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Abstract: Let Rk,m be the ring F2m [u1, u2, · · · , uk]/
⟨
u2
i , uiuj − ujui

⟩
. In this paper, cyclic codes of arbitrary length

n over the ring R2,m are completely characterized in terms of unique generators and a way for determination of these

generators is investigated. A F2m -basis for these codes is also derived from this representation. Moreover, it is proven

that there exists a one-to-one correspondence between cyclic codes of length 2n , n odd, over the ring Rk−1,m and cyclic

codes of length n over the ring Rk,m . By determining the complete structure of cyclic codes of length 2 over R2,m , a

mass formula for the number of these codes is given. Using this and the mentioned correspondence, the number of ideals

of the rings R2,m and R3,m is determined. As a corollary, the number of cyclic codes of odd length n over the rings

R2,m and R3,m is obtained.
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1. Introduction

Codes over rings have been studied extensively after the publishing of the work done in [12], in which the authors

looked at linear codes over Z4 and their binary images. Since then, many different types of rings have been

studied in connection with the coding theory. Among various types of codes, cyclic codes form an important

class of codes due to their rich algebraic structure. Given a ring R , these codes are in correspondence with

ideals in the polynomial ring R[x]/⟨xn − 1⟩ , where n is the length of the code.

Many of the works in the literature deal with the case wherein R is a finite chain ring [1–9,12–18].

However, recently, the authors of [19] considered the ring F2[u, v]/
⟨
u2, v2, uv − vu

⟩
, which is a local ring but

not a chain ring, and studied general linear codes over that. This work was continued in [20], [10], and [11].

In [20], the authors considered cyclic codes over F2[u, v]/
⟨
u2, v2, uv − vu

⟩
and obtained a partial charac-

terization for them by presenting a set of generators for these codes. Though a few conditions on the polynomials

involved in the generators were given in [20], the classification of them is still incomplete and the generators are

not necessarily unique. The cardinality of codes and the basis for them are also not known.

Let Rk,m be the ring F2m [u1, u2, · · · , uk]/
⟨
u2i , uiuj − ujui

⟩
with the convention that R0,m = F2m . In

this work, we introduce a unique set of generators for cyclic codes over the ring R2,m and present a way for

determination of these generators. A F2m -basis for these codes is also derived from this representation. We

also determine all distinct cyclic codes of length 2 over this ring and give a mass formula for the number of

them. Note that the number of distinct cyclic codes of length 2 over R1,m can be obtained from the results
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of [5]. Next, we show that there exists a one-to-one correspondence between cyclic codes of length 2n , n odd,

over the ring Rk−1,m and cyclic codes of length n over the ring Rk,m . Taking n to be 1, ideals of the ring

Rk,m correspond bijectively to cyclic codes of length 2 over Rk−1,m . Hence, we have determined the number

of ideals of the rings R2,m and R3,m . As a corollary, the number of cyclic codes of odd length n over the rings

R2,m and R3,m is obtained.

The paper is organized as follows. In Section 2, a complete classification is given for cyclic codes of

arbitrary length n over R2,m . An algorithm generating all distinct cyclic codes of a given length over R2,m is

also presented there. All distinct cyclic codes of length 2 over R2,m and a mass formula for the number of them

can be found in this section. In Section 3, a one-to-one correspondence between cyclic codes of length 2n , n

odd, over the ring Rk−1,m and cyclic codes of length n over the ring Rk,m is introduced and some consequences

of this correspondence are investigated. The paper is closed with a conclusion section.

2. Cyclic codes over R2,m

Let σ : Rn
k,m −→ Rn

k,m be the map sending (c0, c1, . . . , cn−1) to (cn−1, c0, c1, . . . , cn−2). σ is called cyclic shift

permutation. A linear code of length n over Rk,m , that is a Rk,m -submodule of the ring Rn
k,m , is said to

be cyclic if it is invariant under the cyclic shift permutation σ . We use the natural correspondence between

cyclic codes of length n over Rk,m and ideals of the ring Rk,m[x]/⟨xn − 1⟩ , which sends (c0, c1, . . . , cn−1) to

c0 + c1x + · · · + cn−1x
n−1 . In this paper, we denote the ring Rk,m[x]/⟨xn − 1⟩ by Rk,m,n . For an ideal I of

Rk,m,n we define the residue and the torsion ideals as those defined in [11]:

Res(I) = {a ∈ Rk−1,m|∃b ∈ Rk−1,m : a+ ukb ∈ I},

and
Tor(I) = {a ∈ Rk−1,m|uka ∈ I}.

Recall from [11] that we have |I| = |Res(I)||Tor(I)| . It is easy to see that if I is an ideal of Rk,m,n then both

Res(I) and Tor(I) are ideals of Rk−1,m,n .

In this section we completely determine the structure of ideals of the ring R2,m,n , i.e. cyclic codes of

length n over R2,m . The ring R2,m is represented by F2m [u, v]/
⟨
u2, v2, uv − vu

⟩
in this section. Let I be an

ideal of the ring R2,m,n . We associate 4 ideals,

I1 := Res(Res(I)) = I mod ⟨u, v⟩,
I2 := Tor(Res(I)) = {f(x) ∈ F2m [x]|uf(x) ∈ I mod v}
I3 := Res(Tor(I)) = {f(x) ∈ F2m [x]|vf(x) ∈ I mod uv}
I4 := Tor(Tor(I)) = {f(x) ∈ F2m [x]|uvf(x) ∈ I},

to I . These are ideals of the ring R0,m,n and hence for any 1 ≤ j ≤ 4 we have Ij = ⟨fj(x)⟩ , where fj(x) | xn−1

in F2m [x] . We also have I1 ⊆ Ij for 2 ≤ j ≤ 4, I2 ⊆ I4 , and I3 ⊆ I4 . Hence, f4(x) | fj(x) for 1 ≤ j ≤ 3,

f2(x) | f1(x), and f3(x) | f1(x).
According to Theorem 3.6 of [20], any ideal I can be generated by polynomials of the forms

A1(x) = f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x),
A2(x) = uf2(x) + vf2,3(x) + uvf2,4(x),
A3(x) = vf3(x) + uvf3,4(x),
A4(x) = uvf4(x).
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Note that when fj(x) = xn − 1 we set Aj(x) := 0. Some conditions on the polynomials fi,j(x) were given in

[20]. Here we prove that we can choose these generators such that fi,j(x) = 0 or deg(fi,j(x)) < deg(fj(x)). We

prove this for i = 1 and 2 ≤ j ≤ 4. The remaining cases are easy. Assume that A1(x) ̸= 0 and deg(f1,2(x)) ≥
deg(f2(x)). Dividing f1,2(x) by f2(x), we have f1,2(x) = q(x)f2(x) + r(x), where deg(r(x)) < deg(f2(x)) or

r(x) = 0. Now

A1(x)− q(x)A2(x) = f1(x) + ur(x) + v(f1,3(x)− q(x)f2,3(x)) + uv(f1,4(x)− q(x)f2,4(x)) ∈ I.

If deg(f1,3(x)− q(x)f2,3(x)) ≥ deg(f3(x)), then dividing it by f3(x) we have

f1,3(x)− q(x)f2,3(x) = f3(x)q
′(x) + r′(x),

where deg(r′(x)) < deg(f3(x)). Therefore,

A1(x)− q(x)A2(x)− q′(x)A3(x) = f1(x) + ur(x) + vr′(x) + uv(f1,4(x)− q(x)f2,4(x)− q′(x)f3,4(x)) ∈ I.

Finally, dividing f1,4(x) − q(x)f2,4(x) − q′(x)f3,4(x) by f4(x) we have f1,4(x) − q(x)f2,4(x) − q′(x)f3,4(x) =

f4(x)q
′′(x) + r′′(x), where deg(r′′(x)) < deg(f4(x)) and hence

A1(x)− q(x)A2(x)− q′(x)A3(x)− q′′(x)A4(x) = f1(x) + ur(x) + vr′(x) + uvr′′(x) ∈ I.

Now this later polynomial has the desired property and it is easy to check that we can replace it with

A1(x). Next we prove that these polynomials are unique. Again we prove it only for A1(x). Assume that

A1(x) = f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x) and B1(x) = f1(x) + uf ′1,2(x) + vf ′1,3(x) + uvf ′1,4(x) are 2

polynomials with the mentioned property in I . Hence,

A1(x)−B1(x) = u(f1,2(x)− f ′1,2(x)) + v(f1,3(x)− f ′1,3(x)) + uv(f1,4(x)− f ′1,4(x)) ∈ I.

Since f1,2(x)−f ′1,2(x) ∈ I2 and deg(f1,2(x)−f ′1,2(x)) < deg(f2(x)), we have f1,2(x)−f ′1,2(x) = 0 and hence

f1,2(x) = f ′1,2(x). Similarly, we have f1,j(x) = f ′1,j(x) for 3 ≤ j ≤ 4. Therefore, A1(x) = B1(x). Let us

summarize:

Theorem 1 Any ideal I of the ring R2,m,n is uniquely generated by the polynomials

A1(x) = f1(x) + uf1,2(x) + vf1,3(x) + uvf1, 4(x),
A2(x) = uf2(x) + vf2,3(x) + uvf2,4(x),
A3(x) = vf3(x) + uvf3,4(x),
A4(x) = uvf4(x),

where Ij := ⟨fj(x)⟩ for 1 ≤ j ≤ 4 and fi,j(x) = 0 or deg(fi,j(x)) < deg(fj(x)) .

For an ideal I of the ring R2,m,n , the form described in Theorem 1 is referred to as the unique form of I .

Checking the conditions Ij := ⟨fj(x)⟩ is the main and difficult task in obtaining the unique form. We start

with the following proposition to obtain more practical conditions instead.
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Proposition 1 Let

I = ⟨f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x),

uf2(x) + vf2,3(x) + uvf2,4(x),

vf3(x) + uvf3,4(x),

uvf4(x)⟩

be an ideal of the ring R2,m,n in the unique form. Then we must have

f4(x)|f1(x), f4(x)|f2(x), f4(x)|f3(x), f3(x)|f1(x), f2(x)|f1(x), f1(x)|xn − 1. (1)

f2(x) | f1,2(x)
(xn − 1)

f1(x)
. (2)

f3(x) |
(xn − 1)

f1(x)

(
f1,3(x) +

f1,2(x)

f2(x)
f2,3(x)

)
. (3)

f3(x)|
f1(x)

f2(x)
f2,3(x). (4)

f4(x)|f2,3(x). (5)

f4(x)|
(xn − 1)

f3(x)
f3,4(x). (6)

f4(x)|
(xn − 1)

f2(x)

(
f2,4(x) +

f2,3(x)

f3(x)
f3,4(x)

)
. (7)

f4(x)|
(
f1,2(x) +

f1(x)

f3(x)
f3,4(x)

)
. (8)

f4(x)|
(
f1,3(x) +

f1(x)

f2(x)
f2,4(x) +

f1(x)

f2(x)f3(x)
f2,3(x)f3,4(x)

)
. (9)

f4(x)|
(xn − 1)

f1(x)

f1,4(x) + f1,2(x)

f2(x)
f2,4(x) +

f1,3(x) +
f1,2(x)
f2(x)

f2,3(x)

f3(x)
f3,4(x)

 . (10)

Proof Conditions given in (1) are clear since we have I1 ⊆ Ij for 2 ≤ j ≤ 4 and Ij ⊆ I4 for 2 ≤ j ≤ 3.

Condition (2) follows from the facts that

(xn − 1)

f1(x)
(f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x)) =

u
(xn − 1)

f1(x)
f1,2(x) + v

(xn − 1)

f1(x)
f1,3(x) + uv

(xn − 1)

f1(x)
f1,4(x) ∈ I

and I2 = ⟨f2(x)⟩ . Similarly, we have

(xn − 1)

f1(x)
(f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x)) +

(xn − 1)

f1(x)

f1,2(x)

f2(x)
(uf2(x) + vf2,3(x) + uvf2,4(x)) =

v

(
(xn − 1)

f1(x)
(f1,3(x) +

f1,2(x)

f2(x)
f2,3(x))

)
+ uv

(
(xn − 1)

f1(x)
((f1,4(x) +

f1,2(x)

f2(x)
f2,4(x))

)
∈ I,
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which imply condition (3). Also,

u (f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x)) +
f1(x)

f2(x)
(uf2(x) + vf2,3(x) + uvf2,4(x)) =

v

(
f1(x)

f2(x)
f2,3(x)

)
+ uv

(
f1,3(x) +

f1(x)

f2(x)
f2,4(x)

)
∈ I

imply condition (4),

u (uf2(x) + vf2,3(x) + uvf2,4(x)) = uvf2,3(x) ∈ I

imply condition (5),

(xn − 1)

f3(x)
(vf3(x) + uvf3,4(x)) ∈ I

imply condition (6),

(xn − 1)

f2(x)
(uf2(x) + vf2,3(x) + uvf2,4(x)) +

(xn − 1)

f2(x)

f2,3(x)

f3(x)
(vf3(x) + uvf3,4(x)) =

uv
(xn − 1)

f2(x)

(
f2,4(x) +

f2,3(x)

f3(x)
f3,4(x)

)
∈ I

imply condition (7),

v (f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x)) +
f1(x)

f3(x)
(vf3(x) + uvf3,4(x)) =

uv

(
f1,2(x) +

f1(x)

f3(x)
f3,4(x)

)
∈ I

imply condition (8),

u (f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x)) +
f1(x)

f2(x)
(uf2(x) + vf2,3(x) + uvf2,4(x))+

f1(x)f2,3(x)

f2(x)f3(x)
(vf3(x) + uvf3,4(x)) =

uv

(
f1,3(x) +

f1(x)

f2(x)
f2,4(x) +

f1(x)

f2(x)f3(x)
f2,3(x)f3,4(x)

)
∈ I

imply condition (9), and finally

(xn − 1)

f1(x)
(f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x)) +

(xn − 1)

f1(x)

f1,2(x)

f2(x)
(uf2(x) + vf2,3(x) + uvf2,4(x))+

(xn − 1)

f1(x)

f1,3(x) +
f1,2(x)
f2(x)

f2,3(x)

f3(x)
(vf3(x) + uvf3,4(x)) =
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(xn − 1)

f1(x)

f1,4(x) + f1,2(x)

f2(x)
f2,4(x) +

f1,3(x) +
f1,2(x)
f2(x)

f2,3(x)

f3(x)
f3,4(x)

 ∈ I

imply condition (10). The proof is now completed. 2

Theorem 2 Let
I =< f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x),

uf2(x) + vf2,3(x) + uvf2,4(x),

vf3(x) + uvf3,4(x),

uvf4(x) >

be an ideal of the ring R2,m,n such that deg(fi,j(x)) < deg(fj(x)) and also fj(x) and fi,j(x) satisfy in conditions

given in (1) through (10) described in Proposition 1. Then I is in the unique form.

Proof It is enough to show Ij = ⟨fj(x)⟩. Suppose that m(x) is an arbitrary element of I . Hence, we can

write
m(x) = (a1(x) + ua2(x) + va3(x) + uva4(x))(f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x))

+(b1(x) + ub2(x) + vb3(x))(uf2(x) + vf2,3(x) + uvf2,4(x))

+(c1(x) + uc2(x))(vf3(x) + uvf3,4(x)) + d1(x)(uvf4(x)) =

a1(x)f1(x) + u(a1(x)f1,2(x) + a2(x)f1(x) + b1(x)f2(x))+

v(a1(x)f1,3(x) + a3(x)f1(x) + b1(x)f2,3(x) + c1(x)f3(x))+

uv(a1(x)f1,4(x) + a2(x)f1,3(x)) + a3(x)f1,2(x) + a4(x)f1(x) + b1(x)f2,4(x)+

b2(x)f2,3(x) + b3(x)f2(x) + c1(x)f3,4(x) + c2(x)f3(x) + f4(x)d1(x)),

where ai(x), bi(x), ci(x), d1(x) ∈ F2m [x].

Clearly we have I1 = ⟨f1(x)⟩ . If m(x) be of the form uf ′2(x) + vf ′2,3(x) + uvf ′2,4(x), then we must

have a1(x)f1(x) = 0 and so (xn−1)
f1(x)

|a1(x). Also by conditions (1) and (3) of Proposition 1, we have

f2(x)|a1(x)f1,2(x) + a2(x)f1(x) + b1(x)f2(x),

which implies I2 = ⟨f2(x)⟩ . If m(x) be of the form vf
′

3(x) + uvf
′

3,4(x), then we must have a1(x)f1(x) = 0

implying (xn−1)
f1(x)

|a1(x) and also a1(x)f1,2(x) + a2(x)f1(x) + b1(x)f2(x) = 0 implying

b1(x) =
a1(x)f1,2 + a2(x)f1(x)

f2(x)
.

Therefore,

a1(x)f1,3(x) + a3(x)f1(x) + b1(x)f2,3(x) + c1(x)f3(x) = a1(x)f1,3(x)

+a3(x)f1(x) + (
a1(x)f1,2 + a2(x)f1(x)

f2(x)
)f2,3(x) + c1(x)f3(x).
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By conditions given in (1), (3), and (4) of Proposition 1, we have

f3(x)|a1(x)f1,3(x) + a3(x)f1(x) + b1(x)f2,3(x) + c1(x)f3(x),

and hence I3 = ⟨f3(x)⟩ . Finally, if m(x) be of the form uvf
′

4(x), then we conclude a1(x)f1(x) = 0, implying

(xn−1)
f1(x)

|a1(x), a1(x)f1,2(x) + a2(x)f1(x) + b1(x)f2(x) = 0 implying

b1(x) =
a1(x)f1,2 + a2(x)f1(x)

f2(x)
,

and
a3(x)f1(x) + a1(x)f1,3(x) + b1(x)f2,3(x) + c1(x)f3(x) = 0

implying

c1(x) =
a3(x)f1(x) + a1(x)f1,3(x) + b1(x)f2,3(x)

f3(x)
.

Now we have

a1(x)f1,4(x) + a2(x)f1,3(x) + a3(x)f1,2(x) + a4(x)f1(x) + b1(x)f2,4(x) + b2(x)f2,3(x)+
b3(x)f2(x) + c1(x)f3,4(x) + c2(x)f3(x) + f4(x)d1(x) =

a1(x)f1,4(x) + a2(x)f1,3(x)) + a3(x)f1,2(x) + a4(x)f1(x) + (
a1(x)f1,2+a2(x)f1(x)

f2(x)
)f2,4(x)+

b2(x)f2,3(x) + b3(x)f2(x) + (
a3(x)f1(x)+a1(x)f1,3(x)+

a1(x)f1,2+a2(x)f1(x)

f2(x)
f2,3(x)

f3(x)
)f3,4(x)

+c2(x)f3(x) + f4(x)d1(x).

By conditions (1), (2), (8), and (10) of Proposition 1, we have

f4(x)|a4(x)f1(x) + b2(x)f2,3(x) + b3(x)f2(x)

+c2(x)f3(x) + f4(x)d1(x) + a1(x)f1,4(x) + a3(x)f1,2(x)

+
a1(x)f1,2(x)f2,4(x)

f2(x)
+
a1(x)f1,3(x)f3,4(x)

f3(x)

+
a3(x)f1(x)f3,4(x)

f3(x)
+
a1(x)f1,2(x)f2,3(x)f3,4(x)

f2(x)f3(x)
.

Also, condition (9) implies

f4(x)|a2(x)f1,3(x) + a2(x)
f1(x)f2,4(x)

f2(x)
+ a2(x)

f1(x)f2,3(x)f3,4(x)

f2(x)f3(x)
.

Therefore, I4 = ⟨f4(x)⟩ and the proof is completed. 2

Theorem 3 Let n be odd and I be an ideal of the ring R2,m,n . Then the unique form of I is

I =< f1(x), uf2(x) + vf2,3(x), vf3(x), uvf4(x) > .
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Proof The proof follows from Proposition 1 and the facts deg(fi,j(x)) < deg(fj(x)) and (f2(x),
(xn−1)
f1(x)

) =

( (x
n−1)

f3(x)
, f4(x)) = ( (x

n−1)
f2(x)

, f4(x)) = 1. 2

Proposition 2 Let I = ⟨A(x), B(x), C(x), D(x)⟩ , where

A(x) = f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x),
B(x) = uf2(x) + vf2,3(x) + uvf2,4(x),
C(x) = vf3(x) + uvf3,4(x),
D(x) = uvf4(x)

is an ideal of R2,m,n in its unique form. Then the set
A(x), xA(x), · · · , xn−a−1A(x),
B(x), xB(x), · · · , xn−b−1B(x),
C(x), xC(x), · · · , xn−c−1C(x),
D(x), xD(x), · · · , xn−d−1D(x)


forms an F2m -basis for I , where a = deg(f1(x)) , b = deg(f2(x)) , c = deg(f3(x)) , and d = deg(f4(x)) .

Proof Assume that α(x), β(x), γ(x), and δ(x) are polynomials in F2m [x] , such that deg(α) < n − a ,

deg(β) < n− b , deg(γ) < n− c , deg(δ) < n− d , and we have

α(x)A(x) + β(x)B(x) + γ(x)C(x) + δ(x)D(x) = 0.

Therefore, we must have α(x)f1(x) = 0, which implies that α(x) = 0 since deg(α) < n− a . Similar arguments

show that we must have β(x) = γ(x) = δ(x) = 0 and the proof is now completed. 2

Example 1 Let n = 14 , f1(x) = (x + 1)(x3 + x2 + 1)2(x3 + x + 1)2 , and f2(x) = f3(x) = f4(x) =

(x + 1)(x3 + x2 + 1)(x3 + x + 1)2 . Clearly these polynomials satisfy condition (1) of Proposition 1. Next,

we will find ideals I of the ring R2,1,14 such that Ii = ⟨fi(x)⟩ for 1 ≤ i ≤ 4 . Such ideals are in the following

form:

I = ⟨f1(x) + uf1,2(x) + vf1,3(x) + uvf1,4(x),

uf2(x) + vf2,3(x) + uvf2,4(x),

vf3(x) + uvf3,4(x),

uvf4(x)⟩.

According to deg(fi,j(x)) < deg(fj(x)) , the polynomials fi,j(x) have degree of at most 9. Now we check

conditions (2) through (10) of Proposition 1.

Condition (2): (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|(x+ 1)f1,2(x). Thus,

f1,2(x) = α1(x
3 + x2 + 1)(x3 + x+ 1)2 α1 ∈ F2.

Condition (3): (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|(x+ 1)f1,3(x). Therefore,

f1,3(x) = α2(x
3 + x2 + 1)(x3 + x+ 1)2 α2 ∈ F2.
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Condition (5): (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|f2,3(x). Hence, f2,3(x) = 0.

Condition (6): (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|(x+ 1)(x3 + x2 + 1)f3,4(x). Consequently,

f3,4(x) = (x3 + x+ 1)2
3∑

i=0

bix
i.

Condition (7): (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|(x+ 1)(x3 + x2 + 1)f2,4(x). So,

f2,4(x) = (x3 + x+ 1)2
3∑

i=0

aix
i.

Condition (8): (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|α1(x
3 + x2 + 1)(x3 + x+ 1)2 + (x3 + x2 + 1)f3,4(x). Thus,

α1 = b0 + b1 + b2 + b3.

Condition (9): (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|α2(x
3 + x2 + 1)(x3 + x+ 1)2 + (x3 + x2 + 1)f3,4(x). Hence,

α2 = a0 + a1 + a2 + a3.

Condition (10):

(x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2|(x+ 1)f1,4(x) + α1(x
3 + x+ 1)2

3∑
i=0

aix
i + α2(x

3 + x+ 1)2
3∑

i=0

bix
i.

Therefore, (x3+x+1)2 | f1,4(x) . Also, from relations obtained from conditions (8) and (9), we can deduce that

α1

3∑
i=0

aix
i + α2

3∑
i=0

bix
i = (x+ 1)(u3x

2 + (u3 + u2)x+ (u3 + u2 + u1)),

where ui = α1ai + α2bi for 0 ≤ i ≤ 3 . Now summarizing the above results we can conclude that f1,4(x) =

α(x3 + x+ 1)2(x3 + (1 + u3)x
2 + (u2 + u3)x+ (1 + u1 + u2 + u3)) where α ∈ F2m . Therefore,

I = (x3 + x+ 1)2
(
(x+ 1)(x3 + x2 + 1)2 + (x3 + x2 + 1)(uα1 + vα2) + uvα(x3 + (1 + u3)x

2

+(u2 + u3)x+ (1 + u1 + u2 + u3))) , u(x
3 + x+ 1)2

(
(x+ 1)(x3 + x2 + 1) + v

3∑
i=0

aix
i

)
,

v(x3 + x+ 1)2

(
(x+ 1)(x3 + x2 + 1) + u

3∑
i=0

bix
i

)
, uv(x+ 1)(x3 + x2 + 1)(x3 + x+ 1)2

Therefore, we have 512 distinct ideals in this case. Searching among all 512 ideals, the Gray images of many

of them, such as one with α = 1 , a0 = b0 = b1 = a3 = 1 and a1 = a2 = b2 = b3 = 0 , have minimum distance

20, and hence we obtain a [56,13,20] code that has the best minimum distance among all codes of that size.

Now we will determine all distinct ideals of the ring R2,m,2 in the next theorem.
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Theorem 4 Ideals of the ring R2,m,2 are precisely the following ideals:

⟨0⟩, ⟨uv(x− 1)⟩, ⟨uv⟩, ⟨v, uv⟩, ⟨v(x− 1), uv⟩, ⟨v(x− 1) + uvζ1, uv(x− 1)⟩,
⟨u(x− 1), v, uv⟩, ⟨u(x− 1) + vζ1, v(x− 1), uv⟩, ⟨u(x− 1) + vζ1(x− 1), uv⟩,
⟨u(x− 1) + vζ1(x− 1) + uvζ2, uv(x− 1)⟩, ⟨u(x− 1) + uvζ1, v(x− 1) + uvζ2, uv(x− 1)⟩,
⟨u, v, uv⟩, ⟨u+ vζ1, v(x− 1), uv⟩, ⟨u+ v(ζ1(x− 1) + ζ2), uv⟩,
⟨(x− 1), u, v, uv⟩, ⟨(x− 1) + uζ1, u(x− 1), v, uv⟩, ⟨(x− 1) + vζ1, u+ vζ2, v(x− 1), uv⟩,
⟨(x− 1) + uζ1 + vζ2, u(x− 1), v(x− 1), uv⟩,
⟨(x− 1) + uζ1 + vζ2 + uvζ3, u(x− 1) + uvζ2, v(x− 1) + uvζ1, uv(x− 1)⟩, ⟨1⟩,

where ζj ∈ F2m for 1 ≤ j ≤ 3 .

Proof First note that we have x2 − 1 = (x − 1)2 in F2m [x] and any polynomial of degree less than 2 over

F2m can be written as a(x − 1) + b , where a, b ∈ F2m . According to Theorem 1, any ideal of the ring R2,m,2

can be uniquely generated by polynomials

A1(x) = (x− 1)a1 + uf1,2(x) + vf1,3(x) + uvf1,4(x),
A2(x) = u(x− 1)a2 + vf2,3(x) + uvf2,4(x),
A3(x) = v(x− 1)a3 + uvf3,4(x),
A4(x) = uv(x− 1)a4 ,

where Ij = ⟨(x− 1)aj ⟩ and fi,j(x) ∈ F2m [x] and deg(fi,j(x)) < aj . Moreover, we have 0 ≤ a1, a2, a3, a4 ≤ 2,

a2 ≤ a1 , a3 ≤ a1 , a4 ≤ a2 , and a4 ≤ a3 . Also, if at = 2 then we have At(x) = 0. Next, we shall call the

sequence a1, a2, a3, a4 the type of the ideal. We argue on the type of an ideal and determine all distinct ideals

in the unique form. Since the arguments for all cases are similar, we only argue on the ideals of type 1, 1, 1, 1.

Ideals of this type are of the form

I = ⟨(x− 1) + uζ1 + vζ2 + uvζ3, u(x− 1) + vζ4 + uvζ5, v(x− 1) + uvζ6, uv(x− 1)⟩.

Now condition (5) of Proposition 1 implies that (x − 1) | ζ4 and hence we must have ζ4 = 0. Moreover,

condition (8) of the proposition implies that (x − 1) | (ζ2 − ζ5) and therefore we must have ζ2 = ζ5 . Also,

condition (9) implies (x− 1) | (ζ1 − ζ6). Consequently, we must have ζ1 = ζ6 . Note that other conditions given

in Proposition 1 are clearly satisfied. Therefore, according to Theorem 2, I is of the unique form

I = ⟨(x− 1) + uζ1 + vζ2 + uvζ3, u(x− 1) + uvζ2, v(x− 1) + uvζ1, uv(x− 1)⟩,

where ζj ∈ F2m for 1 ≤ j ≤ 3 and the proof is now completed. 2

Counting all of the above ideals, we have the following corollary.

Corollary 1 There are 9 + 5(2m) + 5(22m) + 23m distinct ideals in the ring R2,m,2 .

3. A one-to-one correspondence

In this section we show that there exists a one-to-one correspondence between cyclic codes of length n , n odd,

over Rk,m and cyclic codes of length 2n over Rk−1,m . For unifying the proof statements and simplicity, for

1 ≤ k ≤ 3, we denote by

F2m [u1, u2, · · · , uk]
⟨u2i , uiuj − ujui⟩

the ring Rk,m . Let us start the section with the following lemma.
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Lemma 1 The ring Rk,m is isomorphic to the ring

Rk−1,m[w]

⟨w2 − 1, wui − uiw⟩
.

Proof Set

S :=
Rk−1,m[w]

⟨w2 − 1, wui − uiw⟩

and write

Rk,m =
Rk−1,m[uk]

⟨u2k, ukui − uiuk⟩
.

Now define the map φ : Rk,m −→ S by the role φ(α+ ukβ) = (α− β) + wβ . Since φ(uk) = (w − 1) and in S

we have (w − 1)2 = 0, it is easy to verify that the map φ is a ring isomorphism. 2

Recall that we denote the ring Rk,m[x]/⟨xn − 1⟩ by Rk,m,n .

Proposition 3 Assume that n is odd. Then we have

Rk,m,n
∼=

Rk−1,m[w]
⟨w2−1⟩ [x]

⟨xn − w⟩
.

Proof Define the map

η : Rk,m,n −→
Rk−1,m[w]
⟨w2−1⟩ [x]

⟨xn − w⟩

by the role η(f(x)) = f(wx). Since (wx)n − 1 = wxn − 1 = w(xn − w), we have xn − 1 | f(x) if and only if

xn − w | f(wx). Now it is straightforward to show that η is a ring isomorphism. 2

Theorem 5 There exists a one-to-one correspondence between ideals of the ring

Rk−1,m[w]
⟨w2−1⟩ [x]

⟨xn − w⟩

and ideals of the ring Rk−1,m,2n .

Proof Set

S :=

Rk−1,m[w]
⟨w2−1⟩ [x]

⟨xn − w⟩

and define the map δ : S −→ Rk−1,m,2n by the role

δ((a0 + wb0) + (a1 + wb1)x+ · · ·+ (an−1 + wbn−1)x
n−1) =

a0 + a1x+ · · ·+ an−1x
n−1 + b0x

n + b1x
n+1 + · · ·+ bc−1x

2n−1.
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Let I be an ideal of the ring S . We have

(a0 + wb0) + (a1 + wb1)x+ · · ·+ (an−1 + wbn−1)x
n−1 ∈ I ⇐⇒

w(an−1 + wbn−1) + (a0 + wb0)x+ · · ·+ (an−2 + wbn−2)x
n−1 ∈ I ⇐⇒

(bn−1 + wan−1) + (a0 + wb0)x+ · · ·+ (an−2 + wbn−2)x
n−1 ∈ I ⇐⇒

bn−1 + a0x+ · · ·+ an−2x
n−1 + an−1x

n + b0x
n+1 + · · ·+ bn−2x

2n−1 ∈ δ(I).

Therefore, I is an ideal of S if and only if δ(I) is an ideal of Rk−1,m,2n . 2

Corollary 2 I is an ideal of the ring Rk,m,n if and only if ψ(I) is an ideal of the ring Rk−1,m,2n , where

ψ = φ ◦ η ◦ δ .

Corollary 3 There are 9 + 5(2m) + 5(22m) + 23m distinct ideals in the ring R3,m .

Remark 1 We should note that the determination of all ideals of the ring Rk,m was introduced in [11] as a

challenging open problem. The previous corollary solves it for k = 3 .

Example 2 Here we list all 47 distinct ideals of the ring R3,1 . Note that for the ring R3,m we set u := u1 ,

v := u2 and w := u3 .

⟨0⟩, ⟨1⟩, ⟨u⟩, ⟨v⟩, ⟨w⟩, ⟨u, v⟩, ⟨u,w⟩, ⟨v, w⟩, ⟨u, v, w⟩,
⟨uv⟩, ⟨uw⟩, ⟨vw⟩, ⟨uvw⟩, ⟨u+ v⟩, ⟨u+ w⟩, ⟨v + w⟩,
⟨u+ v + w⟩, ⟨uv, uw⟩, ⟨uv, vw⟩, ⟨uw, vw⟩,
⟨uv, vw, uw⟩, ⟨uv + uw⟩, ⟨uv + vw⟩, ⟨uw + vw⟩,
⟨uv + vw + uw⟩, ⟨w + v, u+ v⟩, ⟨uw + uv, vw + uv⟩, ⟨u, vw⟩,
⟨v, uw⟩, ⟨w, uv⟩, ⟨u+ vw⟩, ⟨v + uw⟩, ⟨w + uv⟩,
⟨u, v + w⟩, ⟨v, u+ w⟩, ⟨w, u+ v⟩, ⟨uw, v + w⟩,
⟨vw, u+ w⟩, ⟨vw, u+ v⟩, ⟨uv + v + w⟩, ⟨uv + u+ w⟩,
⟨vw + u+ v⟩, ⟨uv,wv + uw⟩, ⟨vw, uw + uv⟩, ⟨uw, uw + uv⟩,
⟨u+ v + w,wv, uw⟩, ⟨u+ v + w + uv⟩.

If xn − 1 = p1(x)p2(x) · · · pr(x) be the factorization of xn − 1 over F2m into basic irreducible pairwise

coprime polynomials, then we have

Rk,m,n
∼=

r⊕
i=1

Rk,mi ,

where mi = deg(gi(x)). Noting that, from the results of [5], the number of ideals of the ring R1,m,2 , i.e. the

number of ideals of the ring R2,m , is 5 + 2m , we have the following corollary.

Corollary 4 Let n be an odd number and mi be as above. Then there are

r∏
i=1

(5 + 2mi)
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distinct cyclic codes of length n over R2,m and there are

r∏
i=1

(
9 + 5(2mi) + 5(22mi) + 23mi

)
distinct cyclic codes of length n over R3,m .

4. Conclusion

A unique set of generators for cyclic codes over the ring R2,m was introduced and a way for determination of

these generators was presented. All distinct cyclic codes of length 2 over this ring were determined and a mass

formula for the number of them was given. A one-to-one correspondence between cyclic codes of length 2n , n

odd, over the ring Rk−1,m and cyclic codes of length n over the ring Rk,m was introduced. The number of

ideals of the rings R2,m and R3,m was determined. As a corollary, the number of cyclic codes of odd length n

over the rings R2,m and R3,m was obtained.
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