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Abstract: Modules in which every essential submodule contains an essential fully invariant submodule are called endo-

bounded. Let M be a nonzero module over an arbitrary ring R and X = Spec2(MR) , the set of all fully invariant

L2 -prime submodules of MR . If MR is a quasi-projective L2 -Noetherian such that (M/P )R is endo-bounded for any

P ∈ X , then it is shown that the Krull dimension of MR is at most the classical Krull dimension of the poset X . The

equality of these dimensions and some applications are obtained for certain modules. This gives a generalization of a

well-known result on right fully bounded Noetherian rings.

Key words: Classical Krull dimension, endo-bounded module, FBN ring, Krull dimension, L2 -Noetherian module,

L2 -prime module

1. Introduction

Throughout this paper rings will have unit elements and modules will be right unitary. The concept of the

classical Krull dimension of an arbitrary poset X was originally defined in [2], denoted by Cl.K.dim(X). For

X = Spec(R), the set of all prime ideals of a ring R , Cl.K.dim(X) was already denoted by Cl.K.dim(R)

and called the classical Krull dimension of R ; see [7, Chapter 14]. The latter dimension is a crucial concept

in commutative algebra. It is well known that a commutative Noetherian ring R is Artinian if and only if

Cl.K.dim(R) = 0. A suitable tool that measures how far a module MR is from being Artinian is the Krull

dimension of MR , K.dim(MR), in the sense of Gabriel and Rentchler; see [7, Chapter 15] for an excellent

reference on the subject.

Generalizing commutative rings to right bounded rings R (i.e. every essential right ideal of R contains

an ideal that is essential as a right ideal), it was proven that Cl.K.dim(R) = K.dim(RR) for every right fully

bounded right Noetherian (r.FBN) ring R [7, Theorem 15.13]. A generalization of the latter equality to modules

is the aim of the present work.

By a prime module MR , we mean the “classical” notion of a prime module, that is, annR(M) = annR(N)

for any 0 ̸= N ≤ MR . The set of all fully invariant submodules of a module MR is denoted by L2(M). Some

generalizations of the concept of prime ideal and the classical Krull dimension of a ring were given by earlier

authors. In [6], the poset of all prime submodules of a module was considered, and a principal ideal theorem

analogue for modules was obtained. In [1], Cl.K.dim(X) was called the dimension of MR when X is the poset

of all distinguished prime submodules of MR , and it was proven for faithful R -modules that the dimension is at
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most equal to Cl.K.dim(R). Also in [3], the classical Krull dimension of a module was defined by considering the

certain chains of prime submodules, where it is shown that this classical Krull dimension is equal to the Krull

dimension for a multiplication module MR . Although various generalizations of the classical Krull dimension

of rings are already given, no comparison has been made between the Krull dimension and the classical Krull

dimension of a module over an arbitrary ring.

In this paper, we consider the classical Krull dimension of the poset Spec2(MR), the set of all fully

invariant proper submodules P of MR with the property HomR(M,W1)W2 ⊆ P ⇒ W1 ⊆ P or W2 ⊆ P where

Wi ∈ L2(M)(i = 1, 2). Proper submodules of MR having the latter property were called L2 -prime in [17]; see

also [18] where the term “fully prime” was used for L2 -prime. If (0) is an L2 -prime submodule of MR , then

M is called an L2 -prime R -module; see [4] as an original reference of such R -modules. Every fully invariant

L2 -prime submodule of a module is a prime submodule [17, Proposition 2.1(ii)]. We define fully endo-bounded

modules that form a class of modules properly containing both the class of multiplication modules and the class

of (fully) bounded modules in the sense of [8] and [11]. For a quasi-projective fully endo-bounded L2 -Noetherian

module MR , it is shown that K.dim(MR) is at most equal to the classical Krull dimension of Spec2(MR), and

the equality is obtained for certain modules. This generalizes the similar result for r.FBN rings. Any unexplained

terminology and all the basic results on rings and modules that are used in the sequel can be found in [7] and [13].

2. Preliminaries

We begin by recalling some definitions from [17]. An R -module M is called L2 -Noetherian if M finitely gen-

erates all of its fully invariant submodules and has ascending chain condition (acc) on them. Some examples of

L2 -Noetherian modules are Noetherian self-generator modules and modules without nontrivial fully invariant

submodules. Note that the module RR is L2 -Noetherian if and only if every ideal of R is finitely generated

as a right ideal. A minimal L2 -prime submodule means a minimal member among all L2 -prime submodules

of MR . We shall use the notation N ⊴ MR , N ≤e MR to denote respectively that N is a fully invariant,

essential submodule of MR , and W ⋆K for HomR(M,W )K where W,K ≤ MR . In the following, we present

some facts on L2 -Noetherian and L2 -prime modules for later use.

Lemma 2.1 Let M be an R -module.

(i) If N �MR and Q/N �M/N , then Q�MR .

(ii) If M is quasi-projective and K ≤ L�MR , then L/K �M/K .

(iii) If M = M1⊕M2 , then N�MR if and only if N = N1⊕N2 for some Ni�Mi with HomR(M1,M2)N1 ⊆ N2

and HomR(M2,M1)N2 ⊆ N1 .

(iv) Let n ≥ 1 . Every fully invariant submodule of M (n) has the form N (n) for some N �MR .

Proof These have routine arguments. 2

Proposition 2.2 Let R be a ring, I �R and M be an R -module.

(i) If MI = 0 then MR is L2 -Noetherian if and only if MR/I is L2 -Noetherian.

(ii) MR is L2 -Noetherian if and only if M/N is L2 -Noetherian for any N �MR .

Proof We only prove (ii). M/N has acc on its fully invariant submodules by Lemma 2.1(i). On the other

hand, if L/N � M/N then L � M and so M finitely generates L by our assumption. Hence, there exists
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an R -epimorphism f : M (n) → L for some positive integer n . Let ιi : M → M (n) be the natural injec-

tion for i = 1, ..., n . Since N � M , fιi(N) ⊆ N . This shows that the map g : (M/N)(n) → L/N with

g(x1 + N, ..., xn + N) = f(x1, ..., xn) + N is well defined. Clearly g is also an R -epimorphism. Thus, M/N

finitely generates L/N , proving that M/N is L2 -Noetherian. The converse is clear using N = 0. 2

Proposition 2.3 Let M be an R -module and P ◁ M .

(i) Let MR be quasi-projective. Then P ∈ Spec2(M) if and only if for any W1,W2 � M , P ⊊ Wi (i = 1, 2)

implies W1 ⋆ W2 ⊈ P if and only if M/P is an L2 -prime R -module.

(ii) Let MR be quasi-projective. If N ◁ M and N ≤ P then P/N ∈ Spec2(M/N) if and only if P ∈ Spec2(M) .

(iii) Let n ≥ 1 . Then K ∈ Spec2(M
(n)) if and only if K = N (n) for some N ∈ Spec2(M) .

Proof (i) We only prove the first equivalence. One direction is clear. Assume that N1, N2�M with N1⋆N2 ⊆ P .

We shall prove that N1 ⊆ P or N2 ⊆ P . If not, P ⊂ Ni+P for i = 1, 2. Let Wi = Ni+P (i=1,2). Since P�M ,

Wi � M (i=1,2). We show that W1 ⋆ W2 ⊆ P , which contradicts our assumption. Let f ∈ HomR(M,W1)

and x + y ∈ W2 where x ∈ N2 and y ∈ P . Since f(y) ∈ P , it is enough to show that f(x) ∈ W1 . Let

π : W1 → W1/P and η : N1 → N1/(N1 ∩ P ) be the natural projections and θ : W1/P → N1/(N1 ∩ P ) be the

natural isomorphism. Since M is quasi-projective, there exists g ∈ HomR(M,N1) such that ηg = θπf . Thus,

g(N2) ⊆ N1 and g(x)− f(x) ∈ N1 ∩P . Hence, f(x) = g(x) + (f(x)− g(x)) ∈ N1 +P = W1 . The proof is now

completed.

(ii) This follows from (i) and the fact that M/N is quasi-projective when N ⊴ M .

(iii) Let K ∈ Spec2(M
(n)). By Lemma 2.1(iv), K = N (n) for some N � M . Now if A ⋆ B ⊆ N for some

A,B �M , then A(n) ⋆ B(n) ⊆ K . Thus, A(n) ⊆ K or B(n) ⊆ K , and hence A ⊆ N or B ⊆ N . This shows

that N ∈ Spec2(M).

Similarly, the converse is proven by Lemma 2.1(iv). 2

By [17, Proposition 2.5], Spec2(M) ̸= ∅ when MR is L2 -Noetherian. In the following, we see an analo-

gous result for certain quasi-projective modules.

Corollary 2.4 Let MR be quasi-projective and P�M such that P is maximal among all proper fully invariant

submodules of M . Then P ∈ Spec2(M) . In particular, Spec2(M) ̸= ∅ if MR is a nonzero quasi-projective

with acc on fully invariant submodules.

Proof Apply Proposition 2.3(i). 2

Let M be an R -module. If M is M (Λ) -projective for every index set Λ, then we say that MR is
∑

-

projective. Finitely generated quasi-projective modules are known to be
∑

-projective. It is easy to verify that

a module MR is
∑

-projective if and only if (M/N)R is so for any N ∈ L2(MR). In Proposition 2.6, for a∑
-projective L2 -prime module, we obtain a generalization of the fact that “nonzero ideals in a prime ring are

essential as right ideals”. First we prove the following Lemma.

Lemma 2.5 If MR is
∑

-projective and B,A ≤ MR then (B ⋆ A) ⋆ B ⊆ B ⋆ (A ⋆ B) .
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Proof Let D = A(Λ) where Λ = HomR(M,B). For any g ∈ Λ let πg : D → A be the natural projection

map. Define h : D → B ⋆ A by h(x) =
∑
g∈Λ

g(πg(x)). Then h is an R -epimorphism. Suppose now that

f : M → B ⋆ A is an R -homomorphism. Since MR is
∑

-projective, M is a D -projective R -module. Thus,

there exists α : M → D such that hα = f . Now for any b ∈ B , f(b) = h(α(b)) =
∑
g∈Λ

g(πgα(b)) ∈ B ⋆ (A ⋆ B)

because πgα ∈ HomR(M,A) for any g ∈ Λ. 2

Proposition 2.6 Let MR be a
∑

-projective and P ∈ Spec2(MR) . Then in the R -module M/P , every

nonzero fully invariant submodule is essential.

Proof Without loss of generality, we may suppose that MR is an L2 -prime module. Let 0 ̸= A �MR and

A ∩N = 0 for some N ≤ MR . Then N ⋆ A ⊆ N ∩A = 0. Thus, A ⋆ (N ⋆ A) = 0, and hence (A ⋆ N) ⋆ A = 0

by Lemma 2.5 . Since now (A ⋆ N) � M and MR is L2 -prime, A ⋆ N = 0. It follows that IN = 0 where

I = HomR(M,A). Since I � S = EndR(M), we see that 0 = I(SN) = A ⋆ SN . Thus, SN and hence N must

be zero, proving that A ≤e MR .

A module MR is called endo-bounded if every essential submodule of MR contains a fully invariant es-

sential submodule of MR . The module MR is called fully endo-bounded if M/P is endo-bounded as a module

over R/annR(M/P ) for any P ∈ Spec2(MR). 2

Proposition 2.7 Let MR be a module with MI = 0 for some I �R .

(i) MR/I is (fully) endo-bounded if and only if MR is (fully) endo-bounded.

(ii) If MR is quasi-projective then MR is fully endo-bounded if and only if M/N is fully endo-bounded for any

N �MR .

Proof (i). This has a routine proof using the facts that “ N ≤e MR if and only if N ≤e MR/I ” and “

Spec2(MR) = Spec2(MR/I) ”.

(ii) This follows by Proposition 2.3(ii) and part (i). 2

Following [8], a ring R is called pre semi-Artinian if for every prime ideal P of R , the (right) socle of

the ring R/P is nonzero. In the following, we give instances where (fully) endo-bounded modules appear.

Lemma 2.8 Let R be a pre semi-Artinian ring.

(i) If MR is prime, then MR is endo-bounded.

(ii) If MR is
∑

-projective L2 -prime, then it is endo-bounded or singular.

Proof (i) Let I = annR(M) and T = R/I . In view of Proposition 2.7(i), it is enough to show that MT

is endo-bounded. Assume that N ≤e MT and J = annT (M/N). For any m ∈ M , let Jm = annT (m + N).

Since M/N is a singular T -module, Jm ≤e TT for any m ∈ M . Hence, J = ∩m∈MJm ⊇ Soc(TT ) is a nonzero

ideal by hypothesis. Thus, it is enough to show that MJ ≤e MT . Let MJ ∩K = 0 for some K ≤ MT . Then

KJ = 0. Since now MT is prime and faithful, we must have K = 0, as desired.

(ii) Suppose that MR is not singular. As we see in (i), if N ≤e MR , then MI ⊆ N for some I ⊴e RR . By our

assumption MI is nonzero. Hence, the result is obtained by Proposition 2.6. 2
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Corollary 2.9 Over a pre semi-Artinian ring R , all R -modules are fully endo-bonded.

Proof Apply Lemma 2.8(i) and the fact that for all P ∈ Spec2(M), M/P is a prime module [17, Proposition

2.1]. 2

Remark 2.10 In [8], a bounded module MR was defined by the condition annR(M/N) ≤e RR for any

N ≤e MR , and similarly MR was called fully bounded if for all P ∈ Spec2(MR) , M/P is bounded. The

proof of Lemma 2.8(i) shows that if MT is a bounded faithful prime module, then it is an endo-bounded module.

Thus, every fully bounded module is fully endo-bounded. However, it is easy to verify that QZ is fully endo-

bounded because Spec2(QZ) = {0} , but not fully bounded because annZ(Q/Z) = 0 .

3. Classical Krull dimension for modules

In this section we introduce the classical Krull dimension for an arbitrary module M as the classical Krull

dimension of the poset Spec2(M) and investigate it for quasi-projective modules.

Definition 3.1 Let M be an R -module and X−1 = ∅ . Suppose that γ is an ordinal number and Xβ is defined

for all β < γ . Let Xγ be the set of all P ∈ Spec2(M) with the property that for any Q ∈ Spec2(M) with

P ⊂ Q , there exists β < γ such that Q ∈ Xβ . Note that Xi ⊆ Xj for all ordinal numbers i, j with i ≤ j .

The chain {Xi}i≥−1 will be called the L2 -classical Krull chain of M . We say that MR has L2 -classical Krull

dimension if there exists an ordinal number α such that Xα = Spec2(M) . The smallest α with this property

will be called the L2 -classical Krull dimension of M and will be denoted by L2 -dim(MR) . Note that if 0 ∈ Xβ

for some ordinal number β , then L2 -dim(MR) ≤ β .

By [2, Proposition 1.4], L2 -dim(MR ) exists if and only if Spec2(M) is a Noetherian poset, i.e. it satisfies

the acc. If MR is semisimple, then every element in L2(MR) has the form ⊕iMi where each Mi is a homoge-

neous component of MR . Hence, it is easy to verify that L2 -dim(MR) = 0. Therefore, Proposition 2.3(ii) shows

that L2 -dim(MR) = 0 when MR is quasi-projective and R is a ring with (R/P )R Artinian for all P ∈ Spec(R).

Proposition 3.2 Let M be an R-module, n ≥ 1 and L2 -dim(MR ) exists. Then L2 -dim(M (n) ) exists and

L2 -dim(M) = L2 -dim(M (n)) .

Proof This is obtained by Proposition 2.3(iii).

If R is a r.FBN ring, then by Proposition 3.2 and the fact that Cl.K.dim(R) = K.dim(R), we have

L2 -dim(MR) = K.dim(MR) for every finitely generated free R -module M . In Theorems 4.1 and 4.3, we will

see a generalization of the latter equality. 2

Proposition 3.3 Let M be a quasi-projective R -module and N �MR .

(i) Assume that {Xi}i≥−1 and {Yj}j≥−1 are the L2 -classical Krull chains of M and M/N , respectively. Then

P ∈ Xα if and only if P/N ∈ Yα for any α ≥ 0 and P ∈ Spec2(M) with N ⊆ P .

(ii) If L2 -dim(MR) = α exists then L2 -dim((M/N)R) is at most equal to α .
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Proof (i). The equivalence follows by definition and Proposition 2.3(ii).

(ii). This is obtained by (i). 2

Proposition 3.4 Suppose that MR is quasi-projective and L2 -dim(MR) exists. Then L2 -dim(M/(W1⋆W2)) =

Max {L2 -dim(M/W1),L2 -dim(M/W2)} for every W1,W2 �MR .

Proof Let Mi = M/Wi , Li = Wi/(W1 ⋆ W2) (i=1,2), L = M/(W1 ⋆ W2), α = L2 -dim(M1), and β = L2 -

dim(M2). Since Li �LR and Mi ≃ L/Li (i=1,2), L2 -dim(Mi) = L2 -dim(L/Li) ≤ L2 -dim(L) by Proposition

3.3(ii). This shows that L2 -dim(L) ≥ Max{α, β} . For the converse, suppose that {Xi}i≥−1 , {Yi}i≥−1 , and

{Zi}i≥−1 are the L2 -classical Krull chains of M1 , M2 , and M , respectively. Let P/(W1 ⋆ W2) ∈ Spec2(L).

Since W1 ⋆ W2 � MR , P ∈ Spec2(M) by Proposition 2.3(ii). Thus, W1 ≤ P or W2 ≤ P . This in turn

implies P/W1 ∈ Xα or P/W2 ∈ Yβ . Therefore, P ∈ Zα or P ∈ Zβ and so P ∈ ZMax{α,β} . It follows that

L2 -dim(L)≤ Max{α, β} . The proof is now complete. 2

Corollary 3.5 If MR is quasi-projective with L2 -classical Krull dimension and P, P0 ∈ Spec2(M) with

P0 ⊂ P , then L2 -dim(M/P ) < L2 -dim(M/P0) .

Proof We may assume that P0 = 0. Let {Xi}i≥−1, {Yi}i≥−1 be the L2 -classical Krull chains of M and

M/P , respectively, and suppose L2 -dim(MR) = α . By our assumption 0 ∈ Spec2(M), and since now 0 ⊂ P ,

there exists β < α such that P ∈ Xβ . It is enough to show that 0 ∈ Yβ . Note that 0 ∈ Spec2(M/P ) and

suppose that 0 ̸= Q/P ∈ Spec2(M/P ). Then P ⊂ Q and Q ∈ Spec2(M) by Proposition 3.3. Thus, there

exists γ < β such that Q ∈ Xγ . Again by Proposition 3.3, Q/P ∈ Yγ ⊆ Yβ . It follows that 0 ∈ Yβ , as desired.
2

Proposition 3.6 Suppose that MR is quasi-projective, L2 -prime with acc on fully invariant submodules. Then

L2 -dim(M/N) < L2 -dim(MR) for any nonzero N ∈ L2(M) .

Proof If not, we shall have L2 -dim(M/N) = L2 -dim(MR) for some 0 ̸= N �M . Let A = {0 ̸= K�M | L2 -

dim(M/K) = L2 -dim(MR)}. Then A ̸= ∅ . Since M has acc on fully invariant submodules, A has a maximal

member P . Applying Proposition 2.3(i), we first show that P ∈ Spec2(M). Thus, suppose that there exist

nonzero fully invariant submodules W1,W2 such that P ⊆ Wi (i=1,2) and W1⋆W2 ⊆ P . Since M is L2 -prime,

0 ̸= W1 ⋆ W2 , and L2 -dim(MR )=L2 -dim(M/P ) ≤ L2 -dim(M/(W1 ⋆ W2)). Thus, W1 ⋆ W2 ∈ A . Hence, by

Proposition 3.4, L2 -dim(M/W1) = L2 -dim(MR) or L2 -dim(M/W2) = L2 -dim(MR), which in turn implies

that W1 ∈ A or W2 ∈ A . It follows that W1 = P or W2 = P , proving that P ∈ Spec2(M). Now an

application of Corollary 3.5 for P0 = 0 shows that L2 -dim(M/P ) < L2 -dim(MR), a contradiction. 2

Proposition 3.7 Let MR be quasi-projective with acc on fully invariant submodules. Then L2 -dim(MR) = L2 -

dim(M/P ) for some minimal L2 -prime submodule P of MR .

Proof First note that L2(M) contains {P1, ..., Pn} , the set of all minimal L2 -prime submodules of MR

by [17, Proposition 2.2]. Let {Xi}i≥−1 be the L2 -classical Krull chain of M , L2 -dim(MR) = α and β =

Max{L2 -dim(M/P1), ...,L2 -dim(M/Pn)} . Then α ≥ β by Proposition 3.3(ii). If α > β , then there exists
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P ∈ Spec2(M) such that P /∈ Xβ . By [17, Proposition 2.1(i)], there exists 1 ≤ k ≤ n with Pk ⊆ P . Let

{Yi}i≥−1 be the L2 -classical Krull chain of M/Pk . By hypothesis, Pk ∈ L2(M). Since now P /∈ Xβ , P/Pk /∈ Yβ

by Proposition 3.3(i). Also, P/Pk ∈ Spec2(M/Pk) by Proposition 2.3(ii). This shows that Yβ ̸= Spec2(M/Pk)

while L2 -dim(M/Pk) ≤ β , a contradiction. Therefore, α = β . 2

4. Main results

Theorem 4.1 If MR is quasi-projective, L2 -Noetherian, and fully endo-bounded, then K.dim(MR) , if it exists,

is at most equal to L2 -dim(MR) .

Proof By induction on L2 -dim(MR). Suppose K.dim(MR) exists. Since MR is L2 -Noetherian, by [17,

Theorem 3.1] there exists P ∈ Spec2(M) such that K.dim(MR) = K.dim((M/P )R). If L2 -dim(MR) = 0,

we will show that (M/P )R is semisimple. The existence of the Krull dimension then implies that (M/P )R is

Artinian; see, for example, [7, Ex. 15C]. Let N/P be a proper essential R -submodule of M/P . By hypothesis

(M/P )R is endo-bounded and so there exists K/P �e M/P such that K/P ⊆ N/P . By Proposition 2.2(ii),

the quasi-projective R -module (M/P )/(K/P ) ≃ M/K is L2 -Noetherian. Apply now Corollary 2.4 for the R -

module M/K to deduce that Spec2(M/K) ̸= ∅ . It follows that M/P has a nonzero fully invariant L2 -prime

submodule and hence L2 -dim((M/P )R) ̸= 0. Thus, by Proposition 3.3(ii), L2 -dim(MR) ̸= 0, a contradiction.

Therefore, (M/P )R has no proper essential submodules, proving that M/P is a semisimple R -module.

Now assume that L2 -dim(MR) = α and the result holds for any fully endo-bounded quasi-projective L2 -

Noetherian R -module with L2 -classical Krull dimension less than α . By [13, Lemma 2.8], it is enough to show

that K.dim(M/N) < α for any N/P ≤e M/P . Suppose that N/P ≤e M/P . Note that M/P is also a fully

endo-bounded quasi-projective L2 -Noetherian R -module. Hence, there exists 0 ̸= K/P �e M/P such that

K/P ⊆ N/P . Apply Proposition 3.6 for the L2 -prime R -module M/P to deduce that L2 -dim(M/K) < L2 -

dim(M/P ) ≤ α . Therefore, by the induction assumption, we have K.dim(M/K) ≤ L2 -dim(M/K) < α .

Because K ⊆ N , we must have K.dim(M/N) < α [7, Lemma 15.1], as desired.

In the following we give some applications of our results for modules over pre semi-Artinian rings. Clearly

every commutative ring with zero classical Krull dimension is pre semi-Artinian. There are also noncommuta-

tive pre semi-Artinian rings R that do not have Krull dimensions; for example, say R =

[
F 0
M F

]
, F is a

field, and MF is nonfinitely generated free. 2

Corollary 4.2 Let R be a pre semi-Artinian ring and MR be a quasi-projective Noetherian self-generator

module. Then K.dim(MR) ≤ L2 -dim(MR) .

Proof By Corollary 2.9 and Theorem 4.1.

We are now going to investigate the inequality L2 -dim(MR) ≤ K.dim(MR). In [15] an R -module M

was called essentially compressible if for every N ≤e M , there exists an R -monomorphism M → N . If R is

a semiprime right Goldie ring, then nonsingular essentially compressible R -modules are precisely submodules

of free R -modules [15, Theorem 2.3]. In particular, if R is a right Noetherian ring then (R/P )R is essentially

compressible for any prime ideal P of R . Hence, the well-known result Cl.K.dim(R) ≤ K.dim(RR) on right

Noetherian rings may be obtained by the following result. 2
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Theorem 4.3 Assume that MR is a
∑

-projective L2 -Noetherian module with Krull dimension such that L2 -

prime factors of M are essentially compressible. Then L2 -dim(MR) ≤ K.dim(MR) .

Proof In view of Proposition 3.7 and [17, Theorem 3.1], without loss of generality, we may suppose that MR

is L2 -prime. Now we give a proof by induction on K.dim(MR). If K.dim(MR) = 0, then MR is Artinian, and

hence MR is a homogeneous semisimple R -module by [17, Theorem 2.4]. This shows that L2 -dim(MR) = 0.

Now assume that K.dim(MR) = α and let {Xi}i≥−1 be the L2 -classical Krull chain of MR . We shall show that

0 ∈ Xα . Thus, suppose that 0 ̸= P ∈ Spec2(M). By hypothesis, MR is
∑

-projective and so P ≤e M by Propo-

sition 2.6. Also by our assumption, M is essentially compressible. Hence, there exists an R -monomorphism

f : M → P . It follows that K.dim((M/P )R) < K.dim(MR) by [7, Lemma 15.6]. Now by induction assumption,

we have L2 -dim(M/P ) ≤ K.dim((M/P )R) < α . Thus, if β = L2 -dim(M/P ), then P ∈ Xβ by Proposition

3.3(i), and the proof is complete. 2

Corollary 4.4 Let R be a pre semi-Artinian ring and MR be
∑

-projective L2 -Noetherian such that L2 -prime

factors of M are essentially compressible. Then K.dim(MR) = L2 -dim(MR) provided that K.dim(MR) exists.

Proof By Corollary 2.9 and Theorem 4.1.

The following result is a generalization of a well-known fact stating that the classical Krull dimension of

a right Noetherian ring R is at most equal to the Krull dimension of RR [13, 6.4.5]. 2

Corollary 4.5 Let R be a ring with Krull dimension in which every ideal is finitely generated as a right ideal.

Then Cl.K.dim(R) ≤ K.dim(RR) .

Proof This is obtained by Theorem 4.3 [15, Theorem 2.3]. 2
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