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Abstract: By using the bifurcation theory of dynamical systems to study the dynamical behavior of the Green–Naghdi

equations, the existence of solitary wave solutions along with smooth periodic traveling wave solutions is obtained. Under

different regions of parametric spaces, various sufficient conditions to guarantee the existence of the above solutions are

given. Some exact and explicit parametric representations of traveling wave solutions are constructed.
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1. Introduction

In this paper, we study the dynamical behavior of the Green–Naghdi (GN) equations [3, 4]. Specifically, we

determine traveling wave solutions and new solitary wave solutions for the GN equations:

ηt + (uη)x = 0, (1.1a)

ut + uux + ηx =
1

3η

(
η2
d

dt
(ηux)

)
x

. (1.1b)

The Green–Naghdi equations were derived for both free-surface and interfacial-surface waves under the assump-

tion of long wavelengths. Here, η and u represent the surface disturbance and the mean horizontal velocity,

respectively. The GN equations were originally developed by Green and Naghdi in 1974 to analyze some non-

linear free-surface flows. After the successful application of the GN equations to nonlinear ship wave-making

problems [2], the method was applied to many nonlinear water wave problems. Later, the model was extended

to deep-water waves by Webster and Kim and by Xu et al. [11, 13] in 2 and 3 dimensions, respectively. In the

work of Wu and Chen [12], a wave equation model and the finite element method (WE/FEM) were adopted to

solve the GN equations. In the work of Li [9, 10], the author showed the linear stability for solitary waves of

small amplitudes for system (1.1).

Based on shallow-water theory, solitary waves hitting a ship will lead to periodic heaving and pitching

motions and increase the drag on the ship dramatically. Which features will occur when the homoclinic orbit

(or periodic orbit) intersects with the singular straight line? We are thus interested in an important question
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that should be investigated: if the equilibrium points S1,2(−ϕ∗,±
√
3) in the straight line ν = −ϕ∗ of (1.9) are

node points, what is the dynamical behavior of orbits of the vector field defined by (1.6)? We hope to answer

this problem in this paper.

Let ω = uη , then (1.1) becomes

ηt + ωx = 0, (1.2a)

ωt = −
(
ω2

η

)
x

− ηηx +
1

3

(
η2
d

dt

(
η

(
ω

η

)
x

))
x

. (1.2b)

To find traveling wave solutions of the GN equations, we set

η = ϕ(ξ) = ϕ(x− ct), ω = ψ(ξ) = ψ(x− ct), (1.3)

where c is the wave speed. Substituting (1.3) into (1.2a) and integrating with respect to ξ leads to

ψ = cϕ− g1, (1.4a)

where g1 is an integral constant. Substituting (1.4a) and (1.3) into (1.2b) and integrating with respect to ξ

leads to

g21
[
ϕϕ′′ − (ϕ′)2

]
+ 3g21 + 3(g2 + cg1)ϕ+

3

2
ϕ3 = 0, (1.4b)

where g2 is an integral constant.

Assume that g1 ̸= 0 because otherwise we only get the trivial solutions of (1.4b), and then (1.4b) is

equivalent to the following 2-dimensional systems:

dϕ

dξ
= y,

dy

dξ
=

1

ϕ

[
y2 − 3− 3(g2 + cg1)

g21
ϕ− 3

2g21
ϕ3
]
. (1.5)

We make the transformation
ν = ϕ(ξ)− ϕ∗, ξ = ξ, y = y,

where ϕ∗ ̸= 0 is an arbitrary constant that satisfies the equation

1 +
g2 + cg1
g21

ϕ+
1

2g21
ϕ3 = 0.

Then system (1.5) becomes

dν

dξ
= y,

dy

dξ
=

1

ν + ϕ∗

[
y2 − 3

2g21
ν(−2g21

ϕ∗
+ 2ϕ2∗ + 3ϕ∗ν + ν2)

]
, (1.6)

which has the first integral

y2 = (ν + ϕ∗)
2

[
− 3

g21

(
− g21
(ν + ϕ∗)2

+
2g21 + ϕ3∗
ϕ∗(ν + ϕ∗)

+ ν

)
+ h

]
, (1.7)

i.e.

H(ν, y) =
y2

(ν + ϕ∗)2
+

3

g21

(
− g21
(ν + ϕ∗)2

+
2g21 + ϕ3∗
ϕ∗(ν + ϕ∗)

+ ν

)
= h (1.8)

h is a Hamiltonian constant.
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Because of the difficulty of directly studying the singular system (1.6), we make the “time scale”

transformation dξ = (ν + ϕ∗)dζ to remove the singularity[5] and reduce the singular system (1.6) to the

following regular system:

dν

dζ
= (ν + ϕ∗)y,

dy

dζ
= y2 − 3

2g21
ν(−2g21

ϕ∗
+ 2ϕ2∗ + 3ϕ∗ν + ν2). (1.9)

Then, except on the singular straight line ν = −ϕ∗ , the system (1.6) has the same topological phase portraits

as (1.9). Moreover, the straight line ν = −ϕ∗ is an invariant integral straight line of (1.9). We call system (1.9)

the associated regular system of (1.6) [6].

System (1.6) is a 2-parameter planar dynamical system depending on the parameter group (g1, ϕ∗), and

we shall investigate the bifurcations of phase portraits of (1.6) in the phase plane (ν, y) as the parameters g1, ϕ∗

are changed.

Suppose that ν(ξ) is a continuous solution of (1.6) for ξ ∈ (−∞,∞) and limξ→+∞ ν(ξ) = α , limξ→−∞ ν(ξ) =

β . Recall that (i) ν(x, t) is called a solitary wave solution if α = β ; (ii) ν(x, t) is called a kink or anti-kink

solution if α ̸= β . Usually, a solitary wave solution of (1.1) corresponds to a homoclinic orbit of (1.6); a kink

(or anti-kink) wave solution (1.1) corresponds to a heteroclinic orbit (or the so-called connecting orbit) of (1.6).

Similarly, a periodic orbit of (1.6) corresponds to a periodically traveling wave solution of (1.1). Thus, to inves-

tigate all possible bifurcations of solitary waves and periodic waves of (1.1), we need to find all periodic annuli

and homoclinic orbits of (1.6), which depend on the system parameters. The bifurcation theory of dynamical

systems [1, 6, 7, 8] plays an important role in our study.

It is easy to see that the right-hand side of the second equation in (1.6) is not continuous when ν = −ϕ∗ .
In other words, on such a straight line in the phase plane (ν, y), the function ν′′ξ is not well defined, which

implies that (1.1) sometimes has non-smooth traveling wave solutions.

The paper is organized as follows. In Section 2, we consider the different dynamical behavior of orbits of

vector fields defined by (1.6) and (1.9) and the phase portraits of systems (1.6) in different parameter regions.

In Section 3, we give some exact solitary traveling wave solutions of system (1.1) in different parameter regions.

Finally, the summary is given in Section 4.

2. Dynamical behavior and phase portraits (1.6) and (1.9)

Clearly, system (1.9) has the same dynamics for both cases g1 > 0 and g1 < 0. Without loss of generality, we

assume that g1 > 0, and therefore we only investigate the dynamics of (1.9) in the (g1, ϕ∗)-right half parameter

plane.

Denote that

f(ν) = −2g21
ϕ∗

+ 2ϕ2∗ + 3ϕ∗ν + ν2, (2.1)

∆ = ϕ2∗ +
8g21
ϕ∗

. (2.2)

It follows from ∆ = ϕ2∗ +
8g2

1

ϕ∗
= 0 that there is a bifurcation curve

L1 : ϕ∗ = −2(g1)
2
3 .
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Thus, we have the following conclusions.

(i) If ∆ > 0 and ∆ ̸= 9ϕ2∗ , there exist 3 equilibrium points at O(0, 0), A1(ν1, 0), and A2(ν2, 0) on the

ν -axis of (1.9), where ν1,2 = −3ϕ∗±
√
∆

2 ; if ∆ = 9ϕ2∗ , there exist 2 equilibrium points at O(0, 0) and B(−3ϕ∗, 0)

on the ν -axis of (1.9). Thus, from ∆ = 9ϕ2∗ , we can get another bifurcation curve:

L2 : ϕ∗ = (g1)
2
3 .

(ii) If ∆ = 0, there exist 2 equilibrium points at O(0, 0) and E(− 3ϕ∗
2 , 0) on the ν -axis of (1.9).

(iii) If ∆ < 0, (1.9) has a unique equilibrium point at O(0, 0) on the ν -axis.

(iv) On the straight line ν = −ϕ∗ , (1.9) has 2 equilibrium points at S1(−ϕ∗,
√
3) and S2(−ϕ∗,−

√
3).

It is easy to see that 0 < −ϕ∗ < ν2 < ν1 for ϕ∗ < −2(g1)
2
3 ; 0 < −ϕ∗ < ν2 = ν1 for ϕ∗ = −2(g1)

2
3 ; and

0 < −ϕ∗ for −2(g1)
2
3 < ϕ∗ < 0. Similarly, ν2 < −ϕ∗ < 0 < ν1 for 0 < ϕ∗ < (g1)

2
3 ; ν2 = ν1 < −ϕ∗ < 0 for

ϕ∗ = (g1)
2
3 ; and ν2 < −ϕ∗ < ν1 < 0 for (g1)

2
3 < ϕ∗ .

Let M(νe, ye) be the coefficient matrix of the linearized system of (1.9) at the equilibrium point (νe, ye)

and J(νe, ye) = detM(νe, ye); then we have:

J(ν1, 0) =
3

8g21
(
√
∆− ϕ∗)(∆− 3ϕ∗

√
∆),

J(ν2, 0) = − 3

8g21
(
√
∆+ ϕ∗)(∆ + 3ϕ∗

√
∆),

J(0, 0) =
6

2g21
(ϕ3∗ − g21), J(−ϕ∗,±

√
3) = 6 > 0,

T race(M(−ϕ∗,±
√
3)) = ±3

√
3,

and

(Trace(M(−ϕ∗,±
√
3)))2 − 4J(−ϕ∗,±

√
3) = 3 > 0.

By the theory of planar dynamical system, we know that for an equilibrium point of a planar integrable

system, the equilibrium point is a saddle point if J < 0; the equilibrium point is a center if J > 0 and

Trace(M) = 0; and the equilibrium point is a node point (a proper node) if J > 0 and (Trace(M(νi, yi))
2 −

4J(νi, yi) > 0(= 0). Obviously, S1,2(−ϕ∗,±
√
3) both are nodes. Moreover, S1 is unstable and S2 is stable.

From the first integral defined by (1.8), we denote that

h0 = H(0, 0) =
3(g21 + ϕ3∗)

g21ϕ
2
∗

, hs = H(−ϕ∗,±
√
3) = ∞,

h1=H(ν1, 0)=
3[−16ϕ∗g

2
1−4ϕ4∗−3ϕ3∗+

√
∆(8g21+4ϕ3∗+7ϕ2∗)−5ϕ∗∆+∆

3
2 ]

2g21ϕ∗(−ϕ∗ +
√
∆)2

,

h2=H(ν2, 0)=
3[−16ϕ∗g

2
1−4ϕ4∗−3ϕ3∗−

√
∆(8g21+4ϕ3∗+7ϕ2∗)−5ϕ∗∆−∆

3
2 ]

2g21ϕ∗(ϕ∗ +
√
∆)2

.
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Figure 1. The partition of (g1, ϕ∗)-right half plane.

We next use the above statements to consider the bifurcations of the phase portraits of (1.9). The curves

L1, L2 and the straight line ϕ∗ = 0 divide the right half (g1, ϕ∗)-parameter plane into 4 subregions, shown in

Figure 1. The bifurcations of the phase portraits of (1.9) are shown in Figure 2.

We notice that the orbits of system (1.9) have the following dynamical behavior.

1. Case I: ϕ∗ < −2(g1)
2
3 (see Figure 2a).

(1) Corresponding to the curves defined by H(ν, y) = h0 , there are 2 heteroclinic orbits connecting the

equilibrium points O and S1,2 , and a heteroclinic orbit connecting the equilibrium points S1 and S2 , on the

left side of the straight line ν = −ϕ∗ . There is a stable manifold and an unstable manifold of the saddle point

O on the left side of the y -axis. Thus, the curves defined by H(ν, y) = h0 consist of 5 orbits of (1.9) and the

equilibrium O .

(2) Corresponding to the curves defined by H(ν, y) = h2 , there is a homoclinic orbit connecting the

equilibrium point A2 , and 2 heteroclinic orbits connecting the equilibrium points A2 and S1,2 , respectively, on

the right side of the straight line ν = −ϕ∗ . There is a stable manifold and an unstable manifold of the saddle

point A2(ν2, 0) on the right side of the straight line ν = −ϕ∗ . Hence, the curves defined by H(ν, y) = h2

consist of 5 orbits of (1.9) and the equilibrium point A2 .

(3) Corresponding to the curves defined by H(ν, y) = h, h ∈ (−∞, h0), there are 2 heteroclinic orbits

connecting the equilibrium points S1 and S2 , which lie on the left and right sides of the straight line ν = −ϕ∗ ,
respectively; there is an open orbit on the left side of y -axis. Namely, the curves defined by H(ν, y) = h consist

of 3 orbits of (1.9) and 2 equilibrium points S1,2 .

(4) Corresponding to the curves defined by H(ν, y) = h, h ∈ (h0, h1) or H(ν, y) = h, h ∈ (h2,∞), there

is a heteroclinic orbit connecting the equilibrium points S1 and S2 , which lies on the right side of the straight

line ν = −ϕ∗ ; there is an unstable manifold (a stable manifold) to the equilibrium point S1 (S2 ). The curves

defined by H(ν, y) = h consist of 3 orbits of (1.9) and the equilibria S1,2 .

(5) Corresponding to the curves defined by H(ν, y) = h, h ∈ (h1, h2), there is a heteroclinic orbit

connecting the equilibrium points S1 and S2 , which lies on the right side of the straight line ν = −ϕ∗ ; there is

a periodic orbit enclosing the center A1 and an unstable manifold (a stable manifold) to the equilibrium point

S1 (S2 ). The curves defined by H(ν, y) = h consist of 3 orbits of (1.9) and the equilibria A1 and S1,2 .
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(a) ϕ∗ < −2(g1)
2
3 (b) ϕ∗ = −2(g1)

2
3

(c) −2(g1)
2
3 < ϕ∗ < 0 (d) 0 < ϕ∗ < (g1)

2
3

(e) ϕ∗ = (g1)
2
3 (f) (g1)

2
3 < ϕ∗

Figure 2. The phase portraits of (1.9) for g1 > 0.

2. Case II: ϕ∗ = −2(g1)
2
3 (see Figure 2b).

(6) Corresponding to the curves defined by H(ν, y) = h0 , there are 2 heteroclinic orbits connecting the

equilibria O and S1,2 on the left side of the straight line ϕ = −ϕ∗ , and a heteroclinic orbit connecting the

equilibria S1 and S2 on the right side of the straight line ν = −ϕ∗ . There are a stable manifold and an unstable
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manifold of the saddle point O(0, 0) on the left side of the y -axis. The curves defined by H(ν, y) = h0 consist

of 5 orbits of (1.9) and the equilibrium point O .

(7) Corresponding to the curves defined by H(ν, y) = h, h ∈ (−∞, h0), there are 2 heteroclinic orbits

connecting the equilibrium points S1 and S2 , which lie on the left and right sides of the straight line ν = −ϕ∗ ,
respectively; there is an open orbit on the left side of the y -axis. Namely, the curves defined by H(ν, y) = h

consist of 3 orbits of (1.9) and 2 equilibrium points S1,2 .

(8) Corresponding to the curves defined by H(ν, y) = h, h ∈ (h0,∞), there is a heteroclinic orbit

connecting the equilibrium points S1 and S2 , which lies on the right side of the straight line ν = −ϕ∗ ; there is

an unstable manifold (a stable manifold) to the equilibrium point S1 (S2 ). The curves defined by H(ν, y) = h

consist of 3 orbits of (1.9) and 2 equilibrium points S1,2 .

Similarly, we can discuss the cases where −2(g1)
2
3 < ϕ∗ < 0, 0 < ϕ∗ < (g1)

2
3 , ϕ∗ = (g1)

2
3 , and (g1)

2
3 < ϕ∗

(see Figures 2c, 2d, 2e, and 2f). We omit them to save space.

Now we study the dynamical behavior of orbits of (1.6). We notice again that the singular system (1.6)

has the same orbits as the regular system (1.9) except on the singular straight line ν = −ϕ∗ . When ν ̸= −ϕ∗ ,
the transformation of variables dξ = (ν + ϕ∗)dζ only derives the difference between the directions of orbits of

(1.6) and the counterparts of (1.9). The orbits of (1.6) and (1.9) have the same directions on the right side of

the straight line ν = −ϕ∗ , and have different directions on the left side of the line ν = −ϕ∗ .
To discuss the existence of the solitary wave and periodic wave, we need to use the following lemma of the

existence of finite time interval(s) of solutions with respect to ξ in the positive or (and) negative direction(s)

and the vector field defined by (1.6).

Lemma 1

Let (ν, y = ν′) be the parametric representation of an orbit γ of system (1.6) and S1,2(−ϕ∗,±
√
3) be 2

equilibrium points on the singular straight line ν = −ϕ∗ . Suppose that the phase point (ϕ, y) tends to the points

S1,2 along the orbit γ , respectively, as ξ increases or (and) decreases; then, there exists a constant ξ̃ such that

limξ→ξ̃ ν(ξ) = −ϕ∗.

Proof Consider the case where there is an orbit γ , defined by H(ν, y) = ha , connecting the points S1 and

S2 (see Figure 2a) and let (ν0(ξ0), y0(ξ0)) be the initial point on the orbit γ . As ξ increases from ξ0 to ξ , it

follows from (1.8) and the first equation of (1.6) that

ξ − ξ0 =

∫ ν

ν0

dν

y
=

∫ ν

ν0

dν

|ν + ϕ∗|
√
− 3

g2
1

(
− g2

1

(ν+ϕ∗)2
+

2g2
1+ϕ3

∗
ϕ∗(ν+ϕ∗)

+ ν
)
+ ha

. (2.3)

Notice that

lim
ν−→−ϕ∗

 1

|ν+ϕ∗|

√
− 3

g21

(
− g21

(ν+ϕ∗)2
+

2g21+ϕ3
∗

ϕ∗(ν+ϕ∗)
+ν

)
+ha


2

= lim
ν−→−ϕ∗

1

3+(ν+ϕ∗)

(
−3

2g21+ϕ3
∗

ϕ∗ − 3ν(ν+ϕ∗)

g21
+ha(ν+ϕ∗)

) = 1
3 ̸= 0.

976



TANG et al/Turk J Math

It then follows that

lim
ν−→−ϕ∗

∫ ν

ν0

dν

|ν + ϕ∗|
√
− 3

g2
1

(
− g2

1

(ν+ϕ∗)2
+

2g2
1+ϕ3

∗
ϕ∗(ν+ϕ∗)

+ ν
)
+ ha

= B1s = constant.

Thus, there is a constant ξ̃ = ξ0 +B1s such that limξ→ξ̃ ν(ξ) = −ϕ∗.

For the regular system (1.9), S1,2 are 2 equilibrium points, so one can apply standard existence and

uniqueness results to prove that the heteroclinic orbit γ does not intersect with S1,2 . The point (ν0, y0) travels

along the orbit γ and can never reach S1,2 in a finite time. However, for the singular system (1.6), (ν0, y0)

travels along the orbit γ and can maybe reach S1,2 in a finite time. In this case S1,2 are no longer the equi-

librium points but are 2 regular points of (1.6), and the solution defined by γ is a solitary wave or a periodic

wave solution of (1.6). 2

From Lemma 1 and the vector fields defined by (1.6),we have the following conclusions.

Theorem 2

(i) The 2 curves in Figures 2a–2f, which connect S1 and S2 on the left and right sides of the straight

line ν = −ϕ∗ and have the same level set H(ν, y) = ha , can be seen as a periodic orbit of (1.6). This case

generates a periodic wave solution of (1.6).

(ii) The 3 curves in Figures 2a–2c, which connect the 3 points O , S1 , and S2 on the left and right sides

of the straight line ν = −ϕ∗ and have the same level set H(ν, y) = h0 , can be seen as a homoclinic orbit of

(1.6) to the origin O or R(ν, 0) . This case generates a solitary wave solution of (1.6).

(iii) The 3 curves in Figures 2d–2f, which connect the 3 points A2 , S1 , and S2 on the left and right

sides of the straight line ν = −ϕ∗ and have the same level set H(ν, y) = h2 , can be seen as a homoclinic orbit

of (1.6) to A2, S1, S2 . This case generates a solitary wave solution of (1.6).

It is easy to see that the orbits of (1.6) and the regular system (1.9) have the same level sets given by

(1.8). However, one can show from Theorem 2 that, in contrast to the regular system (1.9), the orbits of (1.6)

passing through the straight line ν = −ϕ∗ can be seen as a periodic solution or a homoclinic orbit. In the

next section, we will use the theorem to study the exact solitary wave solutions and periodic wave solutions for

system (1.1).

3. Exact and explicit traveling wave solutions of (1.6)

In this section, by using the above results obtained in Section 2, we consider the dynamical behavior of the

traveling wave solutions of (1.1) and compute their exact parametric representations for these traveling wave

solutions.

1. (1) Corresponding to the heteroclinic orbits of (1.9) defined by H(ν, y) = h0 , connecting the saddle

point O and the nodes S1,2 and connecting the nods S1,2 , respectively (see Figures 2a–2c), by Theorem 1,

we can obtain a solitary wave solution of peak type of (1.1) with respect to ν . In fact, when h = h0 , we see

from (1.7) that y2 = 3
g2
1ϕ

2
∗
(g21 − ϕ3∗ − ϕ2∗ν)ν

2 . By using the first equation of (1.6), we obtain the parametric

representations of the solitary wave solution as follows:

ν1(ξ) = (g21 − ϕ3∗)

(
1− tanh2

√
3(g21 − ϕ3∗)

2g1ϕ∗
ξ

)
, ξ ∈ (−∞,∞). (3.1)
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Thus, we obtain the corresponding exact traveling wave solutions of (1.1):

η1(x, t) = ϕ∗ + (g21 − ϕ3∗)

(
1− tanh2

√
3(g21 − ϕ3∗)

2g1ϕ∗
(x− ct)

)
, (3.2a)

u1(x, t) = c− g1

ϕ∗ + (g21 − ϕ3∗)

(
1− tanh2

√
3(g2

1−ϕ3
∗)

2g1ϕ∗
(x− ct)

) . (3.2b)

It is easy to see that limξ→±∞u(ξ) = c − g1
ϕ∗

. In addition, when tanh

√
3(g2

1−ϕ3
∗)

2g1ϕ∗
ξ =

√
g2
1−ϕ3

∗+ϕ∗
g2
1−ϕ3

∗
, the right

side of (3.2b) becomes ∞ , which means that (3.2b) gives rise to a discontinuous wave solution with respect to

the variable u of (1.1). In other words, the discontinuity happens when the orbit in the phase space hits the

singular line ν = ϕ∗ .

The wave profiles of η1(ξ) and u1(ξ) are shown in Figure 3 for c = 2, g1 = 1, ϕ∗ = −2.1, ν2 =

2.762548006, andν1 = 3.537451994.

–2

0

2

4

6

8

–4 –3 –2 –1 1 2 3 4

xi

(a)

–100

–80

–60

–40

–20

0

20

–6 –4 –2 2 4 6
xi

(b)

Figure 3. The wave profiles of η1(ξ) and u1(ξ) in (a) and (b), respectively.

(2) Corresponding to the homoclinic orbits of (1.9) defined by H(ν, y) = h2 , connecting the saddle point

(ν2, 0) (see Figure 2a), we can gain a solitary wave solution of peak type of (1.1) with respect to ν . In fact,

when h = h2 , we see from (1.7) that y2 = 3
g2
1
(ν − ν2)

2(νM − ν), νM = 1
3g

2
1h2 − 2ϕ∗ − 2ν2 > ν1 > ν2 > −ϕ∗ .

By using the first equation of (1.6), we obtain the parametric representations of the solitary wave solution as

follows:

ν2(ξ) = νM − (νM − ν2) tanh
2

√
3(νM − ν2)

2g1
ξ, ξ ∈ (−∞,∞). (3.3)

Thus, we obtain the corresponding exact traveling wave solutions of (1.1):

η2(x, t) = ϕ∗ + νM − (νM − ν2) tanh
2

√
3(νM − ν2)

2g1
(x− ct), (3.4a)
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u2(x, t) = c− g1

ϕ∗ + νM − (νM − ν2) tanh
2
√

3(νM−ν2)

2g1
(x− ct)

. (3.4b)

The wave profiles of η2(ξ) and u2(ξ) are shown in Figure 4 for c = 2, g1 = 1, ϕ∗ = −2.1, ν2 =

2.762548006, ν1 = 3.537451994, νM = 4.37806073, andh2 = 17.10947023.
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–10 –5 0 5 10

xi
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Figure 4. The wave profiles of η2(ξ) and u2(ξ) in (a) and (b), respectively.

2. Similarly, we can construct the parametric representations of the solitary wave solution of (1.1) as

follows:

η(x, t) =
1

4
ϕ∗

(
1− 9 tanh2

3
√
3

4ϕ∗
ξ

)
, (3.5a)

u(x, t) = c− 4g1

ϕ∗

(
1− 9 tanh2 3

√
3

4ϕ∗
ξ
) . (3.5b)

Remark. To the best of our knowledge, solutions (3.4) and (3.5) obtained for Eq. (1.1) have not been reported

before in the literature.
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