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Abstract: In general, the injective cover (projective envelope) of a simple module can be zero. A ring R is called

a weakly left V-ring (strongly left Kasch ring) if every simple left R -module has a nonzero injective cover (projective

envelope). It is proven that every nonzero left R -module has a nonzero injective cover if and only if R is a left Artinian

weakly left V-ring. Dually, every nonzero left R -module has a nonzero projective envelope if and only if R is a left

perfect right coherent strongly left Kasch ring. Some related rings and examples are considered.
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1. Introduction

In 1953, Eckmann and Schopf proved that every module has an injective envelope. Bass considered the dual case

in 1960 and characterized those rings over which every left module has a projective cover, namely, left perfect

rings. Later, Enochs defined C -(pre)envelopes and C -(pre)covers, where C is an arbitrary class of modules (see

[8]). Thus a C -envelope (C -cover) coincides with an injective envelope (projective cover) when C is the class

of all injective (projective) modules. In 1981, Enochs [7] proved that a ring R is left Noetherian if and only if

every left R -module has an injective cover. A dual result was given by Asensio Mayor and Martinez Hernandez

in 1993. They showed that every left R -module has a projective envelope if and only if R is left perfect and

right coherent [3, Proposition 3.5]. Ding and Chen also characterized left perfect and right coherent rings via

the existence of projective preenvelopes (see [6, Proposition 3.14]).

In contrast to the case of injective envelopes (projective covers), an injective cover (projective envelope)

of a nonzero module can be zero when it exists. Belshoff and Xu proved in 2001 that if every nonzero left

R -module has a nonzero injective cover, then R is left Artinian. They also gave an example to show that the

converse is not true in general (see [4]). The existence of nonzero projective (pre)envelopes of simple modules

was investigated by Mao [12] in 2007.

In this paper, we will prove that every nonzero left R -module has a nonzero injective cover if and only

if R is a left Artinian and every simple left R -module has a nonzero injective cover. Dually, every nonzero left

R -module has a nonzero projective envelope if and only if R is left perfect right coherent and every simple left

R -module has a nonzero projective envelope. We call R a weakly left V-ring (strongly left Kasch ring) if every

simple left R -module has a nonzero injective cover (projective envelope). Some related rings and examples are

considered.
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Throughout this paper R is an associative ring with identity 1R and all modules are unitary.

Let C be a class of left R -modules. Recall [8] that a homomorphism φ : C → M with C ∈ C is called

a C -precover of M if, for any C ′ ∈ C and any homomorphism φ′ : C ′ → M , there exists a homomorphism

α : C ′ → C such that φα = φ′ . If, in addition, any homomorphism β : C → C such that φβ = φ is

an automorphism of C , then φ is called a C -cover of M . C -(pre)envelope of M is defined dually. In the

case when C is the class of all injective left R -modules, we will indicate C -(pre)cover and C -(pre)envelope by

“injective (pre)cover” and “injective (pre)envelope”, respectively. The terminology “projective (pre)cover” and

“projective (pre)envelope” are adopted similarly when C is the class of all projective left R -modules.

Given a module M , AddM (addM ) denotes the class of modules that is isomorphic to a summand of a

(finite) direct sum of copies of M . For instance, AddRR (addRR) is the class of (finitely generated) projective

left R -modules. The Jacobson radical, socle, and injective envelope of M are denoted by Rad(M), Soc(M ),

and E(M), respectively. The Jacobson radical of R is written as J(R). We refer the reader to [2, 8, 14] for

more fundamental notions and results on modules and rings.

2. Nonzero injective covers

As we have mentioned above, if every nonzero left R -module has a nonzero injective cover, then R is left

Artinian, but the converse does not hold in general. Note that over the ring in the counterexample given by

Belshoff and Xu (see Example 2.4 below), there is a simple module that possesses no nonzero injective cover.

It is natural to conjecture that if R is left Artinian and every simple left R -module admits a nonzero injective

cover, then so does every nonzero left R -module.

Recall that a ring R is called a left V-ring [10] (left GV-ring [17]) if every (singular) simple left R -module

is injective. This motivates us to give the following definition.

Definition 2.1 A ring R is called a weakly left V-ring if every simple left R -module has a nonzero injective

cover. Weakly right V-ring can be defined similarly. R is called a weakly V-ring if it is both a weakly left and

a weakly right V-ring.

Example 2.2 (1) Every left V-ring is a weakly left V-ring. However, Z4 , the ring of integers modulo 4, is a

weakly left V-ring that is not even a left GV-ring. Note that the epimorphism Z4 → 2Z4 is a nonzero injective

cover of the unique (up to isomorphism) simple singular Z4 -module 2Z4 which is not injective.

This example also shows that a commutative weak V-ring need not be von Neumann regular in contrast

to the fact, due to Kaplansky, that a commutative ring is a V-ring if and only if it is von Neumann regular [18,

Theorem 6].

(2) Every QF ring is a weakly left V-ring. Indeed, it is well known that a module over a QF ring is

injective if and only if it is projective. Thus, over a QF ring, the injective cover of a simple module coincides

with its projective cover, which obviously exists.

Conversely, let F be a field and R =
∏

i∈N Fi , where each Fi = F . Then R is a weakly left V-ring but

not QF. In fact, R is a non-Noetherian commutative von Neumann regular ring.

(3) A commutative Artinian ring is always a weakly left V-ring (see [4, Corollary]). The converse is

obviously not true.
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Since every nonzero homomorphism to a simple module is surjective and a simple module is projective

or singular, the following result is obvious.

Proposition 2.3 (1) If R is a weakly left V-ring then every projective simple left R -module is injective.

(2) A ring R is a left V-ring if and only if it is both a left GV-ring and a weakly left V-ring.

(3) A left hereditary weakly left V-ring R is a left V-ring.

From Example 2.2(1) and the following example, one can see that the notions of left GV-rings and weakly

left V-rings are independent and proper generalizations of left V-rings.

Example 2.4 A left GV-ring need not be a weakly left V-ring. For instance, let R be the 2×2 upper triangular

matrix ring over the field Z2 . Then I =

(
Z2 Z2

0 0

)
is the unique essential proper left ideal of R and I is

a maximal left ideal of R . Every singular simple left R -module is isomorphic to R/I . It is easy to see that

HomR(I,R/I) = 0, and hence R/I is injective. However, the projective simple left R -module M =

(
Z2 0
0 0

)
is not injective (see the counterexample in [4]).

Following [1], a ring R is called a T-ring if every nonzero left R -module has a nonzero socle. Now let us

state the main result of this section.

Theorem 2.5 The following are equivalent for a ring R :

(1) Every nonzero left R-module has a nonzero injective cover.

(2) R is a left Artinian weakly left V-ring.

(3) R is a left Noetherian T-ring and a weakly left V-ring.

Proof It suffices to show (3)⇒(1). So suppose φ : E → M is an injective cover of a nonzero left R -module M .

We may assume that M has a simple submodule S with a nonzero injective cover f : E0 → S by hypothesis.

It follows that if factors through φ , where i : S → M is the including map, i.e. φα = if for some α ∈
HomR(E0, E).

E0

α

��

f // S

i

��
E

φ // M

So we have φ ̸= 0 since if ̸= 0. 2

Corollary 2.6 Every nonzero module over a QF ring R has a nonzero injective cover.

Theorem 2.7 The following are equivalent for a ring R :

(1) R is a weakly left V-ring.

(2) For each maximal left ideal I of R , there is a maximal submodule K of E(R) such that I = R∩K

and E(R)/K has a nonzero injective cover, where E(R) is the injective envelope of RR .
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Proof (1)⇒(2). For every maximal left ideal I of R , let f : RE0 → R/I be a nonzero injective cover of

R/I . It is clear that f is surjective. Hence the canonical epimorphism π : R → R/I can be lifted to E0 , i.e.,

there exists π′ : R → E0 such that the following diagram commutes.

R

π

��

π′

}}
E0

f // R/I // 0

Now the injectivity of E0 guarantees that π′ can be extended to E(R), i.e. there is a homomorphism

π′′ : E(R) → E0 such that

0 // R
⊆ //

π′

��

E(R)

π′′
||

E0

commutes. Let g = fπ′′ . Then we have the following commutative diagram.

0 // I //

��

R
π //

⊆

��

π′

""E
EE

EE
EE

EE
R/I // 0

E0

f
=={{{{{{{{

0 // Kerg // E(R)
g //

π′′
<<yyyyyyyy

R/I // 0

Now it is easy to see that K = Kerg is as required.

(2)⇒(1). For any simple left R -module M , there is an exact sequence

0 → I → R → M → 0,

where I is a maximal left ideal of R . By (2), we have the following commutative diagram:

0 // I //

��

R //

��

M //

σ

��

0

0 // K // E(R) // E(R)/K // 0

We claim that σ ̸= 0. If this is not the case, then R ⊆ K . Hence I = R ∩K = R , a contradiction. Therefore,

M ∼= E(RR)/K and has a nonzero injective cover. 2

It is well known that a ring R is a left V-ring if and only if every left (cyclic) R -module M has Jacobson

radical Rad(M) = 0 [13, Theorem 2.1]. As far as a weakly left V-ring is concerned, we have the following.

Proposition 2.8 Suppose that R is a weakly left V-ring and M is a left R -module. Then Rad(M) contains

no nonzero projective submodule.
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Proof Let P be a nonzero projective submodule of M . Then P has a maximal submodule K . Hence P/K

has a nonzero injective cover f : E → P/K , which is surjective by hypothesis. Now the projectivity of P

guarantees that the canonical epimorphism π : P → P/K can be lifted to some α : P → E and the injectivity

of E implies that α = βi for some β ∈HomR(M,E), where i : P → M is the including map. We thus have

the following commutative diagram:

M

β

��

P
ioo

α

||zz
zz
zz
zz
z

π

��
E

f // P/K

It follows that Ker(fβ) is a maximal submodule of M . Note that P is not contained in Ker(fβ). Therefore,

Rad(M) contains no nonzero projective submodule. 2

3. Nonzero projective envelopes

In this section we investigate rings R over which every (simple) left R -module has a nonzero projective envelope.

It is easy to see that such rings must be left Kasch, i.e. every simple left R -module embeds in R [20]. Thus,

we provide the following definition.

Definition 3.1 A ring R is called a strongly left Kasch ring if every simple left R -module has a nonzero

projective envelope.

Theorem 3.2 The following are equivalent for a ring R :

(1) Every nonzero left R-module has a nonzero projective envelope.

(2) R is a left perfect right coherent strongly left Kasch ring.

(3) R is a left perfect right coherent left Kasch ring.

Proof (1)⇒(2)⇒(3) is clear.

(3)⇒(1). Let M be a nonzero left R -module. Since R is left perfect, M has a maximal submodule K

and a simple factor module M/K . Now it is easy to obtain a commutative diagram:

M

π

��

φ // P

��
M/K

α // R

where φ : M → P is a projective envelope of M , π : M → M/K is the natural epimorphism, and α : M/K → R

is a monomorphism. It follows that φ ̸= 0. 2

Remark 3.3 (1) Every QF ring satisfies the conditions in the above theorem, but the converse is not true in

general (see Example 3.4).

(2) Let R be the 2×2 upper triangular matrix ring over the field Z2 . Then R is Artinian and hence every

R-module has a projective envelope. Note that the right annihilator of the maximal left ideal I =

(
Z2 Z2

0 0

)
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is zero. For any f ∈ HomR(R/I,R) , we have f(1 + I) = 0 since f(1 + I) is in the right annihilator of I .

It follows that HomR(R/I,R) = 0. Therefore, R is not a left Kasch ring and the simple left R -module R/I

admits only a zero projective envelope.

(3) Every strongly left Kasch ring is left SPP (i.e. every simple left module has a projective preenvelope

[12]). The ring R in (2) is left SPP but it is not a left Kasch ring. In addition, note that any homomorphism

from a simple Z-module to a projective Z-module is zero; hence, Z is a left SPP ring and every simple Z-module

has a zero projective (pre)envelope. Thus, Z is not a (strongly) left Kasch ring.

(4) Let M = Rx be a simple left R -module with a nonzero projective envelope φ : M → P . Suppose that

P ⊕Q = R(I) and πi : R
(I) → R is the canonic projection for each i ∈ I . It follows that πiφ(x) ̸= 0 for some

i . From this, one can see that every strongly left Kasch ring must be left Kasch, but the converse is not true.

See Example 3.10.

We will focus on strongly left Kasch rings in what follows.

Example 3.4 Let R = Z2 ∝ (Z2 ⊕Z2) be the trivial extension of Z2 by Z2 ⊕Z2 . It is easy to see that R is a

commutative Artinian Kasch ring. Thus R is a strongly left Kasch ring by Theorem 3.2.

We can construct a nonzero projective envelope for a simple left R -module as follows. Let x = 0 ∝

(1, 0) =

(
0 (1, 0)
0 0

)
and, similarly, y = 0 ∝ (0, 1) . Note that every simple left R -module is isomorphic to

Rx . It is enough to show that

φ : Rx → R⊕R; rx 7→ (rx, ry) (r ∈ R)

is a nonzero projective envelope of Rx . Indeed, φ is a nonzero R -homomorphism and R ⊕ R is projective.

For any f ∈ HomR(Rx,P ) , where P is a projective R -module, suppose that P is a direct summand of a free

R-module R(I) with the natural inclusion map α : P → R(I) and the projection π : R(I) → P . Now, let

αf(x) = (xi) ∈ R(I) . There are 3 finite subsets, J , K , and L , of the index set I such that

xi =


x, i ∈ J ;
y, i ∈ K;
x+ y, i ∈ L;
0, else.

Now, we can define g : R⊕R → R(I) such that, for any s ∈ R , the ith component of g(s, 0) is

{
s, i ∈ J ∪ L;
0, i ̸∈ J ∪ L;

and the i th component of g(0, s) is {
s, i ∈ K ∪ L;
0, i ̸∈ K ∪ L.

It follows that αf = gφ and hence f = παf = πgφ . This shows that φ is a projective preenvelope of M .
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Finally, write the endomorphisms of the left R -module R⊕R as 2×2 matrixes. Assume h =

(
a b
c d

)
∈

EndR(R⊕R) satisfies φ = hφ . Then we have

(x, y) = (x, y)

(
a b
c d

)
,

which implies

x(a+ 1R) + yc = 0 = xb+ y(d+ 1R).

Consequently, x(a + 1R) = yc = xb = y(d + 1R) = 0 . One can verify that a and d are invertible in R ,

b, c ∈ J(R) and h is invertible in EndR(R⊕R) .

Recall that a ring R is said to be left mininjective if every R -homomorphism from a minimal left ideal

of R to RR extends to one from RR to RR [9, 15]. We note that the ring R in the above example satisfies

the conditions in Theorem 3.2. But R is not left mininjective (and hence not QF). In fact, one can verify that

f : Rx → R such that f(rx) = ry (for all r ∈ R) is a well-defined R -homomorphism, which does not extend

to RR .

To investigate the case that a left mininjective ring is strongly left Kasch we prove a lemma that is of

interest in its own right.

Lemma 3.5 The following are equivalent for a left R-module M :

(1) M is quasi-injective.

(2) For any submodule K ≤ M , the inclusion map K ↪→ M is an addM -preenvelope of K .

(3) For any essential submodule K ≤ M , the inclusion map K ↪→ M is an addM -preenvelope of K .

(4) For any essential submodule K ≤ M , the inclusion map K ↪→ M is an addM -envelope of K .

(5) For any submodule K ≤ M , there exists a direct summand L of M such that K is essential in L

and the inclusion map K ↪→ L is an addM -preenvelope of K .

(6) For any submodule K ≤ M , there exists a direct summand L of M such that K is essential in L

and the inclusion map K ↪→ L is an addM -envelope of K .

Proof (1)⇔(2). See [22, Proposition 3.2(1)].

(2)⇒(3) is trivial.

(3)⇒(1). It is well known that, for every submodule L of M , there exists L′ ≤ M such that L∩L′ = 0

and L⊕L′ is essential in M . Therefore, for any homomorphism f : L → M , we have the following commutative

diagram:

L

��

// L⊕ L′

{{

// M

uu
M

(3)⇒(4). Let g be an endomorphism of M such that g(x) = x for all x ∈ K . Then g is monic since K

is essential in M . This means Img is isomorphic to M . It follows that Img is a direct summand of M since

M is quasi-injective (see [14, Proposition 2.1]), but K ⊆ Img and K is essential in M . Therefore, Img = M ,

i.e. g is an automorphism of M .
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(4)⇒(3) is clear.

(1)⇒(5). Note that a direct summand of a quasi-injective module is quasi-injective and every quasi-

injective module is extending (see [14, Proposition 1.17 and 2.1]).

(5)⇒(1) is easy.

(5)⇔(6) is similar to (3)⇔(4). 2

Recall that a ring R is said to be left min-CS provided that every minimal left ideal is essential in a

direct summand of RR [9, 15]. R is called left C2 if a left ideal of R is a direct summand whenever it is

isomorphic to a direct summand of RR (see [14]).

It is easy to see that the inclusion maps K ↪→ M and K ↪→ L in Lemma 3.5 are also AddM -envelopes

in case K is finitely generated (see [22, Lemma 3.1]). Therefore, by a similar argument to (1)⇒(5) in the proof

of the above lemma, we have the following proposition.

Proposition 3.6 Suppose that R is left mininjective left min-CS and left C2. Then R is a left Kasch ring

if and only if R is a strongly left Kasch ring. In this case, every simple left R -module M has an essential

projective envelope of the form M → P , where P is a direct summand of RR .

We illustrate Proposition 3.6 by the following example.

Example 3.7 (Camillo’s Example [5, 21, 16]) Let R be the ring of polynomials in countably many indeter-

minates {x1, x2, · · · } over the field Z2 with (i) x3
i = 0 for all i ; (ii) xixj = 0 for all i ̸= j ; and (iii)

x2
i = x2

j for all i, j . For any f(x1, x2, · · · ) ∈ R , if the constant term of f is 0, then it is easy to see that

f3 = 0 and (1 + f)(1 + f + f2) = 1. Thus R is a commutative local ring with unique maximal (left) ideal

J(R) = {f(x1, x2, · · · ) ∈ R | the constant term of f is 0} . Moreover, R has a unique minimal (left) ideal

Rx2
1 = Rx2

2 = · · · , which is essential in R and is isomorphic to R/J(R) as left R -modules. This shows that

R is min-CS, Kasch and C2. (Note that every Kasch ring is C2 by [16, Proposition 1.46].) If α is a nonzero

R-homomorphism from Rx2
1 to R , then α is the inclusion map and extends to R obviously. This means that

R is left mininjective. Therefore, R satisfies the conditions in Proposition 3.6. The inclusion map Rx2
1 → R

is the projective envelope of Rx2
1 .

Now, let S = R × R . Then every left S -module can be written as U × V with obvious addition and

scalar multiplication, where U and V are left R -modules. It is straightforward to verify that S also satisfies

the conditions in Proposition 3.6. The inclusion map Rx2
1 × 0 → R × 0 is the projective envelope of Rx2

1 × 0 ,

where R× 0 is a proper direct summand of SS .

To see that the hypothesis “left min-CS and left C2” in Proposition 3.6 is not superfluous, we need the

following results.

Proposition 3.8 The following are equivalent for a ring R :

(1) R is left SPP.

(2) The dual module of any simple left R -module is finitely generated.

(3) Every homogeneous component of Soc(RR) is a finite direct sum of minimal left ideals.

Proof (1)⇔(2) has been shown in [12, Theorem 3.1] (see also [22, Theorem 5.1]).
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(2)⇒(3). Let ⊕i∈IRxi be a homogeneous component of Soc(RR), where I is an index set and each Rxi

is a minimal left ideal of R . For any x ∈ {xi | i ∈ I} and any f ∈ HomR(Rx,R), there exists a finite subset

J of I such that Imf ⊆ ⊕i∈JRxi . Let {fj | j = 1, 2, · · · , n} be a generating set of the dual module (Rx)∗ .

Then we have ⊕i∈IRxi = Σf∈M∗ Imf = Σn
j=1 Imfj . This forces I to be a finite set.

(3)⇒(2). Note that every homomorphism from a simple left R -module M to R is of the form

M
f→ ⊕n

i=1Rxi
g→ R

where ⊕n
i=1Rxi is a homogeneous component of Soc(RR) and g : ⊕n

i=1Rxi → R is the inclusion map. It follows

that M∗ = gHomR(M,⊕n
i=1Rxi) is a finitely generated right R -module. 2

Corollary 3.9 If R is a strongly left Kasch ring then every homogeneous component of Soc(RR) is a finite

direct sum of minimal left ideals.

The following example shows that the hypothesis “left min-CS and left C2” in Proposition 3.6 is not

superfluous.

Example 3.10 (Björk’s Example [16, 19]). Let F be a field with an isomorphism F → F via a 7→ a , where

F is a subfield of F and F is an infinite dimensional F -space with basis {e1, e2, · · · } . Let R be an F -algebra

with F -basis {1, t} such that t2 = 0 and at = ta for all a ∈ F . One can verify that R is a left mininjective

left Kasch ring with a unique maximal left ideal Rt . However, ⊕∞
i=1Rtei = Soc(RR) is an infinite direct sum

of mutual isomorphic minimal left ideals of R . Thus, R is not a strongly left Kasch ring in view of Corollary

3.9.

The following result is motivated by [12, Proposition 3.9].

Proposition 3.11 Let R be a left mininjective ring such that the injective envelope of every simple left R-

module is projective. Then R is a strongly left Kasch ring. In this case, the projective envelope of a simple left

R-module coincides with its injective envelope.

Proof It suffices to prove the last statement. Let M be a simple left R -module with injective envelope

E(M). Since E(M) is projective, we can make a monomorphism α : M → R via M ↪→ E(M) ↪→ R(I) → R .

By [22, Corollary 3.3(4)], α : M → R is a projective preenvelope of M since R is left mininjective. It follows

that M ↪→ E(M) is a projective preenvelope of M . Finally, by a similar argument to (3)⇒(4) in the proof of

Lemma 3.5, we can see that M ↪→ E(M) is a projective envelope of M . 2

Remark 3.12 (1) It is well known that a left R -module U is a cogenerator if and only if, for any simple

module RV , U contains a copy of E(V ) (see [11, Theorem 19.8]). Thus, if RR is a cogenerator, then the

injective envelope of every simple left R -module is projective. By Proposition 3.11, every left mininjective left

cogenerator ring is a strongly left Kasch ring (see also [12, Proposition 3.9]). In particular, every left PF ring

(i.e. a left injective left cogenerator) is a strongly left Kasch ring.

(2) The ring R in Example 3.7 is a left mininjective strongly left Kasch ring, which is neither left

self-injective nor a left cogenerator.
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In fact, every element in J(R) is of the form

ax2
1 + a1x1 + a2x2 + · · · (a, ai ∈ Z2)

with finitely many nonzero ai s. There is an R-homomorphism α : J(R) → R such that α(xi) = xi(1 + xi) for

each i . Assume that α extends to β : R → R , i.e. β|J(R) = α . Let β(1) = bx2
1 + b0 + b1x1 + b2x2 + · · · with b

and each bi in Z2 . There exists i such that bj = 0 for all j ≥ i . So we have

xi + x2
i = α(xi) = β(xi) = xiβ(1) = xi(bx

2
1 + b0 + b1x1 + · · ·+ bi−1xi−1) = b0xi,

a contradiction. This shows that RR is not injective.

Moreover, R is not a left cogenerator since R can not contain a copy of E(Rx2
1) , the injective envelope

of the simple left R -module Rx2
1 . Otherwise, E(Rx2

1) is projective and the inclusion map Rx2
1 ↪→ E(Rx2

1) is a

projective envelope of Rx2
1 . This implies that E(Rx2

1) is isomorphic to RR (since Rx2
1 ↪→ R is also a projective

envelope of Rx2
1 ). But this contradicts the fact that RR is not injective.
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