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Abstract: Let {q(α,β)
n }n≥0 be the sequence of polynomials orthonormal with respect to the Sobolev inner product

⟨f, g⟩S :=

∫ 1

−1

f(x)g(x)w(α,β)(x)dx+

∫ 1

−1

f ′(x)g′(x)w(α+1,β+1)(x)dx,

where w(α,β)(x) = (1 − x)α(1 + x)β , x ∈ [−1, 1] and α, β > −1. This paper explores the convergence in the

W 1,p
(
(−1, 1), (w(α,β), w(α+1,β+1))

)
norm of the Fourier expansion in terms of {q(α,β)

n }n≥0 with 1 < p < ∞ , using the

Pollard decomposition method. Numerical examples concerning the comparison between the approximation of functions

in L2 norm and W 1,2 norm are also presented.
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1. Introduction

The study of the behavior of the Lp -convergence of orthogonal series of polynomials began in 1946 and it was

due to Pollard [25], who proposed the use of methods from functional analysis in order to give sufficient and

necessary conditions that guarantee the Lp -convergence of an orthogonal series of polynomials given. However,

this first work gave evidence to think that such tools of functional analysis did not seem be a general method in

order to determine when an orthonormal basis of polynomials is also a basis in Lp . Therefore, Pollard decided

to study the behavior of the Lp -convergence of orthogonal series of polynomials separately. He began with the

Legendre polynomials [26], showing that the sequence {pn}n≥0 of orthonormal Legendre polynomials is a basis

of Lp(−1, 1), whenever 4
3 < p < 4 (this interval is the best possible, cf. [23]) and it is not a basis of Lp(−1, 1)

when p < 4
3 or p > 4. We can summarize the first part of Pollard’s proof as follows.

Let {pn}n≥0 be the sequence of orthonormal Legendre polynomials, f ∈ Lp(−1, 1) for 1 ≤ p < ∞ , and

the n -th Fourier partial sum Sn(f, x), given by

Sn(f, x) =

n∑
k=0

f̂(k)pk(x), where f̂(k) =

∫ 1

−1

f(y)pk(y)dy. (1.1)
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Pollard was interested in determining the values of p for which the following limit holds.

lim
n→∞

∫ 1

−1

|f(x)− Sn(f, x)|p dx = 0. (1.2)

In order to determine such values of p , Pollard took into account the following facts:

(A) The n-th Fourier partial sum (1.1) induces a linear operator Sn : Lp(−1, 1) → Lp(−1, 1), given by

(Snf)(x) := Sn(f, x), for x ∈ (−1, 1),

and the validity of (1.2) is equivalent to the uniform boundedness of the operator Sn . Furthermore, the

operator Sn has the following integral representation:

(Snf)(x) =

∫ 1

−1

f(y)Kn(x, y)dy, (1.3)

where Kn(x, y) is the n -th Dirichlet kernel, given by

Kn(x, y) =
n∑

k=0

pk(x)pk(y). (1.4)

(B) The Christoffel–Darboux formula allows us to express the n-th Dirichlet kernel as

Kn(x, y) = un

(
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y

)
, (1.5)

where un = kn

kn+1
, kn being the leading coefficient of pn(x).

(C) Using the 3-term recurrence formula satisfied by the Legendre polynomials {Pn}n≥0 and (1.5), the n -th

Dirichlet kernel is
Kn(x, y) = αnT1(n, x, y) + αnT2(n, x, y)− T3(n, x, y), (1.6)

where the sequence {αn} = { n+2
4n+6} , and

T1(n, x, y) := (n+ 1)Pn+1(x)

(
Pn(y)− Pn+2(y)

x− y

)
,

T2(n, x, y) := −T1(n, y, x),

T3(n, x, y) :=

(
n+ 1

2

)
Pn+1(x)Pn+1(y).

(D) In order to obtain the uniform boundedness of the operator Sn it suffices to show the uniform boundedness

of the operators Wj,n : Lp(−1, 1) → Lp(−1, 1), given by

(Wj,nf)(x) :=

∫ 1

−1

f(y)Tj(n, x, y)dy, j = 1, 2, 3. (1.7)
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(E) The Legendre polynomials satisfy the following pointwise estimates (see [32]):

|Pn+1(x)| ≤ C(1− x2)−1/4, (1.8)

|Pn+2(x)− Pn(x)| ≤ C(1− x2)1/4, (1.9)

for x ∈ (−1, 1). The operators Wj,n , j = 1, 2 can be expressed in terms of the Hilbert transform H as

follows:

(W1,nf)(x) = Pn+1(x)H((Pn − Pn+2)f ;x), (1.10)

(W2,nf)(x) = −(Pn(x)− Pn+2(x))H((Pn+1)f ;x). (1.11)

Finally, using the pointwise estimates (1.8) and (1.9) and the boundedness of the Hilbert transform with

certain weights, Pollard obtained the values of p for which the operators Wj,n are uniformly bounded in the

Lp norm or, equivalently, the values of p for which (1.2) has a sense.

Since then, the Lp -convergence of orthogonal series of polynomials has been investigated by many authors

in various contexts and forms. See, for instance, the subsequent works of Pollard himself [27, 28, 29], Wing

[35], Newman and Rudin [23], Muckenhoupth [21], Badkov [2], Meaney [19], Máté et al. [18], and Varona

[33, 34] and the references therein, and, more recently, Stempak [31] and the remarkable works of Mastroianni

and Notarangelo [16, 17] about the Lp -convergence of Fourier sums with exponential weights in (−1, 1) for

1 ≤ p ≤ ∞ .

Although the corresponding study of Fourier series of orthogonal polynomials in the setting of Sobolev

orthogonality is most recent, in the last decades it has attracted considerable attention, mainly in subjects

concerning the comparison with the standard theory and the search of algorithms for computing Fourier–

Sobolev series in terms of Sobolev orthogonal polynomials [8], the study of asymptotic properties of the

Fourier expansions of orthogonal polynomials with certain (discrete or nondiscrete) Sobolev inner products

(cf. [6, 10, 12, 13]), the divergence of certain Legendre–Sobolev series [5], Cohen-type inequalities for Laguerre–

Sobolev expansions [7, 24], and W 1,p -convergence for 1 < p < ∞ [15]. Despite these efforts, most of the

progress attained is for the special type of Sobolev inner products, but, to the best of our knowledge, there still

is a considerable number of open problems [11, 14].

The aim of the present paper is to follow steps (A) through (E) of Pollard (or his decomposition method)

in order to study the behavior of some operators associated with the Fourier–Sobolev expansions associated

with the following Jacobi–Sobolev inner product:

⟨f, g⟩S :=

∫ 1

−1

f(x)g(x)w(α,β)(x)dx+

∫ 1

−1

f ′(x)g′(x)w(α+1,β+1)(x)dx, (1.12)

where w(α,β)(x) = (1− x)α(1 + x)β , x ∈ [−1, 1] and α, β > −1.

Notice that this approach makes sense because the orthonormal polynomials with respect to (1.12) are

essentially Jacobi polynomials and hence they satisfy 3-term recurrence relations and similar pointwise estimates

like (1.8) and (1.9).

The structure of the paper is as follows. Section 2 introduces the notation as well as some basic background

to be needed further on. Section 3 is focused on the study of the W 1,p -convergence of some operators related to

the Legendre–Sobolev expansions, i.e. α = β = 0 in (1.12) using the Pollard decomposition method. We also
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show some numerical experiments about the comparison between the approximation of functions in L2 norm

and W 1,2 norm.

2. Previous definitions and notations

The Jacobi polynomials are classical orthogonal polynomials, including several families of orthogonal poly-

nomials like Chebyshev, Legendre, and Gegenbauer (ultraspherical) polynomials. There are many equivalent

definitions of P
(α,β)
n , the Jacobi polynomials of the degree n and order (α, β), with α, β > −1, and one of

them is as follows (the Rodrigues formula).

P (α,β)
n (x) = (1− x)−α(1 + x)−β (−1)n

2nn!

dn

dxn

{
(1− x)α+n(1 + x)n+β

}
, x ∈ (−1, 1), (2.13)

and the value in the end points of the interval [−1, 1] is given by

P (α,β)
n (1) =

(
n+ α

n

)
, P (α,β)

n (−1) = (−1)n
(
n+ β

n

)
.

Historically, one of the seminal reasons to study Jacobi polynomials P
(α,β)
n is the fact that their zeros

x
(α,β)
n,k , k = 1, . . . , n , have a very interesting electrostatic interpretation. Indeed, they are the equilibrium points

of n unit charges in (−1, 1) in the field generated by charges α+1
2 at 1 and β+1

2 at −1, where the charges repel

each other according to the interaction law under a logarithmic potential. Furthermore, the Jacobi polynomials

constitute a complete orthogonal system in L2([−1, 1], w(α,β)(x)dx) and an explicit representation for them is

given by hypergeometric functions as follows:

P (α,β)
n (x) =

1

n!

n∑
k=0

(
n

k

)
(n+ α+ β + 1)k(k + α+ 1)n−k

(
x− 1

2

)k

, (2.14)

where (a)k , k > 0, and (a)0 = 1 is the Pochhammer symbol, (see [32], p. 62, or [1], p. 7).

On the other hand, these polynomials satisfy the following properties:

P (α,β)
n (x) = (−1)nP (β,α)

n (−x), (2.15)

i.e. they are either even or odd functions when α = β according to the parity of their degrees.

A 3-term recurrence relation ([32], p. 71) holds

κ(α,β)
n P (α,β)

n (x) = (2n+ α+ β − 1)(ν(α,β)n x− α2 − β2)P
(α,β)
n−1 (x)− γ(α,β)

n P
(α,β)
n−2 (x), n ≥ 2, (2.16)

where κ
(α,β)
n = 2n(n + α + β)(2n + α + β − 2), γ

(α,β)
n = 2(n + α − 1)(n + β − 1)(2n + α + β), ν

(α,β)
n =

(2n+ α+ β)(2n+ α+ β − 2) and

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

α+ β + 2

2
x+

α− β

2
.

The derivatives of the Jacobi polynomials are, up to a constant factor, Jacobi polynomials with a unit

shift in the parameters. Indeed, from (2.14) we get

d

dx
P (α,β)
n (x) =

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x). (2.17)
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MARCELLÁN et al./Turk J Math

Also, the importance of Jacobi polynomials follows from the fact that P
(α,β)
n is the only polynomial

solution (up to a constant factor [32, p. 61, Theorem 4.2.2]) of the homogeneous, second-order differential

equation

(1− x2)y′′(x) + (β − α− (α+ β + 2)x)y′(x) + n(n+ α+ β + 1)y(x) = 0. (2.18)

When α > − 1
2 and β ≤ α , the maximum of P

(α,β)
n (x) in [−1, 1] can be explicitly computed (see [32], p.

168). Indeed,

sup
−1≤x≤1

∣∣∣P (α,β)
n (x)

∣∣∣ = P (α,β)
n (1) =

(α+ 1)n
n!

, α > −1

2
, β ≤ α. (2.19)

The square of the L2 norm of P
(α,β)
n with respect to the measure w(α,β)(x)dx in [−1, 1] is given by

h(α,β)
n :=

∫ 1

−1

(
P (α,β)
n (x)

)2
w(α,β)(x)dx

=
2α+β+1

(2n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)
. (2.20)

For n large enough, the Jacobi polynomials behave like Bessel functions, according to the well-known

Mehler–Heine type of asymptotic formula:

lim
n→∞

n−αP (α,β)
n

(
cos

z

n

)
=
(z
2

)−α

Jα(z). (2.21)

In the following, C,C1, C2, . . . will denote positive constants, independent of n, x, y and the function f

and its derivatives. The same symbol does not necessarily denote the same constant in different occurrences.

We write C(p) in order to show that C depends on p .

Let {p(α,β)n }n≥0 be the sequence of orthonormal Jacobi polynomials. It is well known that the following

estimates are satisfied (see [32], p. 196, or [22, 34]).

Theorem 2.1 There exists a positive constant C , such that

|p(α,β)n (x)| ≤ C

(
1− x+

1

n2

)−(α/2+1/4)(
1 + x+

1

n2

)−(β/2+1/4)

, for α, β > −1. (2.22)

If α = β = 0 , then there exists a positive constant C , such that

|p′n(x)| ≤ C(n+ 1)(1− x2)−3/4. (2.23)

Theorem 2.2 Let {Pn}n≥0 be the sequence of orthogonal Legendre polynomials; then there exist constants

C1, C2, C3 > 0 such that

(n+ 1)1/2|Pn+1(x)| ≤ C1(1− x2)−1/4, (2.24)

(n+ 1)1/2|Pn+2(x)− Pn(x)| ≤ C2(1− x2)1/4, (2.25)

(n+ 1)−1/2|P ′
n+2(x)− P ′

n(x)| ≤ C3(1− x2)−1/4, (2.26)

as well as

|P ′
n(x)| ≤ n(n+ 1)/2. (2.27)
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When the Jacobi–Sobolev inner product (1.12) is considered, it is very easy to verify that the orthonormal

Jacobi polynomials {p(α,β)n }n≥0 satisfy the following Sobolev orthogonality relationship:

⟨p(α,β)n , p(α,β)m ⟩S = (1 + n(n+ α+ β + 1))δnm, n,m ≥ 0. (2.28)

We can then easily deduce that the polynomials {q(α,β)n }n≥0 , defined by

q(α,β)n (x) = (1 + n(n+ α+ β + 1))−1/2p(α,β)n (x), n ≥ 0, α, β > −1, (2.29)

are orthonormal with respect to the Jacobi–Sobolev inner product (1.12), and they form a complete orthonormal

system in the Sobolev space (cf. [8]).

W 1,2((−1, 1)) =
{
f : (−1, 1) → R : f ∈ ACloc(−1, 1), f,

√
1− x2f ′ ∈ L2((−1, 1), w(α,β)dx)

}
.

When α = β = 0, it is well known that

pn(x) = p(0,0)n (x) =

√
2n+ 1

2
P (0,0)
n (x)

=

√
2n+ 1

2

[n/2]∑
j=0

(−1)j(2n− 2j)!

2nj!(n− j)!(n− 2j)!
xn−2j , n ≥ 0,

and from (2.28) the polynomials

q(0,0)n (x) = qn(x) =

√
2n+ 1

2n(n+ 1) + 2

[n/2]∑
j=0

(−1)j(2n− 2j)!

2nj!(n− j)!(n− 2j)!
xn−2j , n ≥ 0, (2.30)

are orthonormal with respect to the Legendre–Sobolev inner product

⟨p, q⟩S =

∫ 1

−1

p(x)q(x)dx+

∫ 1

−1

p′(x)q′(x)(1− x2)dx. (2.31)

Definition 2.1 Let 1 < p < ∞ . If (a, b) is a fixed interval with −∞ ≤ a < b ≤ ∞ , we say that a weight

function w : (a, b) → R belongs to the class Ap((a, b)) , if there exists a constant C > 0 such that

(∫
I

ω(x)dx

)(∫
I

ω−1/(p−1)(x)dx

)p−1

≤ C|I|p, (2.32)

for every subinterval I ⊆ (a, b) , with C independent of I .

Definition 2.2 Let w be a weight function on [−1, 1] and 1 < p < ∞ . The finite Hilbert transform, H ,

associates to each function f ∈ Lp((−1, 1), w) the function

H(f ;x) := PV

∫ 1

−1

f(y)

x− y
dy = PV

∫ 1

−1

f(x− t)

t
dt, x ∈ (−1, 1),

where the above integrals are considered in Cauchy’s principal value sense [30].
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Theorem 2.3 Let 1 < p < ∞ . The following statements are equivalent:

(i) w ∈ Ap((a, b)) .

(ii) The operator H : Lp((a, b), w) → Lp((a, b), w) is bounded, i.e. there exists C(p) > 0 , such that

∥Hf∥Lp((a,b),w) =

(∫ b

a

∣∣∣∣∣PV
∫ b

a

f(y)

x− y
dy

∣∣∣∣∣
p

w(x)dx

)1/p

≤ C(p)∥f∥Lp((a,b),w).

Theorem 2.4 If 1 < p < ∞ and f ∈ Lp((a, b)) is a differentiable function, then H(f ; · ) is also differentiable,

and

d

dx
H(f ; · ) = H(f ′; · ). (2.33)

Furthermore, in the case a = −1 , b = 1 , it is possible to add the assumption f(−1) = f(1) = 0 .

For details of the proof of the above result, see [30] and the proof of Theorem 3.2 in [9] or [20].

As an immediate consequence of the 2 previous theorems, we have:

Corollary 2.1 Let 1 < p < ∞ and w ∈ Ap((a, b)) . For f ∈ Lp((a, b), w) suppose that f ′, d
dxH(f ; · ) ∈

Lp((a, b), w) ; then there exists C(p) > 0 such that

∥∥∥∥ d

dx
H(f ; · )

∥∥∥∥
Lp((a,b),w)

≤ C(p)∥f ′∥Lp((a,b),w). (2.34)

3. W 1,p -convergence of some Legendre–Sobolev expansions via the Pollard decomposition method

In the following, we consider the Fourier expansions in terms of Legendre–Sobolev polynomials {qn}n≥0 given in

(2.30). Notice that these polynomials are essentially Legendre polynomials and therefore they satisfy a similar

3-term recurrence relation like (2.16), but with some different parameters according to its normalization. Thus,

the Pollard decomposition method could be applied in this setting.

In fact, we will show that some elements of the Pollard scheme can be used in order to study the W 1,p -

convergence of certain operators related to the orthogonal series of Legendre–Sobolev polynomials. However,

in our case, it will be not enough to give a representation of the corresponding n-th Dirichlet–Sobolev kernel

in terms of other bounded operators, because such a kernel does not satisfy a Christoffel–Darboux formula like

(1.5).

Now, we summarize some properties of the polynomials {qn}n≥0 .

Lemma 3.1 Let {qn}n≥0 be the sequence of orthonormal polynomials with respect to the inner product (2.31).

Then,

(i) the polynomials {qn}n≥0 satisfy the following 3-term recurrence relation:

xqn(x) = ϑn+1qn+1(x) + υnqn−1(x), n ≥ 1, (3.35)
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where

ϑn+1 =

(
(n+ 1)2

(2n+ 1)(2n+ 3)

)1/2(
n2 + 3n+ 3

n2 + n+ 1

)1/2

, n ≥ 1,

υn =

(
n2

(2n+ 1)(2n− 1)

)1/2(
n2 − n+ 1

n2 + n+ 1

)1/2

, n ≥ 1,

q0(x) =
1√
2
, q1(x) =

√
2
2 x .

(ii) Alternatively, they satisfy the following 3-term recurrence relation:

xqn(x) = Anqn+1(x) +Bnqn−1(x), n ≥ 1, (3.36)

where

An = ⟨xqn, qn+1⟩S , Bn = ⟨xqn, qn−1⟩S , q−1(x) = 0 and q0(x) = 1.

Proof The relation (3.35) is a straightforward consequence of (2.16). The relation (3.36) follows from the

properties (2.15) and (2.17), for α = β = 0, and the orthogonality with respect to the standard inner product

of the orthonormal Legendre polynomials {pn}n≥0 . 2

The operator Sn associated with the n -th Fourier–Sobolev partial sum has the following integral repre-

sentation:

(Snf)(x) = Sn(f, x) =

∫ 1

−1

K(0,0)
n (x, y)f(y)dy +

∫ 1

−1

K(0,1)
n (x, y)f ′(y)(1− y2)dy, (3.37)

where K(0,0)
n (x, y) is the n -th Dirichlet–Sobolev kernel, given by

K(0,0)
n (x, y) = Kn(x, y) =

n∑
k=0

qk(x)qk(y), x, y ∈ [−1, 1], (3.38)

and K(0,1)
n (x, y) = ∂

∂yKn(x, y) =
∑n

k=1 qk(x)q
′
k(y).

Since the integral representation (3.37) takes place, we need to find alternative expressions for the kernels

K(0,0)
n (x, y) and K(0,1)

n (x, y). Furthermore, the recurrence relation (3.35) does not allow us to deduce, a priori,

a Christoffel–Darboux formula for K(0,0)
n (x, y). Similarly, in the case of the recurrence relation (3.36), the fact

that the multiplication operator Mx is not symmetric with respect to the Sobolev inner product will be the

main obstacle in order to find a Christoffel–Darboux formula for K(0,0)
n (x, y).

In such a way, using (1.4), (1.5), and (3.35), some alternative expressions for the kernels K(0,0)
n (x, y) and

K(0,1)
n (x, y) can be deduced as follows.

Lemma 3.2 Let {qn}n≥0 be the sequence of orthonormal polynomials with respect to the inner product (2.31)

and K(0,0)
n (x, y) , K(0,1)

n (x, y) the kernels of the integral representation (3.37), respectively. Then,
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MARCELLÁN et al./Turk J Math

(i) the kernel K(0,0)
n (x, y) admits the following Christoffel–Darboux formula type:

(x− y)K(0,0)
n (x, y) = ϑ0q1(x)q0(y)− ϑ0q0(x)q1(y) + · · ·+ ϑnqn+1(x)qn(y) (3.39)

−ϑnqn(x)qn+1(y) + υ0q0(x)q0(y)− υ0q1(x)q0(y)

+ · · ·+ υn−1qn−1(x)qn(y)− υn−1qn(x)qn−1(y),

K(0,0)
n (x, y) = un

(
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y

)
−R(0,0)

n (x, y), (3.40)

where R(0,0)
n (x, y) =

∑n
k=1(k

2 + k)qk(x)qk(y) .

(ii) The kernel K(0,1)
n (x, y) can be expressed as

K(0,1)
n (x, y) = un

(
pn+1(x)pn(y)− pn(x)pn+1(y)

(x− y)2

)
(3.41)

+un

(
pn+1(x)p

′
n(y)− pn(x)p

′
n+1(y)

x− y

)
−R(0,1)

n (x, y).

(iii) If the sequence αn and the operators Tj(n, x, y) , j = 1, 2, 3 , are defined by (1.6), then the kernel

K(0,0)
n (x, y) satisfies the following Pollard decomposition type:

K(0,0)
n (x, y) = (αnT1(n, x, y) + αnT2(n, x, y)− T3(n, x, y))−R(0,0)

n (x, y). (3.42)

(iv) There exist constants C1, C2, C3 > 0 , such that∣∣∣R(0,0)
n (x, y)

∣∣∣ ≤ C1(n+ 1)(1− x2)−1/4(1− y2)−1/4, (3.43)∣∣∣R(0,1)
n (x, y)

∣∣∣ ≤ C2n(n+ 1)2(1− x2)−1/4(1− y2)−3/4, (3.44)∣∣∣R(1,0)
n (x, y)

∣∣∣ ≤ C3n(n+ 1)2(1− x2)−3/4(1− y2)−1/4. (3.45)

Proof

(i) (3.39) is an immediate consequence of (1.6) and (3.35). Taking α = β = 0 in (2.29), the n-th Dirichlet

kernel Kn(x, y) can be written in terms of the polynomials qn(x) as follows:

Kn(x, y) =
n∑

k=0

(1 + k(k + 1))qk(x)qk(y),

or, equivalently,

Kn(x, y) = K(0,0)
n (x, y) +

n∑
k=1

(k2 + k)qk(x)qk(y).

Therefore, using the Christoffel–Darboux formula (1.5), the relation (3.40) is obtained.
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(ii) It is suffices to take the partial derivative with respect to y in (3.40).

(iii) It is an immediate consequence of (1.6) and (3.40).

(iv) Taking α = β = 0 in (2.29) and using the pointwise estimates (2.22) and (2.23), the estimates (3.43),

(3.44), and (3.45) are deduced.

2

For 1 < p < ∞ let us consider the weighted Sobolev space W 1,p
(
(−1, 1), (1, 1− x2)

)
given by

W 1,p
(
(−1, 1), (1, 1− x2)

)
=
{
f : (−1, 1) → R : f ∈ ACloc(−1, 1), f, (1− x2)1/pf ′ ∈ Lp((−1, 1))

}
.

The Pollard type decomposition (3.42) yields

(3.46)

Sn(f, x) = αn(n+ 1)Pn+1(x)

∫ 1

−1

(
Pn(y)− Pn+2(y)

x− y

)
f(y)dy

+αn(n+ 1) (Pn+2(x)− Pn(x))

∫ 1

−1

Pn+1(y)

x− y
f(y)dy

−
(
n+ 1

2

)
Pn+1(x)

∫ 1

−1

Pn+1(y)f(y)dy −
∫ 1

−1

R(0,0)
n (x, y)f(y)dy

+

∫ 1

−1

K(0,1)
n (x, y)f ′(y)(1− y2)dy.

The integrals in the first 2 terms on the right-hand side of (3.46) exist almost everywhere in Cauchy’s

principal value sense. However, this property does not hold for the last one in (3.46) when we consider (3.41).

In order to avoid this inconvenience and according to [3], we split the square (−1, 1)× (−1, 1) in 7 regions:

A0(ε) = {(x, y) : |x− y| < ε},

A1(ε) = {(x, y) : 1− ε ≤ x < 1, −1 < y ≤ x+ ε− 1},

A2(ε) = {(x, y) : 1− ε ≤ x ≤ ε, x+ 1− ε ≤ y < 1},

A3(ε) = {(x, y) : −1 < x ≤ ε− 1, x+ 1− ε ≤ y < 1},

A4(ε) = {(x, y) : −ε ≤ x ≤ ε− 1, −1 < y ≤ x+ ε− 1},

A5(ε) = {(x, y) : −1 + ε < x < 1− ε, −1 < y ≤ x+ ε− 1},

A6(ε) = {(x, y) : −1 + ε < x < 1− ε, x+ 1− ε ≤ y < 1},

where 0 < ε < 1. So, for x ̸= y we have

∣∣∣K(0,0)
n (x, y)

∣∣∣ = 6∑
k=0

∣∣∣Kn(x, y)−R(0,0)
n (x, y)

∣∣∣χAk(ε)(x, y).
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MARCELLÁN et al./Turk J Math

Then, as a consequence of Lemma 3.2 and the Lp -boundedness of the operators Tj , j = 1, 2, 3, see [26],

for 4/3 < p < 2, the operators defined by

Tk(f, x) =

∫ 1

−1

f(y)
∣∣∣K(0,0)

n (x, y)
∣∣∣χAk(ε)(x, y)dy,

Wk(f
′, x) =

∫ 1

−1

f ′(y)
∣∣∣K(0,1)

n (x, y)
∣∣∣χAk(ε)(x, y)(1− y2)dy,

for k = 1, 2, . . . , 6 are bounded in Lp((−1, 1)) and Lp((−1, 1), 1 − x2), respectively. Therefore, there exists a

positive constant C(p), such that

∫
Iε

|Sn(f, x)|p dx ≤ C(p) ∥f∥pW 1,p(Iε,(1,1−x2)) , (3.47)

where Iε = {x ∈ (−1, 1) : (x, y) ∈ (−1, 1) × (−1, 1) \ A0(ε)} . Similarly, for k = 1, 2, . . . , 6 we define the

operators Lk and Hk(f
′, x) as follows:

Lk(f, x) =

∫ 1

−1

f(y)
∣∣∣K(1,0)

n (x, y)
∣∣∣χAk(ε)(x, y)dy,

Hk(f
′, x) =

∫ 1

−1

f ′(y)
∣∣∣K(1,1)

n (x, y)
∣∣∣χAk(ε)(x, y)(1− y2)dy.

Then, using Lemma 3.2, the Lp -boundedness of the operators Tj , j = 1, 2, 3, and the following integral

representation,

d

dx
Sn(f, x) =

∫ 1

−1

K(1,0)
n (x, y)f(y)dy +

∫ 1

−1

K(1,1)
n (x, y)f ′(y)(1− y2)dy, (3.48)

we obtain the Lp -boundedness (resp. Lp((−1, 1), 1 − x2)-boundedness) of the operators Lk(f, x) (resp.

Hk(f
′, x)). As a consequence, there exists a positive constant C(p), such that

∫
Iε

∣∣∣∣ ddxSn(f, x)

∣∣∣∣p (1− x2)dx ≤ C(p) ∥f∥pW 1,p(Iε,(1,1−x2)) . (3.49)

Finally, from the inequalities (3.47) and (3.50), the convergence of the Fourier–Sobolev in the

W 1,p(Iε, (1, 1− x2)) norm is deduced.

The above remarks can be summarized in the following 2 theorems.

Theorem 3.1 Let 1 < p < ∞ , 0 < ε < 1 and let Sn(f, x) be the n-th partial sum of the Legendre–Sobolev

Fourier expansion of f(x) with respect to the orthonormal polynomials {qn}n≥0 . Assume that 2 ≤ p < 8/3 .

Then there exists a positive constant C(p) , such that

∥Snf∥W 1,p(Iε,(1,1−x2)) ≤ C(p) ∥f∥W 1,p(Iε,(1,1−x2)) . (3.50)
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Theorem 3.2 Assume that α, β ≥ −1/2 , 1 < p < ∞ , 0 < ε < 1 , and let Sα,β
n (f, x) denote the n-th partial

sum of the Fourier expansion of f(x) in terms of {q(α,β)n }n≥0 . Assume that 2 < p < 4min
{

α+2
2α+3 ,

β+2
2β+3

}
.

Then there exists a positive constant C(p) , such that

∥Sα,β
n f∥W 1,p(Iε,(w(α,β),w(α+1,β+1))) ≤ C(p) ∥f∥W 1,p(Iε,(w(α,β),w(α+1,β+1))) . (3.51)

Corollary 3.1 If α, β ≥ −1/2 and 2 ≤ p < 4min
{

α+2
2α+3 ,

β+2
2β+3

}
, then for 0 < ε < 1 small enough, the Fourier

expansion in terms of {q(α,β)n }n≥0 converges in the W 1,p
(
Iε, (w

(α,β), w(α+1,β+1))
)
norm.

We finish this section by providing 2 illustrative numerical examples (with the help of MAPLE) about the

approximation errors ∥f − Sn(f)∥L2 and ∥f − Sn(f)∥W 1,2 , respectively, with f ∈ W 1,2
(
(−1, 1), (1, 1− x2)

)
.

Since the polynomials {qn}n≥0 are, up to constant factor, orthonormal Legendre polynomials, it is not a surprise

that such polynomials adopt the same behavior of the last ones when we wish to approximate a function f

by its Fourier–Sobolev partial sum and, simultaneously, to approximate its derivative by the derivative of the

Fourier–Sobolev partial sum of f . Consequently, if the derivative of f is steep, then the quality of the derivative

of the Fourier–Sobolev partial sum of f in the standard L2 norm deteriorates, just like what happens in the

case of Fourier partial sums (see [8] or Figures 1 and 2 below).

Figure 1. Graphics of f ′ (bold) and of the derivatives

of the partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the

Fourier–Legendre expansion of f .

Figure 2. Graphics of f ′ (bold) and of the derivatives

of the partial sums of degrees n = 3, 6, 9, 12, 15, 18 of the

Legendre–Sobolev Fourier expansion of f .

However, it is very remarkable that the above situation changes when the Sobolev inner product con-

sidered is different from (1.12). For instance, if we consider the Sobolev inner products associated to the

(M,N)-coherent pair of measures [4, 8], then the quality of the derivative of the Fourier–Sobolev partial sum

of f in the standard L2 norm is better than the quality of the derivative of the Fourier partial sum of f in the
same norm.

Let f : (−1, 1) → R be the function considered in [8, Section 4], defined by

f(x) := e−100(x− 1
5 )

2

, x ∈ (−1, 1),
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MARCELLÁN et al./Turk J Math

and similarly, let g : (−1, 1) → R be defined by

g(x) := e−10(x− 1
2 )

2

, x ∈ (−1, 1).

Obviously, f, g ∈ W 1,2
(
(−1, 1), (1, 1− x2)

)
. Tables 1 and 2 display the approximation errors ∥f −

Sn(f)∥L2 , ∥f − Sn(f)∥W 1,2 , ∥g − Sn(g)∥L2 , and ∥g − Sn(g)∥W 1,2 , respectively, when the degree of the

corresponding partial sum is n = 20, 50, 70, 100.

Table 1. Comparison of errors for f(x) = e−100(x− 1
5 )

2

.

f(x) n ∥f − Sn(f)∥2L2 ∥f − Sn(f)∥2W 1,2

e−100(x− 1
5 )

2

20 0.0429888570 6.913578532
50 0.2910e− 7 0.947433e− 3
70 −0.10e− 9 0.17e− 7
100 −0.5e− 10 −0.4e− 8

Table 2. Comparison of errors for g(x) = e−10(x− 1
2 )

2

.

g(x) n ∥g − Sn(g)∥2L2 ∥g − Sn(g)∥2W 1,2

e−10(x− 1
2 )

2

20 −0.3049602377e− 2 4.169434664
50 −0.3947474069e28 0.3921865313e33
70 −0.1956184312e52 0.1582890113e58
100 −0.1966428327e92 0.9631073012e97

Finally, the following figures display the approximants of f ′ corresponding to both the derivatives of the

partial sums of the Fourier–Legendre expansion of f and the derivatives of the partial sums of the Legendre–

Sobolev Fourier expansion of f , respectively. It is evident that these approximants are very similar and,

therefore, both the Fourier–Legendre partial sums and the Legendre–Sobolev Fourier partial sums are poor

near the end-points of the interval (−1, 1). For the function g , a similar result is obtained.
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MARCELLÁN et al./Turk J Math

[2] Badkov, V.M.: The uniform convergence of Fourier series in orthogonal polynomials. Math. Notes 5, 174–179 (1969).
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(in Spanish).

[35] Wing, G.M.: The mean convergence of orthogonal series. Amer. J. Math. 72, 792–808 (1950).

948


