Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2013) 37: 1061 - 1074
(c) TÜBITAK
doi:10.3906/mat-1211-20

Some results on cyclic codes over the ring $R_{2, m}$

Reza SOBHANI, ${ }^{1, *}$ Maryam MOLAKARIMI ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Isfahan, Isfahan, Iran
${ }^{2}$ Department of Mathematics, Isfahan University of Technology, Isfahan, Iran

Received: 10.11.2012 • Accepted: 04.03.2013 • \quad Published Online: 23.09.2013 \quad Printed: 21.10 .2013

Abstract

Let $R_{k, m}$ be the ring $\mathbb{F}_{2^{m}}\left[u_{1}, u_{2}, \cdots, u_{k}\right] /\left\langle u_{i}^{2}, u_{i} u_{j}-u_{j} u_{i}\right\rangle$. In this paper, cyclic codes of arbitrary length n over the ring $R_{2, m}$ are completely characterized in terms of unique generators and a way for determination of these generators is investigated. A $\mathbb{F}_{2^{m}}$-basis for these codes is also derived from this representation. Moreover, it is proven that there exists a one-to-one correspondence between cyclic codes of length $2 n, n$ odd, over the ring $R_{k-1, m}$ and cyclic codes of length n over the ring $R_{k, m}$. By determining the complete structure of cyclic codes of length 2 over $R_{2, m}$, a mass formula for the number of these codes is given. Using this and the mentioned correspondence, the number of ideals of the rings $R_{2, m}$ and $R_{3, m}$ is determined. As a corollary, the number of cyclic codes of odd length n over the rings $R_{2, m}$ and $R_{3, m}$ is obtained.

Key words: Cyclic codes, codes over $R_{2, m}$

1. Introduction

Codes over rings have been studied extensively after the publishing of the work done in [12], in which the authors looked at linear codes over \mathbb{Z}_{4} and their binary images. Since then, many different types of rings have been studied in connection with the coding theory. Among various types of codes, cyclic codes form an important class of codes due to their rich algebraic structure. Given a ring R, these codes are in correspondence with ideals in the polynomial ring $R[x] /\left\langle x^{n}-1\right\rangle$, where n is the length of the code.

Many of the works in the literature deal with the case wherein R is a finite chain ring [1-9,12-18]. However, recently, the authors of [19] considered the ring $\mathbb{F}_{2}[u, v] /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$, which is a local ring but not a chain ring, and studied general linear codes over that. This work was continued in [20], [10], and [11].

In [20], the authors considered cyclic codes over $\mathbb{F}_{2}[u, v] /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$ and obtained a partial characterization for them by presenting a set of generators for these codes. Though a few conditions on the polynomials involved in the generators were given in [20], the classification of them is still incomplete and the generators are not necessarily unique. The cardinality of codes and the basis for them are also not known.

Let $R_{k, m}$ be the ring $\mathbb{F}_{2^{m}}\left[u_{1}, u_{2}, \cdots, u_{k}\right] /\left\langle u_{i}^{2}, u_{i} u_{j}-u_{j} u_{i}\right\rangle$ with the convention that $R_{0, m}=\mathbb{F}_{2^{m}}$. In this work, we introduce a unique set of generators for cyclic codes over the ring $R_{2, m}$ and present a way for determination of these generators. A $\mathbb{F}_{2^{m}}$-basis for these codes is also derived from this representation. We also determine all distinct cyclic codes of length 2 over this ring and give a mass formula for the number of them. Note that the number of distinct cyclic codes of length 2 over $R_{1, m}$ can be obtained from the results

[^0]of [5]. Next, we show that there exists a one-to-one correspondence between cyclic codes of length $2 n, n$ odd, over the ring $R_{k-1, m}$ and cyclic codes of length n over the ring $R_{k, m}$. Taking n to be 1 , ideals of the ring $R_{k, m}$ correspond bijectively to cyclic codes of length 2 over $R_{k-1, m}$. Hence, we have determined the number of ideals of the rings $R_{2, m}$ and $R_{3, m}$. As a corollary, the number of cyclic codes of odd length n over the rings $R_{2, m}$ and $R_{3, m}$ is obtained.

The paper is organized as follows. In Section 2, a complete classification is given for cyclic codes of arbitrary length n over $R_{2, m}$. An algorithm generating all distinct cyclic codes of a given length over $R_{2, m}$ is also presented there. All distinct cyclic codes of length 2 over $R_{2, m}$ and a mass formula for the number of them can be found in this section. In Section 3, a one-to-one correspondence between cyclic codes of length $2 n, n$ odd, over the ring $R_{k-1, m}$ and cyclic codes of length n over the ring $R_{k, m}$ is introduced and some consequences of this correspondence are investigated. The paper is closed with a conclusion section.

2. Cyclic codes over $R_{2, m}$

Let $\sigma: R_{k, m}^{n} \longrightarrow R_{k, m}^{n}$ be the map sending $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ to $\left(c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right) . \sigma$ is called cyclic shift permutation. A linear code of length n over $R_{k, m}$, that is a $R_{k, m}$-submodule of the ring $R_{k, m}^{n}$, is said to be cyclic if it is invariant under the cyclic shift permutation σ. We use the natural correspondence between cyclic codes of length n over $R_{k, m}$ and ideals of the ring $R_{k, m}[x] /\left\langle x^{n}-1\right\rangle$, which sends $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ to $c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$. In this paper, we denote the ring $R_{k, m}[x] /\left\langle x^{n}-1\right\rangle$ by $R_{k, m, n}$. For an ideal I of $R_{k, m, n}$ we define the residue and the torsion ideals as those defined in [11]:

$$
\operatorname{Res}(I)=\left\{\mathbf{a} \in R_{k-1, m} \mid \exists \mathbf{b} \in R_{k-1, m}: \mathbf{a}+u_{k} \mathbf{b} \in I\right\},
$$

and

$$
\operatorname{Tor}(I)=\left\{\mathbf{a} \in R_{k-1, m} \mid u_{k} \mathbf{a} \in I\right\} .
$$

Recall from [11] that we have $|I|=|\operatorname{Res}(I)||\operatorname{Tor}(I)|$. It is easy to see that if I is an ideal of $R_{k, m, n}$ then both $\operatorname{Res}(I)$ and $\operatorname{Tor}(I)$ are ideals of $R_{k-1, m, n}$.

In this section we completely determine the structure of ideals of the ring $R_{2, m, n}$, i.e. cyclic codes of length n over $R_{2, m}$. The ring $R_{2, m}$ is represented by $\mathbb{F}_{2^{m}}[u, v] /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$ in this section. Let I be an ideal of the ring $R_{2, m, n}$. We associate 4 ideals,

$$
\begin{aligned}
& I_{1}:=\operatorname{Res}(\operatorname{Res}(I))=I \bmod \langle u, v\rangle, \\
& I_{2}:=\operatorname{Tor}(\operatorname{Res}(I))=\left\{f(x) \in \mathbb{F}_{2^{m}}[x] \mid u f(x) \in I \bmod v\right\} \\
& I_{3}:=\operatorname{Res}(\operatorname{Tor}(I))=\left\{f(x) \in \mathbb{F}_{2^{m}}[x] \mid v f(x) \in I \bmod u v\right\} \\
& I_{4}:=\operatorname{Tor}(\operatorname{Tor}(I))=\left\{f(x) \in \mathbb{F}_{2^{m}}[x] \mid u v f(x) \in I\right\},
\end{aligned}
$$

to I. These are ideals of the ring $R_{0, m, n}$ and hence for any $1 \leq j \leq 4$ we have $I_{j}=\left\langle f_{j}(x)\right\rangle$, where $f_{j}(x) \mid x^{n}-1$ in $\mathbb{F}_{2^{m}}[x]$. We also have $I_{1} \subseteq I_{j}$ for $2 \leq j \leq 4, I_{2} \subseteq I_{4}$, and $I_{3} \subseteq I_{4}$. Hence, $f_{4}(x) \mid f_{j}(x)$ for $1 \leq j \leq 3$, $f_{2}(x) \mid f_{1}(x)$, and $f_{3}(x) \mid f_{1}(x)$.

According to Theorem 3.6 of [20], any ideal I can be generated by polynomials of the forms

$$
\begin{aligned}
& A_{1}(x)=f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x), \\
& A_{2}(x)=u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x), \\
& A_{3}(x)=v f_{3}(x)+u v f_{3,4}(x), \\
& A_{4}(x)=u v f_{4}(x) .
\end{aligned}
$$

Note that when $f_{j}(x)=x^{n}-1$ we set $A_{j}(x):=0$. Some conditions on the polynomials $f_{i, j}(x)$ were given in [20]. Here we prove that we can choose these generators such that $f_{i, j}(x)=0$ or $\operatorname{deg}\left(f_{i, j}(x)\right)<\operatorname{deg}\left(f_{j}(x)\right)$. We prove this for $i=1$ and $2 \leq j \leq 4$. The remaining cases are easy. Assume that $A_{1}(x) \neq 0$ and $\operatorname{deg}\left(f_{1,2}(x)\right) \geq$ $\operatorname{deg}\left(f_{2}(x)\right)$. Dividing $f_{1,2}(x)$ by $f_{2}(x)$, we have $f_{1,2}(x)=q(x) f_{2}(x)+r(x)$, where $\operatorname{deg}(r(x))<\operatorname{deg}\left(f_{2}(x)\right)$ or $r(x)=0$. Now

$$
A_{1}(x)-q(x) A_{2}(x)=f_{1}(x)+u r(x)+v\left(f_{1,3}(x)-q(x) f_{2,3}(x)\right)+u v\left(f_{1,4}(x)-q(x) f_{2,4}(x)\right) \in I
$$

If $\operatorname{deg}\left(f_{1,3}(x)-q(x) f_{2,3}(x)\right) \geq \operatorname{deg}\left(f_{3}(x)\right)$, then dividing it by $f_{3}(x)$ we have

$$
f_{1,3}(x)-q(x) f_{2,3}(x)=f_{3}(x) q^{\prime}(x)+r^{\prime}(x)
$$

where $\operatorname{deg}\left(r^{\prime}(x)\right)<\operatorname{deg}\left(f_{3}(x)\right)$. Therefore,

$$
A_{1}(x)-q(x) A_{2}(x)-q^{\prime}(x) A_{3}(x)=f_{1}(x)+u r(x)+v r^{\prime}(x)+u v\left(f_{1,4}(x)-q(x) f_{2,4}(x)-q^{\prime}(x) f_{3,4}(x)\right) \in I
$$

Finally, dividing $f_{1,4}(x)-q(x) f_{2,4}(x)-q^{\prime}(x) f_{3,4}(x)$ by $f_{4}(x)$ we have $f_{1,4}(x)-q(x) f_{2,4}(x)-q^{\prime}(x) f_{3,4}(x)=$ $f_{4}(x) q^{\prime \prime}(x)+r^{\prime \prime}(x)$, where $\operatorname{deg}\left(r^{\prime \prime}(x)\right)<\operatorname{deg}\left(f_{4}(x)\right)$ and hence

$$
A_{1}(x)-q(x) A_{2}(x)-q^{\prime}(x) A_{3}(x)-q^{\prime \prime}(x) A_{4}(x)=f_{1}(x)+u r(x)+v r^{\prime}(x)+u v r^{\prime \prime}(x) \in I
$$

Now this later polynomial has the desired property and it is easy to check that we can replace it with $A_{1}(x)$. Next we prove that these polynomials are unique. Again we prove it only for $A_{1}(x)$. Assume that $A_{1}(x)=f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)$ and $B_{1}(x)=f_{1}(x)+u f^{\prime}{ }_{1,2}(x)+v f^{\prime}{ }_{1,3}(x)+u v f^{\prime}{ }_{1,4}(x)$ are 2 polynomials with the mentioned property in I. Hence,

$$
A_{1}(x)-B_{1}(x)=u\left(f_{1,2}(x)-{f^{\prime}}_{1,2}(x)\right)+v\left(f_{1,3}(x)-{f^{\prime}}_{1,3}(x)\right)+u v\left(f_{1,4}(x)-f_{1,4}^{\prime}(x)\right) \in I
$$

Since $f_{1,2}(x)-f^{\prime}{ }_{1,2}(x) \in I_{2}$ and $\operatorname{deg}\left(f_{1,2}(x)-f^{\prime}{ }_{1,2}(x)\right)<\operatorname{deg}\left(f_{2}(x)\right)$, we have $f_{1,2}(x)-f^{\prime}{ }_{1,2}(x)=0$ and hence $f_{1,2}(x)={f^{\prime}}_{1,2}(x)$. Similarly, we have $f_{1, j}(x)={f^{\prime}}_{1, j}(x)$ for $3 \leq j \leq 4$. Therefore, $A_{1}(x)=B_{1}(x)$. Let us summarize:

Theorem 1 Any ideal I of the ring $R_{2, m, n}$ is uniquely generated by the polynomials

$$
\begin{aligned}
& A_{1}(x)=f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f 1,4(x) \\
& A_{2}(x)=u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x) \\
& A_{3}(x)=v f_{3}(x)+u v f_{3,4}(x) \\
& A_{4}(x)=u v f_{4}(x)
\end{aligned}
$$

where $I_{j}:=\left\langle f_{j}(x)\right\rangle$ for $1 \leq j \leq 4$ and $f_{i, j}(x)=0$ or $\operatorname{deg}\left(f_{i, j}(x)\right)<\operatorname{deg}\left(f_{j}(x)\right)$.
For an ideal I of the ring $R_{2, m, n}$, the form described in Theorem 1 is referred to as the unique form of I. Checking the conditions $I_{j}:=\left\langle f_{j}(x)\right\rangle$ is the main and difficult task in obtaining the unique form. We start with the following proposition to obtain more practical conditions instead.

Proposition 1 Let

$$
\begin{array}{r}
I=\left\langle f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x),\right. \\
u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x), \\
v f_{3}(x)+u v f_{3,4}(x), \\
\left.u v f_{4}(x)\right\rangle
\end{array}
$$

be an ideal of the ring $R_{2, m, n}$ in the unique form. Then we must have

$$
\begin{gather*}
f_{4}(x)\left|f_{1}(x), \quad f_{4}(x)\right| f_{2}(x), \quad f_{4}(x)\left|f_{3}(x), \quad f_{3}(x)\right| f_{1}(x), \quad f_{2}(x)\left|f_{1}(x), \quad f_{1}(x)\right| x^{n}-1 . \tag{1}\\
f_{2}(x) \left\lvert\, f_{1,2}(x) \frac{\left(x^{n}-1\right)}{f_{1}(x)} .\right. \tag{2}\\
f_{3}(x) \left\lvert\, \frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(f_{1,3}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,3}(x)\right) .\right. \tag{3}\\
f_{3}(x) \left\lvert\, \frac{f_{1}(x)}{f_{2}(x)} f_{2,3}(x) .\right. \tag{4}\\
f_{4}(x) \mid f_{2,3}(x) . \tag{5}\\
f_{4}(x) \left\lvert\, \frac{\left(x^{n}-1\right)}{f_{3}(x)} f_{3,4}(x) .\right. \tag{6}\\
f_{4}(x) \left\lvert\, \frac{\left(x^{n}-1\right)}{f_{2}(x)}\left(f_{2,4}(x)+\frac{f_{2,3}(x)}{f_{3}(x)} f_{3,4}(x)\right) .\right. \tag{7}\\
f_{4}(x) \left\lvert\,\left(f_{1,2}(x)+\frac{f_{1}(x)}{f_{3}(x)} f_{3,4}(x)\right) .\right. \tag{8}\\
f_{4}(x) \left\lvert\,\left(f_{1,3}(x)+\frac{f_{1}(x)}{f_{2}(x)} f_{2,4}(x)+\frac{f_{1}(x)}{f_{2}(x) f_{3}(x)} f_{2,3}(x) f_{3,4}(x)\right) .\right. \tag{9}\\
f_{4}(x) \left\lvert\, \frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(f_{1,4}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,4}(x)+\frac{f_{1,3}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,3}(x)}{f_{3}(x)} f_{3,4}(x)\right) .\right. \tag{10}
\end{gather*}
$$

Proof Conditions given in (1) are clear since we have $I_{1} \subseteq I_{j}$ for $2 \leq j \leq 4$ and $I_{j} \subseteq I_{4}$ for $2 \leq j \leq 3$. Condition (2) follows from the facts that

$$
\begin{gathered}
\frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)\right)= \\
u \frac{\left(x^{n}-1\right)}{f_{1}(x)} f_{1,2}(x)+v \frac{\left(x^{n}-1\right)}{f_{1}(x)} f_{1,3}(x)+u v \frac{\left(x^{n}-1\right)}{f_{1}(x)} f_{1,4}(x) \in I
\end{gathered}
$$

and $I_{2}=\left\langle f_{2}(x)\right\rangle$. Similarly, we have

$$
\begin{gathered}
\frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)\right)+\frac{\left(x^{n}-1\right)}{f_{1}(x)} \frac{f_{1,2}(x)}{f_{2}(x)}\left(u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x)\right)= \\
\quad v\left(\frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(f_{1,3}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,3}(x)\right)\right)+u v\left(\frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(\left(f_{1,4}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,4}(x)\right)\right) \in I\right.
\end{gathered}
$$

which imply condition (3). Also,

$$
\begin{gathered}
u\left(f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)\right)+\frac{f_{1}(x)}{f_{2}(x)}\left(u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x)\right)= \\
v\left(\frac{f_{1}(x)}{f_{2}(x)} f_{2,3}(x)\right)+u v\left(f_{1,3}(x)+\frac{f_{1}(x)}{f_{2}(x)} f_{2,4}(x)\right) \in I
\end{gathered}
$$

imply condition (4),

$$
u\left(u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x)\right)=u v f_{2,3}(x) \in I
$$

imply condition (5),

$$
\frac{\left(x^{n}-1\right)}{f_{3}(x)}\left(v f_{3}(x)+u v f_{3,4}(x)\right) \in I
$$

imply condition (6),

$$
\begin{gathered}
\frac{\left(x^{n}-1\right)}{f_{2}(x)}\left(u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x)\right)+\frac{\left(x^{n}-1\right)}{f_{2}(x)} \frac{f_{2,3}(x)}{f_{3}(x)}\left(v f_{3}(x)+u v f_{3,4}(x)\right)= \\
u v \frac{\left(x^{n}-1\right)}{f_{2}(x)}\left(f_{2,4}(x)+\frac{f_{2,3}(x)}{f_{3}(x)} f_{3,4}(x)\right) \in I
\end{gathered}
$$

imply condition (7),

$$
\begin{gathered}
v\left(f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)\right)+\frac{f_{1}(x)}{f_{3}(x)}\left(v f_{3}(x)+u v f_{3,4}(x)\right)= \\
u v\left(f_{1,2}(x)+\frac{f_{1}(x)}{f_{3}(x)} f_{3,4}(x)\right) \in I
\end{gathered}
$$

imply condition (8),

$$
\begin{gathered}
u\left(f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)\right)+\frac{f_{1}(x)}{f_{2}(x)}\left(u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x)\right)+ \\
\frac{f_{1}(x) f_{2,3}(x)}{f_{2}(x) f_{3}(x)}\left(v f_{3}(x)+u v f_{3,4}(x)\right)= \\
u v\left(f_{1,3}(x)+\frac{f_{1}(x)}{f_{2}(x)} f_{2,4}(x)+\frac{f_{1}(x)}{f_{2}(x) f_{3}(x)} f_{2,3}(x) f_{3,4}(x)\right) \in I
\end{gathered}
$$

imply condition (9), and finally

$$
\begin{gathered}
\frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)\right)+\frac{\left(x^{n}-1\right)}{f_{1}(x)} \frac{f_{1,2}(x)}{f_{2}(x)}\left(u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x)\right)+ \\
\frac{\left(x^{n}-1\right)}{f_{1}(x)} \frac{f_{1,3}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,3}(x)}{f_{3}(x)}\left(v f_{3}(x)+u v f_{3,4}(x)\right)=
\end{gathered}
$$

$$
\frac{\left(x^{n}-1\right)}{f_{1}(x)}\left(f_{1,4}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,4}(x)+\frac{f_{1,3}(x)+\frac{f_{1,2}(x)}{f_{2}(x)} f_{2,3}(x)}{f_{3}(x)} f_{3,4}(x)\right) \in I
$$

imply condition (10). The proof is now completed.

Theorem 2 Let

$$
\begin{gathered}
I=<f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x) \\
u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x) \\
v f_{3}(x)+u v f_{3,4}(x) \\
u v f_{4}(x)>
\end{gathered}
$$

be an ideal of the ring $R_{2, m, n}$ such that $\operatorname{deg}\left(f_{i, j}(x)\right)<\operatorname{deg}\left(f_{j}(x)\right)$ and also $f_{j}(x)$ and $f_{i, j}(x)$ satisfy in conditions given in (1) through (10) described in Proposition 1. Then I is in the unique form.
Proof It is enough to show $I_{j}=\left\langle f_{j}(x)\right\rangle$. Suppose that $m(x)$ is an arbitrary element of I. Hence, we can write

$$
\begin{gathered}
m(x)=\left(a_{1}(x)+u a_{2}(x)+v a_{3}(x)+u v a_{4}(x)\right)\left(f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x)\right) \\
+\left(b_{1}(x)+u b_{2}(x)+v b_{3}(x)\right)\left(u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x)\right) \\
+\left(c_{1}(x)+u c_{2}(x)\right)\left(v f_{3}(x)+u v f_{3,4}(x)\right)+d_{1}(x)\left(u v f_{4}(x)\right)= \\
a_{1}(x) f_{1}(x)+u\left(a_{1}(x) f_{1,2}(x)+a_{2}(x) f_{1}(x)+b_{1}(x) f_{2}(x)\right)+ \\
v\left(a_{1}(x) f_{1,3}(x)+a_{3}(x) f_{1}(x)+b_{1}(x) f_{2,3}(x)+c_{1}(x) f_{3}(x)\right)+ \\
u v\left(a_{1}(x) f_{1,4}(x)+a_{2}(x) f_{1,3}(x)\right)+a_{3}(x) f_{1,2}(x)+a_{4}(x) f_{1}(x)+b_{1}(x) f_{2,4}(x)+ \\
\left.b_{2}(x) f_{2,3}(x)+b_{3}(x) f_{2}(x)+c_{1}(x) f_{3,4}(x)+c_{2}(x) f_{3}(x)+f_{4}(x) d_{1}(x)\right)
\end{gathered}
$$

where $a_{i}(x), b_{i}(x), c_{i}(x), d_{1}(x) \in \mathbb{F}_{2^{m}}[x]$.
Clearly we have $I_{1}=\left\langle f_{1}(x)\right\rangle$. If $m(x)$ be of the form $u f^{\prime}{ }_{2}(x)+v f^{\prime}{ }_{2,3}(x)+u v f^{\prime}{ }_{2,4}(x)$, then we must have $a_{1}(x) f_{1}(x)=0$ and so $\left.\frac{\left(x^{n}-1\right)}{f_{1}(x)} \right\rvert\, a_{1}(x)$. Also by conditions (1) and (3) of Proposition 1 , we have

$$
f_{2}(x) \mid a_{1}(x) f_{1,2}(x)+a_{2}(x) f_{1}(x)+b_{1}(x) f_{2}(x)
$$

which implies $I_{2}=\left\langle f_{2}(x)\right\rangle$. If $m(x)$ be of the form $v f_{3}^{\prime}(x)+u v f_{3,4}^{\prime}(x)$, then we must have $a_{1}(x) f_{1}(x)=0$ implying $\left.\frac{\left(x^{n}-1\right)}{f_{1}(x)} \right\rvert\, a_{1}(x)$ and also $a_{1}(x) f_{1,2}(x)+a_{2}(x) f_{1}(x)+b_{1}(x) f_{2}(x)=0$ implying

$$
b_{1}(x)=\frac{a_{1}(x) f_{1,2}+a_{2}(x) f_{1}(x)}{f_{2}(x)}
$$

Therefore,

$$
\begin{aligned}
& a_{1}(x) f_{1,3}(x)+a_{3}(x) f_{1}(x)+b_{1}(x) f_{2,3}(x)+c_{1}(x) f_{3}(x)=a_{1}(x) f_{1,3}(x) \\
& \quad+a_{3}(x) f_{1}(x)+\left(\frac{a_{1}(x) f_{1,2}+a_{2}(x) f_{1}(x)}{f_{2}(x)}\right) f_{2,3}(x)+c_{1}(x) f_{3}(x)
\end{aligned}
$$

By conditions given in (1), (3), and (4) of Proposition 1, we have

$$
f_{3}(x) \mid a_{1}(x) f_{1,3}(x)+a_{3}(x) f_{1}(x)+b_{1}(x) f_{2,3}(x)+c_{1}(x) f_{3}(x)
$$

and hence $I_{3}=\left\langle f_{3}(x)\right\rangle$. Finally, if $m(x)$ be of the form $u v f_{4}^{\prime}(x)$, then we conclude $a_{1}(x) f_{1}(x)=0$, implying $\left.\frac{\left(x^{n}-1\right)}{f_{1}(x)} \right\rvert\, a_{1}(x), a_{1}(x) f_{1,2}(x)+a_{2}(x) f_{1}(x)+b_{1}(x) f_{2}(x)=0$ implying

$$
b_{1}(x)=\frac{a_{1}(x) f_{1,2}+a_{2}(x) f_{1}(x)}{f_{2}(x)}
$$

and

$$
a_{3}(x) f_{1}(x)+a_{1}(x) f_{1,3}(x)+b_{1}(x) f_{2,3}(x)+c_{1}(x) f_{3}(x)=0
$$

implying

$$
c_{1}(x)=\frac{a_{3}(x) f_{1}(x)+a_{1}(x) f_{1,3}(x)+b_{1}(x) f_{2,3}(x)}{f_{3}(x)} .
$$

Now we have

$$
\begin{aligned}
& a_{1}(x) f_{1,4}(x)+a_{2}(x) f_{1,3}(x)+a_{3}(x) f_{1,2}(x)+a_{4}(x) f_{1}(x)+b_{1}(x) f_{2,4}(x)+b_{2}(x) f_{2,3}(x)+ \\
& b_{3}(x) f_{2}(x)+c_{1}(x) f_{3,4}(x)+c_{2}(x) f_{3}(x)+f_{4}(x) d_{1}(x)= \\
& \left.a_{1}(x) f_{1,4}(x)+a_{2}(x) f_{1,3}(x)\right)+a_{3}(x) f_{1,2}(x)+a_{4}(x) f_{1}(x)+\left(\frac{a_{1}(x) f_{1,2}+a_{2}(x) f_{1}(x)}{f_{2}(x)}\right) f_{2,4}(x)+ \\
& b_{2}(x) f_{2,3}(x)+b_{3}(x) f_{2}(x)+\left(\frac{a_{3}(x) f_{1}(x)+a_{1}(x) f_{1,3}(x)+\frac{a_{1}(x) f_{1,2}+a_{2}(x) f_{1}(x)}{f_{2}(x)} f_{2,3}(x)}{f_{3}(x)}\right) f_{3,4}(x) \\
& +c_{2}(x) f_{3}(x)+f_{4}(x) d_{1}(x)
\end{aligned}
$$

By conditions (1), (2), (8), and (10) of Proposition 1, we have

$$
\begin{gathered}
f_{4}(x) \mid a_{4}(x) f_{1}(x)+b_{2}(x) f_{2,3}(x)+b_{3}(x) f_{2}(x) \\
+c_{2}(x) f_{3}(x)+f_{4}(x) d_{1}(x)+a_{1}(x) f_{1,4}(x)+a_{3}(x) f_{1,2}(x) \\
+\frac{a_{1}(x) f_{1,2}(x) f_{2,4}(x)}{f_{2}(x)}+\frac{a_{1}(x) f_{1,3}(x) f_{3,4}(x)}{f_{3}(x)} \\
+\frac{a_{3}(x) f_{1}(x) f_{3,4}(x)}{f_{3}(x)}+\frac{a_{1}(x) f_{1,2}(x) f_{2,3}(x) f_{3,4}(x)}{f_{2}(x) f_{3}(x)} .
\end{gathered}
$$

Also, condition (9) implies

$$
f_{4}(x) \left\lvert\, a_{2}(x) f_{1,3}(x)+a_{2}(x) \frac{f_{1}(x) f_{2,4}(x)}{f_{2}(x)}+a_{2}(x) \frac{f_{1}(x) f_{2,3}(x) f_{3,4}(x)}{f_{2}(x) f_{3}(x)}\right.
$$

Therefore, $I_{4}=\left\langle f_{4}(x)\right\rangle$ and the proof is completed.

Theorem 3 Let n be odd and I be an ideal of the ring $R_{2, m, n}$. Then the unique form of I is

$$
I=<f_{1}(x), u f_{2}(x)+v f_{2,3}(x), v f_{3}(x), u v f_{4}(x)>
$$

Proof The proof follows from Proposition 1 and the facts $\operatorname{deg}\left(f_{i, j}(x)\right)<\operatorname{deg}\left(f_{j}(x)\right)$ and $\left(f_{2}(x), \frac{\left(x^{n}-1\right)}{f_{1}(x)}\right)=$ $\left(\frac{\left(x^{n}-1\right)}{f_{3}(x)}, f_{4}(x)\right)=\left(\frac{\left(x^{n}-1\right)}{f_{2}(x)}, f_{4}(x)\right)=1$.

Proposition 2 Let $I=\langle A(x), B(x), C(x), D(x)\rangle$, where

$$
\begin{aligned}
& A(x)=f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x), \\
& B(x)=u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x), \\
& C(x)=v f_{3}(x)+u v f_{3,4}(x) \\
& D(x)=u v f_{4}(x)
\end{aligned}
$$

is an ideal of $R_{2, m, n}$ in its unique form. Then the set

$$
\left\{\begin{array}{l}
A(x), x A(x), \cdots, x^{n-a-1} A(x), \\
B(x), x B(x), \cdots, x^{n-b-1} B(x), \\
C(x), x C(x), \cdots, x^{n-c-1} C(x), \\
D(x), x D(x), \cdots, x^{n-d-1} D(x)
\end{array}\right\}
$$

forms an $\mathbb{F}_{2^{m}}$-basis for I, where $a=\operatorname{deg}\left(f_{1}(x)\right)$, $b=\operatorname{deg}\left(f_{2}(x)\right), c=\operatorname{deg}\left(f_{3}(x)\right)$, and $d=\operatorname{deg}\left(f_{4}(x)\right)$.
Proof Assume that $\alpha(x), \beta(x), \gamma(x)$, and $\delta(x)$ are polynomials in $\mathbb{F}_{2^{m}}[x]$, such that $\operatorname{deg}(\alpha)<n-a$, $\operatorname{deg}(\beta)<n-b, \operatorname{deg}(\gamma)<n-c, \operatorname{deg}(\delta)<n-d$, and we have

$$
\alpha(x) A(x)+\beta(x) B(x)+\gamma(x) C(x)+\delta(x) D(x)=0
$$

Therefore, we must have $\alpha(x) f_{1}(x)=0$, which implies that $\alpha(x)=0$ since $\operatorname{deg}(\alpha)<n-a$. Similar arguments show that we must have $\beta(x)=\gamma(x)=\delta(x)=0$ and the proof is now completed.

Example 1 Let $n=14, f_{1}(x)=(x+1)\left(x^{3}+x^{2}+1\right)^{2}\left(x^{3}+x+1\right)^{2}$, and $f_{2}(x)=f_{3}(x)=f_{4}(x)=$ $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2}$. Clearly these polynomials satisfy condition (1) of Proposition 1. Next, we will find ideals I of the ring $R_{2,1,14}$ such that $I_{i}=\left\langle f_{i}(x)\right\rangle$ for $1 \leq i \leq 4$. Such ideals are in the following form:

$$
\begin{array}{r}
I=\left\langle f_{1}(x)+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x),\right. \\
u f_{2}(x)+v f_{2,3}(x)+u v f_{2,4}(x) \\
v f_{3}(x)+u v f_{3,4}(x), \\
\left.u v f_{4}(x)\right\rangle .
\end{array}
$$

According to $\operatorname{deg}\left(f_{i, j}(x)\right)<\operatorname{deg}\left(f_{j}(x)\right)$, the polynomials $f_{i, j}(x)$ have degree of at most 9. Now we check conditions (2) through (10) of Proposition 1.
Condition (2): $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid(x+1) f_{1,2}(x)$. Thus,

$$
f_{1,2}(x)=\alpha_{1}\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \quad \alpha_{1} \in \mathbb{F}_{2}
$$

Condition (3): $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid(x+1) f_{1,3}(x)$. Therefore,

$$
f_{1,3}(x)=\alpha_{2}\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \quad \alpha_{2} \in \mathbb{F}_{2}
$$

Condition (5): $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid f_{2,3}(x)$. Hence, $f_{2,3}(x)=0$.
Condition (6): $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid(x+1)\left(x^{3}+x^{2}+1\right) f_{3,4}(x)$. Consequently,

$$
f_{3,4}(x)=\left(x^{3}+x+1\right)^{2} \sum_{i=0}^{3} b_{i} x^{i}
$$

Condition (7): $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid(x+1)\left(x^{3}+x^{2}+1\right) f_{2,4}(x)$. So,

$$
f_{2,4}(x)=\left(x^{3}+x+1\right)^{2} \sum_{i=0}^{3} a_{i} x^{i}
$$

Condition (8): $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid \alpha_{1}\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2}+\left(x^{3}+x^{2}+1\right) f_{3,4}(x)$. Thus,

$$
\alpha_{1}=b_{0}+b_{1}+b_{2}+b_{3} .
$$

Condition (9): $(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid \alpha_{2}\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2}+\left(x^{3}+x^{2}+1\right) f_{3,4}(x)$. Hence,

$$
\alpha_{2}=a_{0}+a_{1}+a_{2}+a_{3}
$$

Condition (10):

$$
(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2} \mid(x+1) f_{1,4}(x)+\alpha_{1}\left(x^{3}+x+1\right)^{2} \sum_{i=0}^{3} a_{i} x^{i}+\alpha_{2}\left(x^{3}+x+1\right)^{2} \sum_{i=0}^{3} b_{i} x^{i}
$$

Therefore, $\left(x^{3}+x+1\right)^{2} \mid f_{1,4}(x)$. Also, from relations obtained from conditions (8) and (9), we can deduce that

$$
\alpha_{1} \sum_{i=0}^{3} a_{i} x^{i}+\alpha_{2} \sum_{i=0}^{3} b_{i} x^{i}=(x+1)\left(u_{3} x^{2}+\left(u_{3}+u_{2}\right) x+\left(u_{3}+u_{2}+u_{1}\right)\right)
$$

where $u_{i}=\alpha_{1} a_{i}+\alpha_{2} b_{i}$ for $0 \leq i \leq 3$. Now summarizing the above results we can conclude that $f_{1,4}(x)=$ $\alpha\left(x^{3}+x+1\right)^{2}\left(x^{3}+\left(1+u_{3}\right) x^{2}+\left(u_{2}+u_{3}\right) x+\left(1+u_{1}+u_{2}+u_{3}\right)\right)$ where $\alpha \in \mathbb{F}_{2^{m}}$. Therefore,

$$
\begin{aligned}
I= & \left(x^{3}+x+1\right)^{2}\left((x+1)\left(x^{3}+x^{2}+1\right)^{2}+\left(x^{3}+x^{2}+1\right)\left(u \alpha_{1}+v \alpha_{2}\right)+u v \alpha\left(x^{3}+\left(1+u_{3}\right) x^{2}\right.\right. \\
& \left.\left.+\left(u_{2}+u_{3}\right) x+\left(1+u_{1}+u_{2}+u_{3}\right)\right)\right), u\left(x^{3}+x+1\right)^{2}\left((x+1)\left(x^{3}+x^{2}+1\right)+v \sum_{i=0}^{3} a_{i} x^{i}\right), \\
& v\left(x^{3}+x+1\right)^{2}\left((x+1)\left(x^{3}+x^{2}+1\right)+u \sum_{i=0}^{3} b_{i} x^{i}\right), u v(x+1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right)^{2}
\end{aligned}
$$

Therefore, we have 512 distinct ideals in this case. Searching among all 512 ideals, the Gray images of many of them, such as one with $\alpha=1, a_{0}=b_{0}=b_{1}=a_{3}=1$ and $a_{1}=a_{2}=b_{2}=b_{3}=0$, have minimum distance 20, and hence we obtain a [56,13,20] code that has the best minimum distance among all codes of that size.

Now we will determine all distinct ideals of the ring $R_{2, m, 2}$ in the next theorem.

Theorem 4 Ideals of the ring $R_{2, m, 2}$ are precisely the following ideals:

$$
\begin{aligned}
& \langle 0\rangle,\langle u v(x-1)\rangle,\langle u v\rangle,\langle v, u v\rangle,\langle v(x-1), u v\rangle,\left\langle v(x-1)+u v \zeta_{1}, u v(x-1)\right\rangle, \\
& \langle u(x-1), v, u v\rangle,\left\langle u(x-1)+v \zeta_{1}, v(x-1), u v\right\rangle,\left\langle u(x-1)+v \zeta_{1}(x-1), u v\right\rangle, \\
& \left\langle u(x-1)+v \zeta_{1}(x-1)+u v \zeta_{2}, u v(x-1)\right\rangle,\left\langle u(x-1)+u v \zeta_{1}, v(x-1)+u v \zeta_{2}, u v(x-1)\right\rangle, \\
& \langle u, v, u v\rangle,\left\langle u+v \zeta_{1}, v(x-1), u v\right\rangle,\left\langle u+v\left(\zeta_{1}(x-1)+\zeta_{2}\right), u v\right\rangle, \\
& \langle(x-1), u, v, u v\rangle,\left\langle(x-1)+u \zeta_{1}, u(x-1), v, u v\right\rangle,\left\langle(x-1)+v \zeta_{1}, u+v \zeta_{2}, v(x-1), u v\right\rangle, \\
& \left\langle(x-1)+u \zeta_{1}+v \zeta_{2}, u(x-1), v(x-1), u v\right\rangle, \\
& \left\langle(x-1)+u \zeta_{1}+v \zeta_{2}+u v \zeta_{3}, u(x-1)+u v \zeta_{2}, v(x-1)+u v \zeta_{1}, u v(x-1)\right\rangle,\langle 1\rangle,
\end{aligned}
$$

where $\zeta_{j} \in \mathbb{F}_{2^{m}}$ for $1 \leq j \leq 3$.
Proof First note that we have $x^{2}-1=(x-1)^{2}$ in $\mathbb{F}_{2^{m}}[x]$ and any polynomial of degree less than 2 over $\mathbb{F}_{2^{m}}$ can be written as $a(x-1)+b$, where $a, b \in \mathbb{F}_{2^{m}}$. According to Theorem 1 , any ideal of the ring $R_{2, m, 2}$ can be uniquely generated by polynomials

$$
\begin{aligned}
& A_{1}(x)=(x-1)^{a_{1}}+u f_{1,2}(x)+v f_{1,3}(x)+u v f_{1,4}(x), \\
& A_{2}(x)=u(x-1)^{a_{2}}+v f_{2,3}(x)+u v f_{2,4}(x), \\
& A_{3}(x)=v(x-1)^{a_{3}}+u v f_{3,4}(x), \\
& A_{4}(x)=u v(x-1)^{a_{4}}
\end{aligned}
$$

where $I_{j}=\left\langle(x-1)^{a_{j}}\right\rangle$ and $f_{i, j}(x) \in \mathbb{F}_{2^{m}}[x]$ and $\operatorname{deg}\left(f_{i, j}(x)\right)<a_{j}$. Moreover, we have $0 \leq a_{1}, a_{2}, a_{3}, a_{4} \leq 2$, $a_{2} \leq a_{1}, a_{3} \leq a_{1}, a_{4} \leq a_{2}$, and $a_{4} \leq a_{3}$. Also, if $a_{t}=2$ then we have $A_{t}(x)=0$. Next, we shall call the sequence $a_{1}, a_{2}, a_{3}, a_{4}$ the type of the ideal. We argue on the type of an ideal and determine all distinct ideals in the unique form. Since the arguments for all cases are similar, we only argue on the ideals of type $1,1,1,1$. Ideals of this type are of the form

$$
I=\left\langle(x-1)+u \zeta_{1}+v \zeta_{2}+u v \zeta_{3}, u(x-1)+v \zeta_{4}+u v \zeta_{5}, v(x-1)+u v \zeta_{6}, u v(x-1)\right\rangle
$$

Now condition (5) of Proposition 1 implies that $(x-1) \mid \zeta_{4}$ and hence we must have $\zeta_{4}=0$. Moreover, condition (8) of the proposition implies that $(x-1) \mid\left(\zeta_{2}-\zeta_{5}\right)$ and therefore we must have $\zeta_{2}=\zeta_{5}$. Also, condition (9) implies $(x-1) \mid\left(\zeta_{1}-\zeta_{6}\right)$. Consequently, we must have $\zeta_{1}=\zeta_{6}$. Note that other conditions given in Proposition 1 are clearly satisfied. Therefore, according to Theorem 2, I is of the unique form

$$
I=\left\langle(x-1)+u \zeta_{1}+v \zeta_{2}+u v \zeta_{3}, u(x-1)+u v \zeta_{2}, v(x-1)+u v \zeta_{1}, u v(x-1)\right\rangle
$$

where $\zeta_{j} \in \mathbb{F}_{2^{m}}$ for $1 \leq j \leq 3$ and the proof is now completed.
Counting all of the above ideals, we have the following corollary.
Corollary 1 There are $9+5\left(2^{m}\right)+5\left(2^{2 m}\right)+2^{3 m}$ distinct ideals in the ring $R_{2, m, 2}$.

3. A one-to-one correspondence

In this section we show that there exists a one-to-one correspondence between cyclic codes of length n, n odd, over $R_{k, m}$ and cyclic codes of length $2 n$ over $R_{k-1, m}$. For unifying the proof statements and simplicity, for $1 \leq k \leq 3$, we denote by

$$
\frac{\mathbb{F}_{2^{m}}\left[u_{1}, u_{2}, \cdots, u_{k}\right]}{\left\langle u_{i}^{2}, u_{i} u_{j}-u_{j} u_{i}\right\rangle}
$$

the ring $R_{k, m}$. Let us start the section with the following lemma.

Lemma 1 The ring $R_{k, m}$ is isomorphic to the ring

$$
\frac{R_{k-1, m}[w]}{\left\langle w^{2}-1, w u_{i}-u_{i} w\right\rangle} .
$$

Proof Set

$$
S:=\frac{R_{k-1, m}[w]}{\left\langle w^{2}-1, w u_{i}-u_{i} w\right\rangle}
$$

and write

$$
R_{k, m}=\frac{R_{k-1, m}\left[u_{k}\right]}{\left\langle u_{k}^{2}, u_{k} u_{i}-u_{i} u_{k}\right\rangle}
$$

Now define the map $\varphi: R_{k, m} \longrightarrow S$ by the role $\varphi\left(\alpha+u_{k} \beta\right)=(\alpha-\beta)+w \beta$. Since $\varphi\left(u_{k}\right)=(w-1)$ and in S we have $(w-1)^{2}=0$, it is easy to verify that the map φ is a ring isomorphism.

Recall that we denote the ring $R_{k, m}[x] /\left\langle x^{n}-1\right\rangle$ by $R_{k, m, n}$.

Proposition 3 Assume that n is odd. Then we have

$$
R_{k, m, n} \cong \frac{\frac{R_{k-1, m}[w]}{\left\langle w^{2}-1\right\rangle}[x]}{\left\langle x^{n}-w\right\rangle} .
$$

Proof Define the map

$$
\eta: R_{k, m, n} \longrightarrow \frac{\frac{R_{k-1, m}[w]}{\left\langle w^{2}-1\right\rangle}[x]}{\left\langle x^{n}-w\right\rangle}
$$

by the role $\eta(f(x))=f(w x)$. Since $(w x)^{n}-1=w x^{n}-1=w\left(x^{n}-w\right)$, we have $x^{n}-1 \mid f(x)$ if and only if $x^{n}-w \mid f(w x)$. Now it is straightforward to show that η is a ring isomorphism.

Theorem 5 There exists a one-to-one correspondence between ideals of the ring

$$
\frac{\frac{R_{k-1, m}[w]}{\left\langle w^{2}-1\right\rangle}[x]}{\left\langle x^{n}-w\right\rangle}
$$

and ideals of the ring $R_{k-1, m, 2 n}$.
Proof Set

$$
S:=\frac{\frac{R_{k-1, m}[w]}{\left\langle w^{2}-1\right\rangle}[x]}{\left\langle x^{n}-w\right\rangle}
$$

and define the map $\delta: S \longrightarrow R_{k-1, m, 2 n}$ by the role

$$
\begin{array}{r}
\delta\left(\left(a_{0}+w b_{0}\right)+\left(a_{1}+w b_{1}\right) x+\cdots+\left(a_{n-1}+w b_{n-1}\right) x^{n-1}\right)= \\
a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+b_{0} x^{n}+b_{1} x^{n+1}+\cdots+b_{c-1} x^{2 n-1} .
\end{array}
$$

Let I be an ideal of the ring S. We have

$$
\begin{aligned}
\left(a_{0}+w b_{0}\right)+\left(a_{1}+w b_{1}\right) x+\cdots+\left(a_{n-1}+w b_{n-1}\right) x^{n-1} \in I & \Longleftrightarrow \\
w\left(a_{n-1}+w b_{n-1}\right)+\left(a_{0}+w b_{0}\right) x+\cdots+\left(a_{n-2}+w b_{n-2}\right) x^{n-1} \in I & \Longleftrightarrow \\
\left(b_{n-1}+w a_{n-1}\right)+\left(a_{0}+w b_{0}\right) x+\cdots+\left(a_{n-2}+w b_{n-2}\right) x^{n-1} \in I & \Longleftrightarrow \\
b_{n-1}+a_{0} x+\cdots+a_{n-2} x^{n-1}+a_{n-1} x^{n}+b_{0} x^{n+1}+\cdots+b_{n-2} x^{2 n-1} \in \delta(I) &
\end{aligned}
$$

Therefore, I is an ideal of S if and only if $\delta(I)$ is an ideal of $R_{k-1, m, 2 n}$.

Corollary $2 I$ is an ideal of the ring $R_{k, m, n}$ if and only if $\psi(I)$ is an ideal of the ring $R_{k-1, m, 2 n}$, where $\psi=\varphi \circ \eta \circ \delta$.

Corollary 3 There are $9+5\left(2^{m}\right)+5\left(2^{2 m}\right)+2^{3 m}$ distinct ideals in the ring $R_{3, m}$.

Remark 1 We should note that the determination of all ideals of the ring $R_{k, m}$ was introduced in [11] as a challenging open problem. The previous corollary solves it for $k=3$.

Example 2 Here we list all 47 distinct ideals of the ring $R_{3,1}$. Note that for the ring $R_{3, m}$ we set $u:=u_{1}$, $v:=u_{2}$ and $w:=u_{3}$.

$$
\begin{aligned}
& \langle 0\rangle,\langle 1\rangle,\langle u\rangle,\langle v\rangle,\langle w\rangle,\langle u, v\rangle,\langle u, w\rangle,\langle v, w\rangle,\langle u, v, w\rangle, \\
& \langle u v\rangle,\langle u w\rangle,\langle v w\rangle,\langle u v w\rangle,\langle u+v\rangle,\langle u+w\rangle,\langle v+w\rangle, \\
& \langle u+v+w\rangle,\langle u v, u w\rangle,\langle u v, v w\rangle,\langle u w, v w\rangle, \\
& \langle u v, v w, u w\rangle,\langle u v+u w\rangle,\langle u v+v w\rangle,\langle u w+v w\rangle, \\
& \langle u v+v w+u w\rangle,\langle w+v, u+v\rangle,\langle u w+u v, v w+u v\rangle,\langle u, v w\rangle, \\
& \langle v, u w\rangle,\langle w, u v\rangle,\langle u+v w\rangle,\langle v+u w\rangle,\langle w+u v\rangle, \\
& \langle u, v+w\rangle,\langle v, u+w\rangle,\langle w, u+v\rangle,\langle u w, v+w\rangle, \\
& \langle v w, u+w\rangle,\langle v w, u+v\rangle,\langle u v+v+w\rangle,\langle u v+u+w\rangle, \\
& \langle v w+u+v\rangle,\langle u v, w v+u w\rangle,\langle v w, u w+u v\rangle,\langle u w, u w+u v\rangle, \\
& \langle u+v+w, w v, u w\rangle,\langle u+v+w+u v\rangle .
\end{aligned}
$$

If $x^{n}-1=p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ be the factorization of $x^{n}-1$ over $\mathbb{F}_{2^{m}}$ into basic irreducible pairwise coprime polynomials, then we have

$$
R_{k, m, n} \cong \bigoplus_{i=1}^{r} R_{k, m_{i}}
$$

where $m_{i}=\operatorname{deg}\left(g_{i}(x)\right)$. Noting that, from the results of [5], the number of ideals of the ring $R_{1, m, 2}$, i.e. the number of ideals of the ring $R_{2, m}$, is $5+2^{m}$, we have the following corollary.

Corollary 4 Let n be an odd number and m_{i} be as above. Then there are

$$
\prod_{i=1}^{r}\left(5+2^{m_{i}}\right)
$$

distinct cyclic codes of length n over $R_{2, m}$ and there are

$$
\prod_{i=1}^{r}\left(9+5\left(2^{m_{i}}\right)+5\left(2^{2 m_{i}}\right)+2^{3 m_{i}}\right)
$$

distinct cyclic codes of length n over $R_{3, m}$.

4. Conclusion

A unique set of generators for cyclic codes over the ring $R_{2, m}$ was introduced and a way for determination of these generators was presented. All distinct cyclic codes of length 2 over this ring were determined and a mass formula for the number of them was given. A one-to-one correspondence between cyclic codes of length $2 n, n$ odd, over the ring $R_{k-1, m}$ and cyclic codes of length n over the ring $R_{k, m}$ was introduced. The number of ideals of the rings $R_{2, m}$ and $R_{3, m}$ was determined. As a corollary, the number of cyclic codes of odd length n over the rings $R_{2, m}$ and $R_{3, m}$ was obtained.

References

[1] Abualrub, T., Siap, I.: Cyclic codes over the rings $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ and $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}$. Designs Codes and Cryptography 42, 273-287 (2007).
[2] Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. IEEE Trans. Inform. Theory 45, 12501255 (1999).
[3] Calderbank, A.R., Sloane, N.J.A.: Modular and p-adic cyclic codes. Designs Codes and Cryptography 6, 21-35 (1995).
[4] Dinh, H.Q., Lopez-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728-1744 (2004).
[5] Dinh, H.Q.: Constacyclic codes of length 2^{e} over Galois extention rings of $\mathbb{F}_{2}+u \mathbb{F}_{2}$. IEEE Trans. Inform. Theory 55, 1730-1740 (2009).
[6] Dinh, H.Q.: Constacyclic codes of length p^{e} over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$. Journal of Algebra 324, 940-950 (2010).
[7] Dougherty, S.T., Gaborit, P., Harada, M., Sole, P.: Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. IEEE Trans. Inform. Theory 45, 32-45 (1999).
[8] Dougherty, S.T., Gaborit, P., Harada, M., Sole, P.: Type IV self-dual codes over rings. IEEE Trans. Inform. Theory 45, 2345-2358 (1999).
[9] Dougherty, S.T., Park, Y.H.: On modular cyclic codes. Finite Fields Appl. 13, 31-57 (2007).
[10] Dougherty S.T., Yildiz B., Karadeniz S.: Codes over R_{k}, Gray maps and their binary images. Finite Fields Appl. 17, 205-219 (2011).
[11] Dougherty S.T., Yildiz B., Karadeniz S., Cyclic codes over R_{k}. Designs Codes and Cryptography 63, 113-126 (2012).
[12] Hammons, A.R., Kummar, P.V., Calderbank, A.R., Sloane, N.J.A., Sole, P.: The \mathbb{Z}_{4} linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40, 301-319 (1994).
[13] Ling, S., Sole, P.: Type II codes over $\mathbb{F}_{4}+u \mathbb{F}_{4}$. European J. Combin. 12, 983-997 (2001).
[14] Ling, S., Sole, P.: Duadic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. Appl. Algebr. Eng. Comm. 12, 365-379 (2001).
[15] Norton, G.H., Salagean, A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebr. Eng. Comm. 10, 489-506 (2000).
[16] Salagean, A.: Repeated-root cyclic and negacyclic codes over a finite chain ring. Discrete Appl. Math. 154, 413-419 (2006).
[17] Sobhani, R., Esmaeili, M.: Cyclic and negacyclic codes over the Galois ring $G R\left(p^{2}, m\right)$. Discrete Appl. Math. 157, 2892-2903 (2009).
[18] Udaya, P., Bonnecaze, A.: Decoding of cyclic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. IEEE Trans. Inform. Theory 45, 2148-2157 (1999).
[19] Yildiz, B., Karadeniz, S.: Linear codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}+u v \mathbb{F}_{2}$. Designs Codes and Cryptography 54, 61-81 (2010).
[20] Yildiz, B., Karadeniz, S.: Cyclic codes over $\mathbb{F}_{2}+\mathbb{F}_{2}+v \mathbb{F}_{2}+u v \mathbb{F}_{2}$. Designs Codes and Cryptography 58, 221-234 (2011).

[^0]: *Correspondence: r.sobhani@sci.ui.ac.ir

