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Abstract: Let m : Σ → X be a Banach space valued countably additive vector measure. In this paper we present a

procedure to construct an m -orthogonal system in the space L2(m) of square integrable functions with respect to m .

If the vector measure is constructed from a family of indeterminate scalar measures, it is possible to obtain a family of

polynomials that is orthogonal with respect to this vector measure. On the other hand, if the vector measure is fixed,

then we can obtain sequences of orthogonal functions using the Kadec− Pelczyński disjointification method.
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1. Introduction

Let X be a Banach space and let (Ω,Σ) be a measurable space. Let m : Σ → X be a countably additive

vector measure. We consider a sequence of (nonzero) real functions {fn}n that are square m-integrable. We

say that fj and fk are orthogonal with respect to m if
∫
fjfkdm = 0 for all j, k ∈ N j ̸= k . This notion

is defined by imposing simultaneously orthogonality with respect to all the elements of the family of scalar

measures defined by the vector measure. This kind of orthogonality with respect to a vector measure has been

studied in a series of papers (see [6, 7, 8, 15]). In these papers we can find several examples (see Examples 4,

5, and 10 [15]). The orthogonality with respect to a vector measure generalizes the usual orthogonality given

by the integral with respect to a scalar measure, and provides a natural setting for studying the properties of

functions that are orthogonal with respect to a family of measures. Families of polynomials that are orthogonal

with respect to a large set of scalar measures were studied at the end of the 19th century. These measures are

called indeterminate measures.

We consider the following equation

∫ ∞

−∞
xnω(x)dx =

∫ ∞

−∞
xne−x2

dx if n = 0, 1, ...

then ω(x) = e−x2

. This problem was presented by Tchebychev in 1885 and it gave rise to the Moment’s

problem. Let {µn}∞n=1 be a sequence of real numbers. The Moment’s problem consists of finding necessary and
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sufficient conditions for the existence of a distribution (increasing bounded function) α(x) in [0,∞), such that∫ ∞

0

xndα(x) = µn n = 0, 1, ...

The first example of such an indeterminate measure was presented by Stieltjes in 1894 (see [16]). He

proved that ∫ ∞

0

xn−log x sin[2π log(x)]dx = 0 for each n = 0, 1, 2...

which implies that all the densities on the half-line

dλ(x) =
(1 + λ sin[2π log(x)])

xlog x
, λ ∈ [−1, 1]

have the same Moments. The study of this kind of measures resulted in a beautiful mathematical theory. For

instance, the Moment’s problem was studied by Nevalinna 1922 using the modern function theory (see [11]).

In 1923, Marcel Riesz solved the Moment’s problem by obtaining general results on the extension of positive

functionals (see [14]). The Stieltjes-Wigert polynomial defines a family of polynomials that are orthogonal with

respect to this class of measures. Let {dλ}λ∈[−1,1] be a family of densities. Then we will see that it is possible

to define a vector measure m using these densities and it is possible to obtain a family of polynomials that

is orthogonal with respect to this vector measure. In this paper the existence of orthogonal sequences in the

spaces of square integrable functions with respect to a vector measure m is analyzed. After the preliminary

Section 2, we show in Section 3 that we can always build an orthogonal sequence with respect to a vector

measure m , where m has been obtained from a family of indeterminate measures. An example that shows

this construction is provided. Finally, in Section 4 a Kadec-Pelczynski disjointification technique that produces

sequences of functions that are almost disjoint and then m-orthogonal in L2(m) is developed and the existence

of basic sequences in some subspaces of L2(m) is shown. Some previous results regarding this technique have

been developed in a series of papers (see [5], [9], [10]). In this paper we adapt this technique in the context of

spaces of square integrable functions with respect to a suitable vector measure.

2. Basic results

We will use standard Banach and function space notation; our main references are [3, 4, 10, 12]. Let X be

a Banach space. We will denote by BX the unit ball of X , that is BX := {x ∈ X : ∥x∥ ≤ 1} . X ′ is

the topological dual of X and BX′ its unit ball. Let (Ω,Σ) be a measurable space. Throughout the paper

m : Σ → X will be a countably additive vector measure, i.e. m(∪∞
n=1An) =

∑∞
n=1 m(An) in the norm

topology of X for all sequences {An}n of pairwise disjoint sets of Σ. We say that a countably vector measure

m : Σ → X , where X is a Banach lattice, is positive if m(A) ≥ 0 for all A ∈ Σ. For each element x′ ∈ X ′ the

formula ⟨m, x′⟩(A) := ⟨m(A), x′⟩ , A ∈ Σ, defines a (countably additive) scalar measure. We write |⟨m, x′⟩|
for its variation, i.e. |⟨m, x′⟩|(A) := sup

∑
B∈Π |⟨m(B), x′⟩| for A ∈ Σ, where the supremum is computed over

all finite measurable partitions Π of A . We say that an element x′ ∈ X ′ is m-positive if the scalar measure

⟨m, x′⟩ is positive, i.e. |⟨m, x′⟩| = ⟨m, x′⟩ . A nonnegative function ∥m∥ whose value on a set A ∈ Σ is given by

∥m∥(A) = sup{|⟨m, x′⟩|(A) : x′ ∈ X ′, ∥x′∥ ≤ 1} is called the semivariation of m . The measure m is absolutely

continuous with respect to µ if limµ(A)→0 m(A) = 0; we say that µ is a control measure for m and we write
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m ≪ µ . It is known that there always exists an element x′ ∈ X ′ such that m ≪ |⟨m, x′⟩| and so |⟨m, x′⟩|
is a control measure for m . Such measures are called Rybakov measures for m (see [4, Ch.IX,2]). Note that

if m is positive and x′ is a positive element of the Banach lattice X ′ , then |⟨m, x′⟩| = ⟨m, x′⟩. The space

L1(m) of integrable functions with respect to m is a Banach function space over any Rybakov measure µ for

m (see [1, 10]). The elements of this space are (classes of µ -a.e. measurable) functions f that are integrable

with respect to each scalar measure ⟨m, x′⟩ , and for every A ∈ Σ there is an element
∫
A
fdm ∈ X such that

⟨
∫
A
fdm, x′⟩ =

∫
A
fd⟨m, x′⟩ for every x′ ∈ X ′ . The space L1(m) of m -a.e. equal m -integrable functions is

an order continuous Banach lattice endowed with the norm ∥ · ∥L1(m) and the m-a.e. order. We consider the

spaces L2(m), which are also order continuous Banach function spaces over the space (Ω,Σ, |⟨m, x′
0⟩|) with

weak unit where |⟨m, x′
0⟩| is a Rybakov measure. We say that a measurable function f : Ω → R is 2-integrable

with respect to m if |f |2 ∈ L1(m) with the norm ∥f∥L2(m) := ∥|f |2∥
1
2

L1(m) , f ∈ L2(m).

Let X be a Banach space and let {xn}∞n=1 be a sequence of X . We say that {xn}∞n=1 is a Schauder basis

of X if there exists a unique sequence of scalars {αn}∞n=1 such that x = limn→∞
∑n

k=1 αkxk for all x ∈ X . We

say that {xn}∞n=1 is a basic sequence if it is a Schauder basis of its closed span. Let {xn}∞n=1 and {yn}∞n=1 be

two bases for the Banach spaces X and Y , respectively. It follows from the closed graph theorem that {xn}∞n=1

and {yn}∞n=1 are equivalent if and only if there exists an isomorphism T from X to Y for which T (xn) = yn

for all n ∈ N . The following result can be found in ([10], Proposition 1.a.9.).

Remark 2.1

1. If {xn}∞n=1 is a basic sequence of a Banach space X and {yn}∞n=1 is another sequence in X so that

∥xn − yn∥ → 0 then {yn}∞n=1 is a basic sequence of a Banach space X .

2. If {xn}∞n=1 is a basic sequence of a Banach space X with basis constant K and {yn}∞n=1 is another

sequence in X such that
∑∞

n=1 ∥xn−yn∥ < 1/(2K) . Then {yn}∞n=1 is a basic sequence which is equivalent

to {xn}∞n=1 .

Now we consider the particular case when X is a space of 2-integrable functions with respect to a vector

measure m . In this case, the question of how to recognize a basic sequence arises. The following remark

provides a basic test for recognizing a basis in a subspace of L2(m), (see [3], Theorem 1. Ch.V).

Remark 2.2 Let {fn}∞n=1 be a sequence of nonzero functions in L2(m) , then in order for {fn}∞n=1 to be a

basic sequence, it is both necessary and sufficient that there exists a positive finite constant K so that for any

choice of scalars {αi}∞i=1 and any integers m < n we have∥∥∥∥∥
m∑
i=1

αifi

∥∥∥∥∥
L2(m)

≤ K

∥∥∥∥∥
n∑

i=1

αifi

∥∥∥∥∥
L2(m)

. (1)

For instance, if m : Σ → X is a positive vector measure, ∥f∥L2(m) = ∥
∫
|f |2∥1/2X for all f ∈ L2(m) (see [2]),

and so the criterion above can be written as follows. For any finite sequence of scalars {αi}∞i=1 and any integers

m < n , ∥∥∥∥∥
∫
(

m∑
i=1

αifi)
2dm

∥∥∥∥∥
X

≤ K2

∥∥∥∥∥
∫
(

n∑
i=1

αifi)
2dm

∥∥∥∥∥
X

. (2)
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If {fi}∞i=1 is an m-orthogonal sequence then (2) is equivalent to∥∥∥∥∥
m∑
i=1

α2
i

∫
f2
i dm

∥∥∥∥∥
X

≤ K2

∥∥∥∥∥
n∑

i=1

α2
i

∫
f2
i dm

∥∥∥∥∥
X

. (3)

3. m-Orthogonal sequences

The notion of m-orthonormal sequence is the natural generalization of the concept of orthonormal sequence in

a Hilbert space L2(µ) and has been studied in [6, 7, 8, 13, 15]. We consider a sequence of real functions {fi}∞i=1

that are square m-integrable. We say that {fi}∞i=1 is m -orthogonal if∫
f2
i dm ̸= 0, for all i ∈ N, and

∫
fifjdm = 0, i ̸= j i, j ∈ N. (4)

and {fn}n is a m -orthonormal sequence in L2(m) if for all n ∈ N,∥∥∥∥∫ f2
ndm

∥∥∥∥
X

= 1.

Example 3.1 Consider the Lebesgue measure space ([0, 1],Σ, µ) . We can define a vector measure m :

Σ −→ ℓ2 by m(A) :=
∑∞

n=1(
∫
A
φndµ)en for all A ∈ Σ , where φ1(x) := χ[ 14 ,

3
4 ]

and φn(x) := χ[ 1
4n , 3

4n ]
−

1
2χ[ 1

4n−1 , 2

4n−1 ]
, n ≥ 2 .

For every A ∈ Σ

∥m(A)∥2 =
∞∑

n=1

(

∫
A

φndµ)
2 ≤

∞∑
n=1

2

4n
< ∞.

It is clearly a countably additive vector measure and then the corresponding space L2(m) is well defined. Let

us consider the following sequence of functions defined on the unit interval [0, 1] (see the Figure). For every

i ∈ N,

fi(x) :=
√
22i−1(χ[ 2

4i
, 4

4i
] − χ[0, 2

4i
]).

Figure. Functions f1(x) , f2(x) , and f3(x) .

If j > i then fifj = −
√
22i−1fj , i, j ∈ N . A direct calculation shows that∫

[0,1]

fifjφn =

{
1 if i = j = n
0 otherwise.
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Note that f2
i ≤ 1 ∈ L1(m) and so f2

i ∈ L2(m) . A direct calculation shows that

∫
[0,1]

fifjdm = 0 i ̸= j

and so {fi}∞i=1 is an m-orthogonal sequence.

Some results on the existence of m-orthonormal sequences in L2(m) are provided. For any vector measure,

it is easy to prove the existence of m -orthonormal sequences of functions in any (nontrivial) space of square

integrable functions with respect to a vector measure. To show this fact we present the following lemma:

Lemma 3.2 Let m be a positive vector measure. Suppose that there is a sequence {An}∞n=1 in Σ of disjoint

non ∥m∥-null sets. Then there is a m-orthonormal sequence in L2(m) .

Proof Let χAn ∈ L2(m) be the characteristic function of An for every n ∈ N . Moreover, since ∥m∥(An) ̸= 0,

there is a subset Bn ⊂ An such that ∥m(Bn)∥X > 0 for every n ∈ N . Let us define fn =
χBn

∥m(Bn)∥1/2 , n ∈ N .

Then ∫
f2
ndm =

∫
χ2
Bn

∥m(Bn)∥
dm =

1

∥m(Bn)∥

∫
χBndm =

m(Bn)

∥m(Bn)∥
̸= 0.

On the other hand, if n ̸= k for n, k ∈ N , it is clear that
∫
fnfkdm = 0, since Bn ∩ Bk = ∅ , and the

result is obtained. 2

Let {fn}n be a sequence of m -orthogonal functions and let ⟨m, x′⟩ be a positive Rybakov measure. Then∫
flfjd⟨m, x′⟩ = ⟨

∫
flfjdm, x′⟩ = 0 j ̸= l , and so it is clear that an m-orthonormal sequence also is orthogonal

for each associated m-positive Rybakov measure ⟨m, x′⟩ . The m-orthonormality requirement for a sequence

of functions in the nonscalar case introduces a strong restriction, in particular regarding completeness of the

orthogonal sequence. An orthonormal set Ψ is said to be complete if there exists no other orthonormal set

containing Ψ, that is, Ψ must be a maximal orthonormal set. It is easy to prove that an orthonormal set Ψ

is complete if and only if for any f such that f is orthogonal to Ψ, f must be zero. Let us show this fact

with an easy construction. Suppose that (Ω0,Σ0, µ0) is a probability measure space, and consider a complete

orthonormal sequence {gi}∞i=1 in L2(µ0) such that g1 = χΩ0 . Suppose that {gi}∞i=1 is also an m0 -orthonormal

sequence for a countably additive vector measure m0 : Σ0 → X that is absolutely continuous with respect to

µ0 . Then every measure ⟨m0, x
′⟩ , x′ ∈ X ′ , is µ0 -continuous, and there is a function hx′ ∈ L1(µ0) such that

d⟨m0, x
′⟩ = hx′dµ0 . For every k ≥ 2,

0 = ⟨
∫

g1gkdm0, x
′⟩ =

∫
gkhx′dµ0.

If addition hx′ ∈ L2(µ0), since the sequence {gi}∞i=1 is complete, the equalities above imply hx′ = r(x′)χΩ0

for a real number r(x′). Therefore, if we assume that for every x′ ∈ X ′ the corresponding Radon-Nikodým

derivative belongs to L2(µ0), we obtain that

(m0)x′(A) = r(x′)µ0(A), A ∈ Σ0, x′ ∈ X ′.
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This relation establishes a strong restriction on m0 . For instance, suppose that X is a Banach space with

an unconditional basis {ei}∞i=1 . Then m0(A) =
∑∞

i=1⟨m0(A), e
′
i⟩ei , where {e′i}∞i=1 are the corresponding

biorthogonal functionals and A ∈ Σ0 . In this case the relation above implies that

m0(A) = (
∞∑
i=1

r(e′i)ei)µ0(A)

for every A ∈ Σ0 , i.e. m0 can be in fact considered as a scalar positive measure.

Remark 3.3 The above argument shows that in general we cannot expect completeness for m-orthonormal

sequence of functions, although under certain (strong) assumptions it is possible to obtain m-orthonormal

basis for L2(m) (see [13]). Thus, although the results that we present in what follows can be used to obtain

information about standard orthonormal sequences {fi}∞i=1 in Hilbert spaces L2(µ) , the procedure of splitting

the scalar measure µ into a vector measure m preserving orthonormality is essentially limited by a certain

noncompleteness assumption for {fi}∞i=1 .

4. A constructive procedure for finding m-orthogonal sequences: Indeterminate measures

In this section we show a procedure to build families of orthogonal polynomials on a vector measure that is

made of indeterminate measures. The following procedure shows that an orthogonal sequence with respect

to a vector measure m can be built, where m has been obtained from a family of indeterminate measures.

Consider the Lebesgue measure space (Ω,Σ, dx). Let {Sn}n be a sequence of real numbers and let ∆n be the

(n+ 1)× (n+ 1) Hankel matrix where

∆n =



S0 S1 . . . Sn

S1
. . .

...
...

Sn ... S2n

 (5)

It is well known that if det(∆n) > 0 for all n ∈ N then the sequence {Sn}∞n=0 is defined positive. In this case

we define the linear operator L : P[x] → R such that L(Qn(x)) =
∑∞

k=0 akSk , where Qn(x) =
∑n

k=0 akx
k .

The Moment’s Problem is determined if {Sn}n is a defined positive sequence, i.e. there exists a nondecreasing

distribution, F (x), with support into Ω such that for all n ,
∫
Ω
xnF (x)dx = Sn is satisfied.

We call indeterminate measure to a family Fλ(x) of nondecreasing distributions with support into Ω

which have the same Moments, i.e. the Moments
∫
Ω
xnFλ(x)dx = Sn do not depend on the parameter λ . We

define the following sequence:

Pn(x) =

∣∣∣∣∣∣∣∣∣
S0 . . . Sn

...
. . .

...
Sn−1 S2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣
Then it is easy to prove that

L(xkPn(x)) =

{
0 if k < n

det(∆n) if k = n
(6)
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Let X be a Banach space. We can define a countably additive vector measure ν : Σ → X as ν(A) =
∫
A
Fλ(x)dx .

Then the construction presented above shows that∫
Ω

Pj(x)Pl(x)dν = 0 if j ̸= l.

Example 4.1 In this case we consider the first example of an indeterminate measure that was presented by

Stieltjes in 1894 (see [16]). In this example Stieljes shows that for each n ∈ N

∫ ∞

0

xne− ln2(x)[1 + λ sin(2π ln(x))]dx =
√
πe(n+1)2/4.

If we take |λ| < 1 then Fλ(x) = e− ln2(x)[1 + λ sin(2π ln(x))] > 0 is a positive function for all x ∈ [0,∞[ ;

thus µλ(y) =
∫ y

0
e− ln2(x)xn[1 + λ sin(2π ln(x))]dx is a family of nondecreasing distributions with support into

[0,∞[ , which has the same moments Sn =
√
πe(n+1)2/4 . It is immediate to prove that the sequence {Sn =

√
πe(n+1)2/4}∞n=0 is positive defined; therefore,

∫ ∞

0

xkPn(x)e
− ln2(x)[1 + λ sin(2π ln(x))]dx =

{
0 if k < n

det(∆n) if k = n

for every λ ∈ R, |λ| < 1 . The above construction provides a sequence of ν -orthogonal polynomials Pn(x) for a

suitable vector measure.

P0(x) = S0 = 2.27588,

P1(x) = −4.81803 + 2.27588x,

P2(x) = 183.457− 139.22x+ 15.059x2,

P4(x) = −655344.+ 611203.x− 106211.x2 + 3438.93x3,

...

Now we take Ω = (0,∞) and Σ the σ -algebra of the Lebesgue subsets of Ω . We can define ν : Ω → c0 by

ν(A) =

{∫
A

e− ln2(x)

m
[1 +

1

m+ 1
sin(2π ln(x))]dx

}∞

m=1

,

where dx is the Lebesgue measure and A ∈ Σ . Using elementary integral calculus, it is easy to prove that for

every A ∈ Σ

lim
m→∞

∫
A

e− ln2(x)

m
[1 +

1

m+ 1
sin(2π ln(x))]dx = 0.

This shows that ν is well defined and so countably additive. Moreover, it is also clear that the functions

pl(x) ∈ L2(m) and they satisfy that for all j < l ,

∫ ∞

0

pj(x)pl(x)dν = 0
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and ∥∥∥∥∫ ∞

0

pj(x)pl(x)dν

∥∥∥∥
c0

= Bl

if j = l where Bl is a nonnull constant for all l ∈ N .

5. Kadec-Pe lczyński decomposition

The aim of this section is to give a canonical procedure to obtain disjoint sequences in the space L2(m). This

will be the first step for finding m-orthogonal sequences and providing the corresponding existence theorems.

In what follows, a well-known result of Kadec and Pelczyński will be applied to the context of sequences of

functions on spaces of integrable functions with respect to a vector measure (see [9]). Throughout this section

we will consider a positive vector measure m .

Let H be a Hilbert space and let us consider a positive countably additive vector measure m : Σ → H .

We suppose that ∥χΩ∥L2(m) = ∥χΩ∥1/2L1(m) = ∥m∥1/2(Ω) = 1 and {fn}∞n=1 ∈ L2(m). We define the subsets of

Ω

σ(f, ε) = {t ∈ Ω : |f(t)| ≥ ε∥f∥L2(m)}

and the subsets of L2(m)

ML2(m)(ε) = {f ∈ L2(m) : ∥m∥(σ(f, ε)) ≥ ε}.

By normalizing if necessary, we assume that ∥fn∥L2(m) = 1 for all n ∈ N .

Remark 5.1 Note that the classes ML2(m)(ε) have the following properties:

(1) If ε1 < ε2 , then ML2(m)(ε1) ⊃ ML2(m)(ε2) .

(2)
∪

ε>0 ML2(m)(ε) = L2(m) .

(3) If f ̸= 0 does not belong to ML2(m)(ε) , then there exists a set A such that ∥m∥(A) < ε and

∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

∥f∥L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

≥ 1− ε2.

The first property is obvious. To prove the second, we suppose that there exists a square m-integrable

function g so that it is not in
∪

ε>0 ML2(m)(ε) for all ε > 0, in particular g ̸= 0, that is, ∥m∥(Supp g) > 0.

Since Supp g = ∪n≥1σ(g,
ε
2n ) for every ε > 0, then

∥m∥(Supp g) ≤
∑
n≥1

∥m∥(σ(g, ε

2n
)) ≤

∑
n≥1

ε

2n
= ε.

So ∥m∥(Supp g) = 0, which is a contradiction. To prove the third we denote by A the set σ(f, ε). Then

1 =

∥∥∥∥∥
∫
Ω

∣∣∣∣ f(t)

∥f∥L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

≤

∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

∥f∥L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

+ ε2∥m(Ω/A)∥H
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=

∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

∥f∥L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

+ ε2∥m∥(Ω/A) ≤

∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

∥f∥L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

+ ε2.

This finishes the proof of (3).

Lemma 5.2 Let (Ω,Σ, µ) be a measure space and let X(µ) be an order continuous Banach function space;

then for all f ∈ X(µ)

lim
µ(A)→0

∥fχA∥X(µ) = 0.

The proof can be found in (Lemma 2.37, [12]).

The following result shows 2 mutually excluding possibilities for a sequence {fn}n of functions in L2(m).

On the one hand, when {fn}n is included in the set ML2(m)(ε) for some ε > 0, the norms ∥·∥L2(m) and ∥·∥L1(µ)

are equivalent, where µ is a Rybakov control measure for m . On the other hand, when {fn}n ⊈ ML2(m)(ε)

for every ε > 0, we can build another sequence {hk}k of disjoint functions of L2(m), in such a way that {fn}n
and {hk}k are equivalent ([5], Chapter 1.9.). This procedure gives us a tool for building disjoint sequences in

subspaces of L2(m) that in fact are unconditional basic sequences. The order continuity of the space is the key

point for the construction.

Theorem 5.3 Let µ = |⟨m, x′
0⟩| be a Rybakov measure for a vector measure m and let (Ω,Σ, µ) be a probability

measure space. Let {fn}n be a sequence of functions into L2(m) .

(1) If {fn}∞n=1 ⊂ ML2(m)(ε) for some ε > 0 then {fn}∞n=1 converges to zero in L2(m) if and only if {fn}∞n=1

converges to zero in L1(µ) .

(2) If {fn}∞n=1 ⊈ ML2(m)(ε) for all ε > 0 then there exists a subsequence {nk}∞k=1 and a disjointly supported

function {hk}∞k=1 ⊂ L2(m) such that |hk| ≤ |fnk
| for all k and {hk}∞k=1 and {fnk

}∞k=1 are equivalent

unconditional basic sequences that satisfy limk→∞ ∥fnk
− hk∥L2(m) = 0 .

Proof It is well known that L2(m) is continuously embedded into L1(µ) and it is an order continuous Banach

lattice with weak unit. There are 2 excluding cases.

(1) We suppose that {fn}n ⊂ ML2(m)(ε) for some ε > 0 then

∥fn∥L2(m) ≥ ∥fn∥L1(µ) =

∫
Ω

|fn(t)|dµ ≥
∫
σ(fn,ε)

|fn(t)|dµ

≥ ε∥fn∥L2(m)µ(σ(fn, ε)).

The direct implication is obtained from the inclusion L2(m) ↪→ L1(µ). Conversely, we suppose that

µ(σ(fn, ε)) converges to 0. Since µ is a Rybakov measure and thus it is a control measure ∥m∥(σ(fn, ε))
converges to 0, but it gives a contradiction because ML2(m)(ε) = {f ∈ L2(m) : ∥m∥(σ(f, ε)) ≥ ε}.

Therefore, {fn}n converges to zero in L2(m) if and only if {fn}n converges to zero in L1(µ).
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(2) If the above supposition does not hold, then {fn}n ⊈ ML2(m)(ε) for all ε . In order to simplify the notation

we consider ∥fn∥L2(m) = 1. Thus, there exists an index n1 ∈ N such that fn1 is not in ML2(m)(ε) where

j1 = 2. We take ε = 4−j1 . Then ∥m∥(σ(fn1 , 4
−j1)) < 4−j1 and

∥χσ(fn1 ,4
−j1 )cfn1∥L2(m) =

∥∥∥∥∫ |χσ(fn1 ,4
−j1 )cfn1 |2dm

∥∥∥∥1/2
H

=

∥∥∥∥∥∥
∫
χ
σ(fn1 ,4−j1 )c

|fn1 |2dm

∥∥∥∥∥∥
1/2

H

≤ 4−j1
∥∥m(σ(fn1 , 4

−j1)c)
∥∥1/2
H

≤ 4−j1∥m∥(Ω)1/2 = 4−j1 .

Now we apply Lemmma 5.2, so there exists δ1 > 0 such that for all A ∈ Σ with ∥m∥(A) < δ1 it follows

∥χAfn1∥ < 4−(j1+1) . We take j2 > j1 such that 4−j2 < δ1 . Following the same argument, there exists

n2 > n1 such that fn2 is not in ML2(m)(4
−j2); thus ∥m∥(σ(fn2 , 4

−j2)) < 4−j2 < δ1

∥χσ(fn2 ,4
−j2 )fn1∥ ≤ 4−(j1+1),

∥χσ(fn2 ,4
−j2 )cfn2∥ ≤ ∥4−j2χσ(fn2 ,4

−j2 )c∥ ≤ 4−j2 .

We take ε = 4−(j2+1) . Again, we apply Lemma 5.2 and there exists δ2 > 0 such that for all A ∈ Σ

with ∥m∥(A) < δ2 it follows ∥χAfn1∥ , ∥χAfn2∥ < 4−(j2+1) . Let j3 > j2 be an integer satisfying that

4−j3 < δ2 . Again there exists a integer n3 > n2 > n1 such that fn3 is not in ML2(m)(4
−j3), as in the

above case we have ∥m∥(σ(fn3 , 4
−j3)) < 4−j3 < δ2 , and therefore

∥χσ(fn3 ,4
−j3 )fn1∥, ∥χσ(fn3 ,4

−j3 )fn2∥ ≤ 4−(j2+1),

∥χσ(fn3 ,4
−j3 )cfn3∥ ≤ 4−j3 .

In the same way, it is possible to find 2 subsequences {fnk
}∞k=1 and σ(fnk

, 4−jk)k that satisfy the following

inequalities:

∥m∥(σ(fnk
, 4−jk)) < 4−jk ,

∥χσ(fnk
,4−jk )cfnk

∥ ≤ 4−jk ,

∥χσ(fnk
,4−jk )fni∥ ≤ 4−(jk−1+1), i = 1, ..., k − 1.

Now, we define the following disjoint sequence of sets:

φk = σ(fnk
, 4−jk)\

∞∪
i=k+1

σ(fni , 4
−ji).

φc
k = σ(fnk

, 4−jk)c
∪

(
∞∪

i=k+1

σ(fni , 4
−ji)).
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Thus φk ∩ φl = ∅ for k ̸= l . This allows us to construct the sequence of disjoint functions hk = χφk
fnk

.

Due to the lattice properties of L2(m) and to Remark 2.2 we obtain that the sequence {hk}∞k=1 is a basic

sequence. On the other hand, we check that limk→∞ ∥fnk
− hk∥ = 0. Indeed

∥fnk
− hk∥ = ∥χφc

kfnk
∥ ≤ ∥χσ(fnk

,4−jk )cfnk
∥+ ∥χ∪∞

i=k+1 σ(fni
,4−ji )fnk

∥

≤ 4−jk +

∞∑
i=k+1

∥χσ(fni
,4−ji )fnk

∥ ≤ 4−jk +

∞∑
i=k+1

4−(ji−1+1)

≤ 4−jk +
4−(jk+1)

1− 1/4
= 4−jk +

1

3
4−jk =

1

3
4−(jk−1).

So if we apply Remark 2.1 we obtain that {fnk
}∞k=1 is a basic sequence. Let K be the basic constant

of the sequence {hk}k . Note that —by passing to a subsequence if necessary— we can obtain that∑∞
k=1 ∥fnk

− hk∥ < 1/(2K). Remark 2.1 enables us to give that {hk}k and {fnk
}k are equivalent

unconditional basic sequences.

2

The next result is a direct consequence of the Kadec and Pelczynski process for obtaining disjoint

sequences. It provides a method for, given a convenient sequence {fn}n , finding a disjoint (and then m -

orthogonal) subsequence of {fn}n .

Corollary 5.4 Let H be Hilbert space that is also a Banach lattice and m : Σ → H a positive vector measure

such that ∥m∥(Ω) = 1 . Take a Rybakov control measure µ = |⟨m, x′
0⟩| for m with ∥x′

0∥ = 1 . If {fn}n ⊂ L2(m)

is such that ∥fn∥L2(m) = 1 for all n and {fn}n ⊈ ML2(m)(ε) for all ε > 0 then there exists a subsequence

{hk}∞k=1 ⊂ L2(m) such that |hk| ≤ |fnk
| for all k and {hk}∞k=1 is a m-orthogonal sequence in L2(m) .

Moreover, {fnk
}∞k=1 and {hk}∞k=1 are equivalent unconditional basic sequences that satisfy limk→∞ ∥fnk

−
hk∥L2(m) = 0 .

The proof is a direct application of Theorem 5.3. Note that limk→∞ ∥fnk
− hk∥L2(m) = 0 and

∥fnk
∥L2(m) = 1 for all k implies that

∫
h2
kdm ̸= 0 for large enough k .
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