aq(ℜn).

Interpretation: If we reduce the information contained in fT to the level of the linear distribution theory,

then T behaves like V .

2.3. Random Colombeau distributions

Given a probability space (Ω,Σ, µ) this is a mapping T : Ω → G(ℜn) such that ∃fT : A(ℜn)×ℜn × Ω → ℜ
with:

(i) For fixed ϕ ∈ A(ℜn), (x, ω) → fT (ϕ, x, ω) is jointly measurable on ℜn × Ω,
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(ii) a.s. in ω ∈ Ω, ϕ→ fT (ϕ, ., ω) belongs to EM and is a representative of T (ω). Denote random Colombeau

generalized functions by GΩ(Rn).

2.4. Classical generalized processes

These are weakly measurable maps V : Ω → D′(ℜn). All such classical generalized processes are denoted by

D′
Ω(ℜn). Then V (ω) ∗ϕ(x) = ⟨V (ω), ϕ(x− .)⟩ yields an imbedding D′

Ω(ℜn) → GΩ(ℜn). Since it is measurable

with respect to ω and smooth with respect to x ∈ ℜn, hence it is jointly measurable.

The most important example of a classical generalized process is thewhite noise Ḃ, ⟨Ḃ, ϕ⟩ = −⟨B,ϕ′⟩, (ϕ ∈

D or in n dimensions (−1)n⟨B, ∂nϕ
∂x1, · · · , ∂xn ⟩ . Its Colombeau representative, e.g., in one-dimension, would

be

fḂ(ϕ, x, ω) = −
∫
ℜ
B(s, ω)ϕ′(x− s)ds.

For the white noise we usually use a special probability space where Ω : tempered distributions, µ : the

Bochner measure.

3. Back to the stochastic semilinear hyperbolic system

3.1. Solution method

We write the system in a simpler form, without affecting the generality, by taking c1 = 1 = −c2 to get

D1U1 = (∂t + ∂x)U1 = (U1 + Ḃ1)(U2 + Ḃ2)

D2U2 = (∂t − ∂x)U2 = −(U1 + Ḃ1)(U2 + Ḃ2)

Uj(x, 0) = Γj ; j = 1, 2, (3.1)

where U1, U2 are generalized solutions in GΩ(R2), Ḃ1, Ḃ2 are space-time white noises, and Γ1, Γ2 ∈ G(R2).

Now Ḃ1, Ḃ2 ∈ (S)∗ (Hida distributions); their product is not defined in (S)∗ but is meaningful in the

stochastic Colombeau distribution space GΩ along the lines introduced in [3] and [4].

We try to solve the last system at the representatives level u1, u2, (U1 = u1 +N , U2 = u2 +N ) and

then show that u1, u2 are moderate. Then their classes will constitute a generalized solution. More explicitly:

I) Find the classical solution u1(ϕ, x, t, ω), u2(ϕ, x, t, ω) for fixed ϕ and ω :

D1u1 = (u1 + α)(u2 + β)

D2u2 = −(u1 + α)(u2 + β)

u1(x, 0) = γ1(x), u2(x, 0) = γ2(x) (3.2)

where α = α(ϕ, x, t, ω), β = β(ϕ, x, t, ω) are representatives of white noises Ḃ1 and Ḃ2 , respectively,

as random Colombeau distributions and γ1(ϕ, x) and γ2(ϕ, x) are representatives of Γ1 and Γ2. .

II) Show that u1 = u1(ϕ, x, t, ω) and u2 = u2(ϕ, x, t, ω) are in EM , i.e. are moderate, and also for fixed

ϕ ∈ A(R2), the mappings (x, t, ω) → ui(ϕ, x, t, ω) are jointly measurable on R2 × Ω. Then their class

will form a random Colombeau solution to the system.
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Since D1(−u1) = D2u2, ∃X such that D1X = u2, D2X = −u1. To find the form of X ,

D1X =
∂X

∂t
+
∂X

∂x
= u2 (†)

D2X =
∂X

∂t
− ∂X

∂x
= −u1 (††)

Adding the 2 equations:

2
∂X

∂t
= u2 − u1 =⇒ 2X(x, t) =

∫ t

0

[u2(x, s)− u1(x, s)]ds+A(x) . (
√
)

Differentiating with respect to x and interchanging the order of differentiation and integration, we have:

A′(x) = 2
∂X

∂x
(x, t)−

∫ t

0

[
∂u2
∂x

(x, s)− ∂u1
∂x

(x, s)]ds .

As this equality is true for all t∗, , by putting t = 0 we get:

A′(x) = 2
∂X

∂x
(x, 0) .

On the other hand by subtracting (††) from (†) , we have 2∂X
∂x = u1 + u2 or

2
∂X

∂x
(x, 0) = u1(x, 0) + u2(x, 0) = γ1(x) + γ2(x) ,

and substituting for A′(x)

A′(x) = γ1(x) + γ2(x) =⇒ A(x) =

∫ x

0

[γ1(r) + γ2(r)]dr .

Thus, from (
√
)

X(x, t) =
1

2
{
∫ t

0

[−u1(x, s) + u2(x, s)]ds+

∫ x

0

[γ1(r) + γ2(r)]dr} (3.3)

(modulo a constant).

The initial conditions for X are (dependence of γi on ϕ ∈ A, (i = 1, 2) being suppressed):

X(x, 0) =
1

2

∫ x

0

[γ1(r) + γ2(r)]dr, Xt(x, 0) =
1

2
[−γ1(x) + γ2(x)]

and X satisfies the differential equation

D1D2X = D1(−u1) = −(u1 + α)(u2 + β) = −(−D2X + α)(D1X + β) or

D1D2X = (D1X + β)(D2X − α),

Following Hasimoto’s method [5], let Y = e−X , and Y then satisfies
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Ytt − Yxx + (α+ β)Yx + (α− β)Yt − αβY = 0. (3.4)

Y has the following initial conditions:

Y (x, 0)
.
= Y1(x) = e−X(x,0) = e−

1
2

∫ x
0
(γ1(r)+γ2(r))dr

Yt(x, 0)
.
= Y2(x) = −Xt(x, 0)e

−X(x,0) =
1

2
[γ1(x)− γ2(x)]. e

− 1
2

∫ x
0
(γ1(r)+γ2(r))dr (3.5)

In general it is very difficult to find a solution to the hyperbolic system (3.4), (3.5) when α = α(x, t) and

β = β(x, t) (the other variables ϕ and ω being suppressed). However, we make the natural assumption that

noises propagate along the characteristics, allowing us to obtain a solution to the initial value problem (3.4)

along with (3.5) in a nice closed form. That means we assume:

α = α(x− t) = −
∫
R
B1(s)ϕ

′(x− t− s)ds, β = β(x+ t) = −
∫
R
B2(s)ϕ

′(x+ t− s)ds, ϕ ∈ A. (3.6)

Now transforming to the variables ξ = x− t, η = x+ t we get the following differential equation:

Yξη −
1

2
(βYξ + αYη) +

αβ

4
Y = 0.

Substituting Y = F (ξ)G(η) in the above equation, we find:

[F ′(ξ)− 1

2
α(ξ)F (ξ)][G′(η)− 1

2
β(η)G(η)] = 0

yielding

Y (ξ, η) = e
1
2

∫ ξ
0
α(u)duG(η) + e

1
2

∫ η
0

β(v)dvF (ξ),

F,G : arbitrary C1 functions. F and G are eliminated using the initial conditions Y1 and Y2 . Then by

transforming back to (x, t) variables and using (3.5) we find:

Y (x, t) = exp [
1

2

∫ x+t

x−t

β(v)dv ]Y1(x− t) + I(x− t)J(x+ t)

∫ x+t

x−t

Y2(u) + Y ′
1(u)− β(u)Y1(u)

2I(u)J(u)
du

= exp {1
2
[

∫ x+t

x−t

β(v)dv −
∫ x

0

(γ1(r) + γ2(r))dr ]}

−I(x− t)J(x+ t)

∫ x+t

x−t

(γ2(u) + β(u)) exp [−1
2

∫ x

0
(γ1(r) + γ2(r))dr ]

2I(u)J(u)
du,

where

I(u) = e
1
2

∫ u
0

α(s)ds, J(u) = e
1
2

∫ u
0

β(r)dr. (3.7)
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3.2. Colombeau solution of the problem

Starting by (3.7), we can run the above procedure backwards and calculate

u1 = −D2(− log Y ), u2 = D1(− log Y )

as the solution at the representative platform. Here, however, we face a problem. Because of the noise terms

α and β, Y may have negative values for certain ω and ϕ.

If for a moment we consider the no-noise case (i.e. α = β = 0 in (3.7)), we retrieve the deterministic

D’Alembert solution:

Y d(x, t) =
1

2
[Y1(x− t) + Y1(x+ t) +

∫ x+t

x−t

Y2(u)du] ; ( d stands for ’deterministic’). (3.8)

Using (3.3) consider the following quotient:

Y d(x, t)

exp [− 1
2

∫ x−t

0
(γ1(r) + γ2(r))dr]

=
1

2

{
exp [−1

2

∫ x−t

0

(γ1(r) + γ2(r))dr] + exp [−1

2

∫ x+t

0

(γ1(r) + γ2(r))dr]

+
1

2

∫ x+t

x−t

(γ1(r)− γ2(r)) exp [−
1

2

∫ r

0

(γ1(s) + γ2(s))ds]dr

}

:

{
exp [−1

2

∫ x−t

0

(γ1(r) + γ2(r)dr)]

}

=
1

2

{
1 + exp [−1

2

∫ x+t

x−t

(γ1(r) + γ2(r))dr]

+
1

2

∫ x+t

x−t

(γ1(r)− γ2(r)) exp [−
1

2

∫ r

x−t

(γ1(s) + γ2(s))ds]dr

}
Substituting v(r) =

∫ r

x−t
(γ1(s) + γ2(s))ds, we find

=
1

2

{
1 + exp [−1

2

∫ x+t

x−t

(γ1(r) + γ2(r))dr]−
∫ x+t

x−t

γ2(r) exp [−
1

2

∫ r

x−t

(γ1(s) + γ2(s))ds]dr

+
1

2

∫ ∫ x+t
x−t

(γ1(r)+γ2(r)dr

v=0

e−
v
2 dv

}

Hence:

Y d(x, t)

exp [−1
2

∫ x−t

0
(γ1(r) + γ2(r)dr]

= 1− 1

2

∫ x+t

x−t

γ2(r) exp [−
1

2

∫ r

x−t

(γ1(s) + γ2(s))ds]dr (3.9)

1054
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3.2.1. Nonnegativity assumption

Now we make the assumption that Γ1 and Γ2 are of nonnegative L1
loc type. Thus, the representatives γ1

and γ2 can be chosen as nonnegative, so that starting by (3.9) :

Y d(x, t)

exp [−1
2

∫ x−t

0
(γ1(r) + γ2(r))dr]

≥ 1− 1

2

∫ x+t

x−t

γ2(r) exp [−
1

2

∫ r

x−t

γ2(s)ds]dr

or by a further substitution:

Y d(x, t) ≥ exp {−1

2
[

∫ x−t

0

γ1(r)dr +

∫ x+t

0

γ2(s)ds]} (3.10)

In view of the assumptions that γ1 and γ2 are of L1
loc type, given any compact set K ⊂ ℜ2, for q large

enough and η > 0 small enough , Y d
ϵ is bounded away from zero uniformly for (x, t) ∈ K, i.e.

Y d
ϵ (x, t) ≥ exp {−1

2
[

∫ x−t

0

γ1(ϕϵ, r)dr +

∫ x+t

0

γ2(ϕϵ, s)ds]}; ϕ ∈ Aq, 0 < ϵ < η. (3.11)

Besides the moderateness and nonnegativity of γ1, γ2 , and (3.9), Y d(x, t) is also moderate. Let its

equivalence class be W ∈ G(ℜ2). Then fW = Y d.

3.2.2. Stochastic predator–prey model

In this case, the initial data are multiples of delta functions:

Γ1(x) = ∆1δ(x− ξ1), Γ2(x) = ∆2δ(x− ξ2);∆1 ≥ 0,∆2 ≥ 0,

where Γ1 = γ1 +N , Γ2 = γ2 +N . Suitable Colombeau representatives can be taken as:

γ1(ϕ, x) = ∆1ϕ(x− ξ1) , γ2(ϕ, x) = ∆2ϕ(x− ξ2); ϕ ∈ A.

It is easily seen that Γ1 and Γ2 are of uniformly L1
loc type with M1 = ∆1 and M2 = ∆2. For q

sufficiently large and ϵ sufficiently small, the estimate in (3.11) is also valid:

Y d
ϵ (x, t) ≥ exp [−∆1

2

∫ x−t

0

ϕϵ(x− ξ1)dr] exp [−
∆2

2

∫ x+t

0

ϕϵ(s− ξ2)ds] ; ϕ ∈ A2. (3.12)

Without loss of generality we may assume 0 < ξ1 < ξ2 and x − t > 0. Consider 2 characteristic lines

emanating from ξ1 and ξ2 , respectively, as shown below.
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I

II

III

IV

x

t

ξ2ξ1

x − t = ξ1

x + t = ξ2

x − t = ξ2

x + t = ξ1

Figure. Characterization of the regions.

In region I : ξ1 < x− t < x+ t < ξ2,

In region II : x− t < ξ1 < x+ t < ξ2,

In region III : ξ1 < x− t < ξ2 < x+ t,

In region IV : x− t < ξ1 < ξ2 < x+ t.

In delta sequences supp{ϕϵ(x− ξi)} → {ξi} as ϵ→ 0, (i = 1.2). Therefore, there exist sufficiently small

ϵi > 0, (i = 1, 2, 3, 4) such that:

In I : Y d
ϵ (x, t) ≥ e−

∆1
2 , for 0 < ϵ < ϵ1;

In II : Y d
ϵ (x, t) ≥ e0 = 1, for 0 < ϵ < ϵ2;

In III : Y d
ϵ (x, t) ≥ e−

1
2 (∆1+∆2), for 0 < ϵ < ϵ3;

In IV : Y d
ϵ (x, t) ≥ e−

∆2
2 , for 0 < ϵ < ϵ4. (3.13)

Thus, for 0 < ϵ < η(ϕ), where η = min{ϵi : i = 1, 2, 3, 4} :

Y d
ϵ x, t) ≥ e−

1
2 (∆1+∆2) .= k0 > 0.

Note. Y d , being moderate, is a representative of some generalized function W ∈ G. In fact, in accordance

with the property given in Section 2.1, there exists another representative, say Ỹ d, of W such that |Ỹ d| ≥ k0.

More precisely, define an equivalence relation (descendance relation) in A (or in any Aq ) as follows: ϕ ≈
ψ ⇐⇒ ∃ϵ > 0, ϕϵ = ψ (e.g., symmetry by ψ1/ϵ = ϕ). This equivalence relation partitions the index set A.
Let [ϕ] be an equivalence class with a fixed representative ϕ. For every ψ ∈ [ϕ] , define

Ỹ d(x, t, ψ) =

{
Y d(x, t, ϕδ) if ψ = ϕδ and 0 < δ < η(ϕ)
k0 otherwise.

Ỹ d is clearly moderate, and Ỹ d − Y d ∈ N (ℜ2) and satisfies |Ỹ d| ≥ q0 (3.14).

Now we show that Y d is also bounded from above uniformly by another constant, k1 (all symbols
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ÇAPAR/Turk J Math

pertaining to the deterministic case):

u1,ϵ(x, t) = −D2(− log Y d
ϵ ) =

−Y ′
1(x− t) + Y2(x− t)

Y d
ϵ (x, t)

.

By (3.3) and using the initial data of the predator–prey system :

u1,ϵ(x, t) =
γ1(ϕϵ, x− t) exp [−1

2

∫ x−t

0
(γ1(ϕϵ, r) + γ2(ϕϵ))dr]

Y d
ϵ (x, t)

=
∆1ϕϵ(x− t− ξ1) exp [− 1

2

∫ x−t

0
(∆1ϕϵ(r − ξ1) + ∆2ϕϵ(r − ξ2)dr]

Y d
ϵ

. (3.15)

In view of the boundedness of Y d, |
∫ t

0
u1,ϵ(x, s)ds| is bounded uniformly in (x, t) by some multiple of the

L1 norm of ∆1ϕϵ; a similar calculation applies to u2,ϵ = −Y
′
1(x+ t) + Y2(x+ t)

Y d
ϵ

, showing that |Xϵ| in (3.1),

rewritten for the predator–prey initial data , is bounded in L∞(ℜ2) independent of ϵ . Thus, Y d
ϵ = exp (−Xϵ)

is also bounded from above (all results for large enough q and small enough ϵ). Hence:

k0 ≤ Y d
ϵ ≤ k1.

3.2.3. Colombeau solutions for bounded perturbations

In order to remedy the difficulty indicated at the beginning of Section 3.2 , we consider the Brownian motions

involved with predator and prey populations as doubly reflected ones. This also conforms well to the cyclic

nature of the predator–prey problems in which predator and prey populations fluctuate and swing between 2

bounds.

It is well-known that the biologist Umberto d’Ancona had brought a curious phenomenon to the attention

of his father-in-law, the eminent mathematician Vito Volterra. In the post-World War I era the proportion of

wild aquatic life (sharks, etc.) in the total fish-catch had considerably increased although there was much

less fishing during the war. Volterra’s modeling of the phenomenon led to the one of the first predator–prey

equations. Here the preys were food fish. In other set-ups there may be foxes and rabbits, some plant species

and herbivorous animals, parasites and hosting organisms, or even different industries linked to each other. The

survival of predators depends entirely on the sufficient supply of prey. Thus, in a closed system, when the preys

are consumed down to a certain level, predators start perishing. In the presence of fewer predators, then, preys

begin to flourish. They multiply faster; in turn, with more food available, predators begin growing in number,

resulting in a decline in the prey population, and then again a famine starts among predators, thus beginning

a new cycle.

The state space will then be [−b, b] for some positive constant b. Denote the doubly reflected Brownian

motion with parameter b by B̂b(t, ω). Then the vertical position of the process immediately having been

reflected downwards at b or reflected upwards at −b is given by:

B̂b(t, ω) = b− ||B(t, ω) + b| − 2b| , (3.16)

e.g., if B(t, ω) = b+∆ (0 < ∆ < 2b) , then the formula yields B̂b(t, ω) = b+∆ , and if B(t, ω) = −b−∆ , it

gives B̂b(t, ω) = −b+∆. The white noise as a random Colombeau distribution resulting from B̂b will have a
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representative

f b
B̂.(ϕ, x, ω) = −

∫
ℜ
B̂b(s, ω)ϕ′(x− s)ds. (3.17)

We rewrite (3.4) replacing the representatives α and β by this type of representatives, i.e.

α̂b(ϕ, u, ω) = −
∫
ℜ
B̂1

b
(s, ω)ϕ′(u− s)ds; β̂b(ϕ, u, ω) = −

∫
ℜ
B̂2

b
(s, ω)ϕ′(u− s)ds. (3.18)

Again we assume that the white noises are propagated along the characteristic lines.

The equation (3.7) rewritten for a doubly reflected Brownian motion and white noise representatives as

given in (3.18) ( ω and ϕ being suppressed) would be of the following form:

Y b(x, t) = exp [
1

2

∫ x+t

x−t

β̂b(v)dv ]Y1(x− t) + I(x− t)J(x+ t)

∫ x+t

x−t

Y2(u) + Y ′(u)− β̂b(u)Y1(u)

2I(u)J(u)
du;

where

I(u) = e
1
2

∫ u
0

α̂b(s)ds, J(u) = e
1
2

∫
0
β̂b(r)dr. (3.19)

Y b(x, t) becomes a continuous function of b . We also have limb→0 Y
b = Ỹ d. As Ỹ d is bounded by k0

and k1, ∃b0 such that Y b0 is also bounded by the same constants. Since |β̂b(ϕ, u, ω)| ≤ |
∫
ℜ B̂

b
2(s, ω)ϕ

′(u −

s)ds| ≤ b
∫
ℜ |ϕ′(u− s)ds| , b0 can be determined independent of ω . On the other hand, in order to show that

b0 thus found works out for all test functions ψ ∈ Aq , q being sufficiently large , we first change Y b to another

representative Ŷ b where all the test functions have their supports in [x− t, x+ t] . This can be achieved by a

technique similar to the one leading to (3.14). Then, as the path B̂2(ω, s) is continuous on the compact interval

[x− t, x+ t] , it can be approximated to any desired level of accuracy by the Weierstrass theorem so as to render

the sign of Ŷ b still positive. If this is done by a polynomial Qq of degree q where q is sufficiently large, for

any pair of test functions ϕ , ψ ∈ Aq we have
∫
Qq(s)ϕ

′(u − s)ds =
∫
Qq(s)ψ

′(u − s)ds , the last equality

being due to the definition of test functions and their zero moment properties. In view of the nonnegativity of

Y1(u) by (3.5), these integrals approximate the sign-determining factor β̂b(u) in (3.19), and hence they can

be evaluated as independent of the test function.

Then for such a small b , 0 < b < b0 , we can reverse the procedure to calculate u1 = −D2(− log Ŷ b), u2 =

D1(− log Ŷ b) :

u1(x, t) =
{
exp [ 12

∫ x+t

x−t
β̂b(v)dv ][β̂b(x− t)Y1(x− t)− 2Y ′

1(x− t) ]

− exp [
1

2
(

∫ x−t

0

α̂b(u)du+

∫ x+t

0

β̂b(v)dv) ]α̂b(x− t) +

∫ x+t

x−t

Y2(u) + Y ′
1(u)− β̂b(u)Y1(u)

2I(u)J(u)
du

+exp [
1

2
(

∫ x−t

0

α̂b(u)du+

∫ x+b

0

β̂b(v)dv) ]
Y2(x− t) + Y ′

1(x− t)− β̂b(x− t)Y1(x− t)

I(x− t)J(x− t)

}
: Ŷ b(x, t)

u2(x, t) = −
{
exp [

1

2

∫ x+t

x−t

β̂b(v)dv ]β̂b(x+ t)Y1(x− t)
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+exp [
1

2

∫ x−t

0

α̂b(u)du+

∫ x−t

0

β̂b(v)dv ]β̂b(x+ t)

∫ x+t

x−t

Y2(u) + Y ′
1(u)− β̂bY1(u)

2I(u)J(u)
du

+ exp [
1

2
(

∫ x−t

0

α̂b(u)du+

∫ x+t

0

β̂b(v)dv) ]
Y2(x+ t) + Y ′

1(x+ t)− β̂b(x+ t)Y1(x+ t)

I(x+ t)J(x+ t)

}
: Ŷ b(x, t) (3.20)

(Note: In these expressions I(u) and J(u) are formed by α̂b and β̂b.)

The quantities involved here, such as Y1, Y2, α̂
b, β̂b , are representatives of generalized functions and their

smooth functions. Therefore, they are almost surely moderate, rendering u1 and u2 also as moderate functions.

Besides, α̂b, β̂b are measurable with respect to ω . Thus, for fixed ϕ, being also smooth in x, t ∈ ℜ2, u1 and

u2 are jointly measurable on ℜ2×Ω, Their classes, U1 and U2 , will be generalized solutions to the stochastic

predator–prey system driven by doubly reflected Brownian motions.

We can round up the results of this section in the following theorem.

Theorem. The stochastic predator–prey system of (3.1) with delta function initial conditions has a unique so-

lution in GΩ(ℜ2) when the driving white noises result from doubly reflected Brownian motions with sufficiently

small amplitudes.

Note. For the uniqueness part, the proof will follow these lines: Let U1 and U2 be the equivalence classes

in G(ℜ2) of solutions u1 and u2 given by (3.20). Let Ũ1 and Ũ2 be another pair of generalized functions

with representatives ũ1 and ũ2 , solution of the same problem. Use these representatives and the equation

(3.3) to calculate X̃(x, t) . As γ̃1(x) and γ̃2(x) are the representatives of delta functions, they are moderate;

accordingly X̃(x, t) is moderate, so is Ỹ b = log(e−X̃). Hence, Ỹ b and Y b are governed by the same

wave equation (3.4) and the initial conditions are moderate functions belonging to the same equivalence class.

Therefore, their difference is estimated to belong to the ideal N (ℜ2) . As a result their equivalence classes are

equal, i.e. class (Ỹ b) = class (Y b) (see [7] for some details). In this way, class (X̃b) = class Xb in G(ℜ2) .

This implies in turn that Ũ1 = U1 and Ũ2 = U2 in G(ℜ2), i.e. ũ1 − u1,∈ N (ℜ2) and ũ2 − u2 ∈ N (ℜ2).

4. Concluding remarks

A) “For b > 0 sufficiently small Y b is also bounded away from 0” will not necessarily imply that the

random perturbation is negligible in the true sense of the word. It all depends on the units involved.

The differential equations are not dimensionless; recall that c1 and c2 were assumed for simplicity as

+1 − 1 , which were velocities. At the microscopic level something very small may not be negligible. For

instance, the predator–prey models are also used for the parasite–host organism interactions.

Besides, small random changes in the deterministic Y d may produce considerable changes in u1 and u2

upon differentiation by the differential operators D1 and D2 .

B) There could be another approach to get around the positivity requirement of Y (x, t) :

Consider small perturbations σ1(ω)B1(ω) and σ2(ω)B2(ω) defined pathwise and corresponding Y σ(ω),

where 0 < σi(ω) < 1, (i = 1, 2) and σ = min{σ1, σ2}. Considering the fact that Brownian paths

are continuous, and therefore bounded on compact sets, the regularized white noise terms in (3.7) can

be estimated for small σi and again following a continuity argument we can reach the conclusion that
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|Y σ − Y d| can be made small for sufficiently small σ , and therefore Y σ(ω) > 0 pathwise, σ depending

on path. However, in order to assert that the solution constructed is in the sense of stochastic Colombeau

algebras, we should show that σi(ω) can be determined via measurable selections. In this way, the

joint measurability condition of a random Colombeau solution can be met. Of course, then the process

σi(ω)Bi(t, ω) will be no longer Gaussian.

C) In parallel to the concept of the associated Schwartz distribution of Section 2.2, we can coin the term

“associated classical generalized process” (or associated Gelfand distribution) as follows:

T (ω) ∈ GΩ(ℜn) is associated to a classical generalized process V (ω) ∈ D′
Ω(ℜn) if it has a representative

fT (ω) such that ∀ψ ∈ D(ℜn), ∃q ∈ N satisfying almost surely

lim
ϵ→0

∫
ℜn

fT (ϕϵ, x, ω)ψ(x)dx = ⟨V (ω), ψ⟩, ϕ ∈ Aq(ℜn).

Applying this definition to our case, we should investigate limϵ→0{
∫
ℜ2 ui(ϕϵ, x, t, ω)ψ(x, t)dxdt};

ψ ∈ D(ℜ2). However, in view of the messy expression (3.17) this seems to be an impossibly difficult

task. For a short cut, one could try to find the associated linear process for Y b if it exists and show that

the limit and the differential operators Di, (i = 1, 2) commute.
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