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doi:10.3906/mat-1301-60

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Coloring hypercomplete and hyperpath graphs
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Abstract: Given a graph G with an induced subgraph H and a family F of graphs, we introduce a (hyper)graph

HH(G;F) = (VH , EH) , the hyper -H (hyper)graph of G with respect to F , whose vertices are induced copies of H in

G , and {H1, H2, . . . , Hr} ∈ EH if and only if the induced subgraph of G by the set ∪r
i=1Hi is isomorphic to a graph

F in the family F , and the integer r is the least integer for F with this property. When H is a k -complete or a

k -path of G , we abbreviate HKk(G;F) and HPk(G;F) to Hk(G;F) and HPk(G;F) , respectively. Our motivation to

introduce this new (hyper)graph operator on graphs comes from the fact that the graph Hk(Kn; {K2k}) is isomorphic

to the ordinary Kneser graph K(n; k) whenever 2k ≤ n . As a generalization of the Lovász–Kneser theorem, we prove

that χ(Hk(G; {K2k})) = χ(G) − 2k + 2 for any graph G with ω(G) = χ(G) and any integer k ≤ ⌊ω(G)/2⌋ . We

determine the clique and fractional chromatic numbers of Hk(G; {K2k}) , and we consider the generalized Johnson

graphs Hr(H; {Kr+1}) and show that χ(Hr(H; {Kr+1})) ≤ χ(H) for any graph H and any integer r < ω(H) . By

way of application, we construct examples of graphs such that the gap between their chromatic and fractional chromatic

numbers is arbitrarily large. We further analyze the chromatic number of hyperpath (hyper)graphs HPk(G;Pm) , and

we provide upper bounds when m = k + 1 and m = 2k in terms of the k -distance chromatic number of the source

graph.

Key words: Kneser graphs and hypergraphs, chromatic and fractional chromatic numbers, hypercomplete and hyper-

path (hyper)graphs

1. Introduction

Most surprised reactions (and equally appreciations) to Lovász’s proof of the Kneser conjecture are due to his

method of proof that is now counted as the beginning of the discipline: topological combinatorics. Many other

proofs with more topological flavors were made afterwards. Mainly, the methods of these proofs concentrate on

the famous Borsuk–Ulam theorem or its combinatorial counterparts. However, we here are willing to provide

more reasons to celebrate the proof of the Kneser conjecture after more than 30 years. We show that its

presence may enable us to determine the chromatic numbers of many other graphs with no additional costs.

Our departure begins by understanding the construction of Kneser graphs from complete graphs.
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To be more explicit, we recall that for given integers n, k with 2k − 1 ≤ n , the Kneser graph K(n; k)

is the graph whose vertex set consists of all k -element subsets of [n] := {1, 2, . . . , n} , where 2 vertices form an

edge if and only if they are disjoint. The Kneser conjecture [8] now takes the following form in graph theory

language that computes the chromatic number of the Kneser graph.

Theorem 1.1 (Lovász–Kneser Theorem [11]) If k > 0 and n ≥ 2k − 1 , then χ(K(n; k)) = n− 2k + 2 .

Once we take [n] as the set of vertices of the complete graph Kn , it is easy to notice that a k -element

subset of [n] corresponds to an induced complete graph of order k , and being disjoint for any 2 such sets means

exactly that their set union induces a complete graph of order 2k in Kn . Such an observation may naturally

be generalized to an arbitrary graph by taking it as a source graph instead of Kn . In other words, when we

are given a graph G , we may construct a new graph by taking its vertices to be all induced k -complete graphs

in G , where 2k ≤ ω(G), the clique number of G , and declaring that any such 2 vertices form an edge if and

only if the union of their vertices induces a 2k -complete graph in G . Let us denote the resulting graph by

Hk(G;K2k), which we call the k -hypercomplete graph of G with respect to the graph K2k (see Definition 3.2

for a more explicit and general description). The next logical step is to vary the reference family within the above

construction. In other words, we consider Hk(G;F), where F is a family of graphs. Surprisingly, some of the

constructions may end up being hypergraphs depending on the choice of F as well as the parameter k . As an

example, we note that Hk(Kn;Krk) is just the Kneser r -hypergraph of the set system ([n],
(
[n]
k

)
) with respect

to suitably chosen integers n, k , and r (see Section 2.2). The known computation of the chromatic number of

Hk(Kn;Krk) can be easily generalized to other graphs, which proves the power of the hypercompletion operator

in the case of hypergraphs.

Theorem 4.2 Let G be a graph with ω(G) = χ(G) . Then for any integers k and r satisfying 2k+1 ≤ n and

2 ≤ r ≤ ⌊ω(G)
k ⌋ , we have

χ(Hk(G;Krk)) = ⌈χ(G)− r(k − 1)

r − 1
⌉.

In the particular case where r = 2, we state the following result, which can be considered as the

generalized Lovász–Kneser theorem:

Corollary 4.3 If G is a graph with χ(G) = ω(G) , then χ(Hk(G;K2k)) = χ(G)− 2k + 2 for any k ≤ ⌊ω(G)
2 ⌋ .

In fact, we show that χ(Hk(G;K2k)) ∈ [ω(G)− 2k + 2, χ(G)− 2k + 2] for any graph G .

Even if every graph can be realized as an induced subgraph of some Kneser graph, we note that there

exist graphs for which Hk(G;K2k) is not an induced subgraph of K(n; k) for any integer n .

Almost all other computations regarding to Kneser (hyper)graphs can be carried out to hypercomplete

(hyper)graphs (see Sections 4 and 4.1 for more details). For instance, the clique numbers or the fractional

chromatic numbers can be derived similarly. Such results also enable us to provide examples of graphs such

that there is a large gap between their chromatic and fractional chromatic numbers that may be of particular

interest.

Shortly after Lovász’s proof of the Kneser conjecture, Schrijver found a vertex-critical induced subgraph

of K(n; k), whose chromatic number is the same as that of K(n; k) [15]. We recall that a set S ⊆ [n] is called
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stable if i ∈ S implies i+1 /∈ S , and if n ∈ S implies 1 /∈ S . The stable Kneser graph (or the Schrijver graph)

SK(n; k) is defined to be the graph whose vertices are all stable k -subsets of [n] , 2 being adjacent if and only

if they are disjoint. We generalize Schrijver’s construction to hypercomplete graphs by fixing a coloring of the

source graph beforehand. Suppose that κ is a proper n -coloring of G , where χ(G) = n . When 2k ≤ ω(G),

we call a k -complete S of G κ -stable if κ(S) := {κ(s) : s ∈ S} is a stable set in [n] . We define the stable

k -hypercomplete graph SHκ
k(G;K2k) of G with respect to κ to be the graph with vertex set consisting of all

κ-stable k -completes of G , where 2 such sets form an edge if and only if their set union induces a 2k -complete

in G . The following is not a surprise:

Corollary 4.12 Let κ be a proper n-coloring of a graph G with n = χ(G) = ω(G) . Then, χ(SHκ
k(G;K2k)) =

χ(G)− 2k + 2 for any k ≤ ⌊n
2 ⌋ .

It should be noted that the subgraphs SHκ
k(G;K2k) of Hk(G;K2k) need not be vertex-critical as opposed

to the case of complete graphs. Furthermore, for any 2 distinct n-colorings κ1 and κ2 of G , the graphs

SHκ1

k (G;K2k) and SHκ2

k (G;K2k) are not isomorphic in general.

Our final move is to study the chromatic number of hyperpath (hyper)graphs HPk(G;Pm). As opposed

to hypercomplete graphs, there seems to be no general relation between χ(G) and χ(HPk(G;Pm)). However,

there is a simple upper bound involving the maximum degree of the source graph χ(HPk(G;P2k)) ≤ 2∆(G)−1,

which is indeed the best possible. On the other hand, by the use of the hypercompletion operator, we also provide

upper bounds on χ(HPk(G;Pm)) when m = k+ 1 and m = 2k in terms of the k -distance chromatic numbers

of the source graph (see Section 5).

Theorem 5.5 For any graph G and any integer k ≥ 2 , we have χ(HPk(G;Pk+1)) ≤ χk(G) and χ(HPk(G;P2k))

≤ χ2k−1(G)− 2k + 2 .

2. Preliminaries

We first recall some general notions and notations needed throughout the paper, and repeat some of the

definitions mentioned in the introduction more formally.

2.1. Graphs

By a simple graph G , we will mean an undirected graph without loops or multiple edges. If G is a graph,

V (G) and E(G) (or simply V and E ) denote its vertex and edge sets. An edge between u and v is denoted

by e = uv or e = {u, v} interchangeably. A graph G = (V,E) is called the null-graph on V whenever E = ∅ .
If U ⊂ V , the graph induced on U is written as G[U ] . We denote by |G| and ∥G∥ the order and size of G ,

while d(v) denotes the degree of a given vertex v ∈ V . A graph G = (V,E) is said to be r -regular if d(v) = r

for any v ∈ V .

The complement G := (V,E) of a graph G = (V,E) is the graph on V with uv ∈ E if and only if

uv /∈ E . Throughout the paper, Kn , Cn , and Pn will denote the complete, cycle, and path graphs on n

vertices, respectively. The distance d(x, y) between 2 vertices x and y is defined to be the length of a shortest

path in G between them.

A subset S ⊆ V is called a complete of G if G[S] is isomorphic to a complete graph, and a k -complete

of G is a complete of cardinality k . The set of all k -completes of G will be denoted by Ck(G). In particular,
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a complete that is maximal with respect to inclusion is called a clique of G , and the largest k such that G has

a k -clique is called the clique number of G and denoted by ω(G). An independent set of G is a complete of

G , and the independence number is defined by α(G) := ω(G).

We recall that a mapping κ : V → [m] is a (proper vertex) coloring of a graph G if κ(u) ̸= κ(v) whenever

uv ∈ E , where [m] := {1, 2, . . . ,m} . The least integer m for which G admits a coloring with m colors is called

the chromatic number of G and is denoted by χ(G).

The line graph L(G) of a graph G is the graph on the edges, 2 of which form an edge if and only if they

share a common vertex.

Let G1 = (V1, E1) and G2 = (V2, E2) be 2 nonempty graphs on (disjoint) sets of r and s vertices. The

Cartesian product G1□G2 is the graph with vertex set V1 × V2 and (x1, x2)(y1, y2) is an edge if and only if

either x1y1 ∈ E1 and x2 = y2 or x2y2 ∈ E2 and x1 = y1 , whereas the tensor product (also known as the

categorical or weak product) G1×G2 is the graph with vertex set V1×V2 , where 2 vertices (x1, x2)(y1, y2) are

adjacent if and only if both x1y1 ∈ E1 and x2y2 ∈ E2 . The strong product G1 ⊠G2 is the graph with vertex

set V1 ×V2 and edge set (E(G1□G2))∪ (E(G1 ×G2)). Furthermore, their disjoint union G1 ∪G2 is the graph

G1 ∪G2 = (V1 ∪V2, E1 ∪E2), and their join G1 ∨G2 is the graph on n = r+ s vertices obtained from G1 ∪G2

by inserting new edges from each vertex of G1 to each vertex of G2 . We write nG to denote the disjoint union

of n copies of G . A (graph) homomorphism ϕ : G1 → G2 is a mapping from V1 to V2 such that ϕ(x)ϕ(y) ∈ E2

whenever xy ∈ E1 .

For a given positive integer n , we denote by
(
[n]
k

)
the set of k -subsets of [n] . The Kneser graph K(n; k)

for 2k − 1 ≤ n is defined to be the simple graph on
(
[n]
k

)
, where 2 vertices form an edge if and only if they are

disjoint. Note that K(n; 1) is the n -vertex complete graph, and K(2k − 1, k) is the null-graph.

The fractional chromatic number χf (G) of a graph G is defined to be the infimum of the fractions n
k

such that there exists a graph homomorphism from G to K(n; k) (see [2, 16]).

2.2. Hypergraphs

A hypergraph is a set system H = (V, E), where V is a set, the set of vertices of H , and E ⊆ 2V . The

hypergraphs that we consider may have loops; that is, E may contain singletons as edges. However, we do not

allow repeated edges in general. A hypergraph H = (V, E) is said to be simple if A ⊈ B and B ⊈ A for any 2

edges A,B ∈ E . We call a hypergraph r -uniform if all of its edges have the same cardinality r .

When S ⊆ V , the induced subhypergraph of H by the set S is defined to be the hypergraph H[S] :=

{A ∈ E : A ⊆ S} .
A mapping κ : V → [m] is a (proper) coloring of a hypergraph H = (V, E) if none of the edges of H

are monochromatic under κ . The least integer m for which H admits a coloring with m colors is called the

chromatic number of H and denoted by χ(H). The r -colorability defect cdr(H) of a hypergraph H is defined

by

cdr(H) := min{|S| : S ⊆ V and χ(H[V \S]) ≤ r}.

Given a hypergraph H = (V, E), the Kneser r -hypergraph of H , denoted by Kr(H), has vertex set E ,
and an r -tuple (A1, . . . Ar) of edges of H forms an edge iff Ai ∩ Aj = ∅ for all i ̸= j . We will simply write

Kr(n; k) when H = ([n],
(
[n]
k

)
).
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3. Hyper-H (hyper)graphs

In this section, we introduce our main objects of study, hyper-H (hyper)graphs; provide various examples; and

construct some known (hyper)graphs as hyper-H (hyper)graphs. We choose to state the definition as broadly

as possible.

Definition 3.1 Let G be a graph and let H be an induced subgraph of G containing at least one edge. Then

G is said to be H -decomposable if there exists a family {H1, . . . ,Hs} consisting of induced subgraphs of G ,

each being isomorphic to H such that G[∪t
i=1Hi] ∼= G , and the integer t is called the size of this decomposition.

When G is H -decomposable, the least integer d for which G admits an H -decomposition of size d is called

the H -width of G and denoted by wH(G) . In case G is not H -decomposable, we set wH(G) := ∞ .

In particular, when H is a k -complete for some k ≥ 2, we call wKk
(G) the k -clique-width of G and

denote it by cwk(G). Note that wH(G) <∞ if and only if any vertex of G is contained by at least one induced

copy of H in G . Similarly, when H is a k -path for some k ≥ 2, we call wPk
(G) the k -path-width of G and

denote it by pwk(G).

Definition 3.2 Let G be a graph and let H be an induced subgraph of G containing at least one edge. For a

given family F of graphs, we define the hyper-H hypergraph HH(G;F) = (VH(G), EH(G)) of G with respect

to F by taking VH(G) to be the set of induced copies of H in G , and {A1, . . . , At} ∈ EH(G) if and only if

there exists F ∈ F satisfying wH(F ) = t such that G[∪t
i=1Ai] ∼= F .

When HH(G;F) is just an ordinary graph, we call it as the hyper-H graph of G with respect to F ,

which is only possible when wH(F ) = 2 for all F ∈ F . We also abbreviate HH(G; {F}) to HH(G;F ) .

We generally refer to G as the source (or ground) graph of HH(G;F), and to F as the reference family of our

operator.

Throughout the paper we only deal with 2 particular cases: H = Kk for some 2 ≤ k ≤ ω(G) and

H = Pk for some k ≥ 2, where we call the resulting hypergraphs the k -hypercomplete hypergraph and k -

hyperpath hypergraph of G and denote them by Hk(G;F) and HPk(G;F), respectively.

Example 3.3 If we consider the graph G illustrated in Figure 1, then H2(G;K1,3) is a 3-uniform hypergraph

on the set {1, 2, . . . , 8} with edges {1, 2, 4}, {2, 3, 5}, {4, 6, 7} , and {5, 7, 8} . We also note that HP3(G;K1,3) ∼=
4K3 .

1                         2 3

6                            7 8

G

4                                   5

Figure 1. A graph G with the corresponding edge labeling.
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We remark that the hypergraph Hk(G;F) does not have to be a simple hypergraph in general. For instance,

H2(G; {P3,K1,3}) contains both {1, 2} and {1, 2, 4} as edges for the graph G of Figure 1. This may be overcome

by assuming that if F ∈ F and F ′ is an induced subgraph of F with cwk(F
′) <∞ , then F ′ /∈ F .

Example 3.4 For a given graph G , its 2-hypercomplete graph with respect to the family {P3,K3} is isomorphic

to the line graph of G ; that is, H2(G; {P3,K3}) ∼= L(G) . This easily follows from the fact that for any 2

intersecting edges in G , the set of vertices incident to these edges induces either a P3 or a K3 .

In fact, our construction generalizes many of the known operators on graphs when k = 2. For instance,

H2(G;P3) is the Gallai’s graph of G , H2(G;P4) is the wing-graph of G , and H2(G; {P4, C4}) is the Chvatal’s

graph of G (see [3] for details).

It may be useful to note that H2(G;F) is a graph if and only if F is a subset of the set of graphs depicted

in Figure 3.

P3 K3 P4 2K2 C4 K4 3-pan K4 − e

Figure 2. Graphs with cw2(G) = 2.

The power of the hypercompletion operator comes from the fact that many classical results related to

Kneser graphs have generalizations to hypercomplete graphs along almost the same lines. We therefore have

the chance to expand known results to a wider class of graphs. This section offers such a treatment.

It is easy to verify that if H is an induced subgraph of G , then Hk(H;F) is an induced sub(hyper)graph

of Hk(G;F) for any family F and any integer k ≤ ω(H). Similarly, if F ′ is a subfamily of F , then Hk(G;F ′)

is a (not necessarily induced) sub(hyper)graph of Hk(G;F) for any graph G .

As we mentioned earlier, our starting point to introduce hypercomplete graphs begins with the following

observation.

Proposition 3.5 If 2 ≤ k ≤ ⌊n
2 ⌋ , then Hk(Kn;K2k) ∼= K(n; k) .

Proof Once we assume that V (Kn) = [n] , the claim follows, since 2 k -completes A,B of Kn are disjoint if

and only if Kn[A ∪B] ∼= K2k . 2

Remark 3.6 It is well known that any graph can be obtained as an induced subgraph of some Kneser graph [5];

however, for an arbitrary graph G , it is not true that the graph Hk(G;K2k) is an induced subgraph of K(n; k)

for some n ≥ 2k . For instance, if we consider the graph G illustrated in Figure 3.6, there exists no integer n

such that H2(G;K4) is an induced subgraph of K(n; 2) . This is clearly due to the fact that being disjoint is not

enough to form an edge of the hypercomplete graph for any 2 completes.

We may readily extend the construction of Kneser graphs as hypercomplete graphs to a general graph

family obtained from the complete graphs by the same manner.
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c

d

e

a

b

Figure 3. A graph G for which H2(G;K4) is not an induced subgraph of K(n; 2) for any n .

Suppose that n, r, s ∈ N are given with 1 ≤ s < r ≤ ⌊n
2 ⌋ . We then define IK(n, r; s) to be the graph

whose vertices are the r -element subsets of [n] , 2 of which form an edge if and only if their intersection is a set

with s-element. We omit the proof of the following obvious fact.

Proposition 3.7 Let n, r, s be integers with 1 ≤ s < r ≤ ⌊n
2 ⌋ . Then Hr(Kn;K2r−s) ∼= IK(n, r; s) .

We particularly note that the graph Hk(Kn;Kk+1) is the well-known Johnson graph J(n; k), whose vertices

are k -element subsets of [n] , and 2 such sets form an edge if and only if their intersection has exactly k − 1

elements (see the discussion after Theorem 4.13).

It may be expected that our construction will always produce simple graphs if we choose the reference

family to be the one consisting of a single complete graph. However, this is not the case. As an example,

we consider Hk(Kn;Krk) for integers satisfying 2k + 1 < n and 2 < r ≤ ⌊n
k ⌋ . It is easily seen that

Hk(Kn;Krk) ∼= Kr(n; k). On the other hand, it should be noted that the hypergraph Hk(G;Krk) is not

in general isomorphic to the Kneser r -hypergraph of (V, Ck(G)) for an arbitrary graph G = (V,E) and integers

with 2k+1 < ω(G) and 2 < r ≤ ⌊ω(G)
k ⌋ . Moreover, Hk(G;Krk) does not have to be an induced subhypergraph

of Kr(n; k) for some n .

One other family of graphs that we will construct as hypercomplete graphs are stable Kneser graphs, also

known as Schrijver graphs [15].

In order to construct SK(n; k) as a hypercomplete graph, we first point out that any stable subset S of

[n] corresponds to an independent set in the cycle Cn . When n ≥ 4, we call SKn := Cn the stable complete

graph of order n .

Proposition 3.8 For all integers n, k with 1 < k ≤ ⌊n
2 ⌋ , we have

SK(n; k) ∼=

{
Hk(SK2k;SK2k), if n = 2k,

Hk(SKn; {Pr1 ∪ . . . ∪ Prs : r1 + . . .+ rs = 2k, ri ≥ 1}), otherwise.

Proof It is enough to show that if A and B are two stable k -subset of [n] = V (Cn), then A ∩B = ∅ if and

only if Cn[A ∪B] ∼= Pr1 ∪ . . . ∪ Prs for some partition of 2k , which trivially holds. 2

4. Generalized Lovász–Kneser theorem

The generalization of the Lovász–Kneser theorem to Kneser hypergraphs was the main subject of many recent

papers [1, 9, 10, 13, 17]. There are 2 main approaches that differ on whether to allow edges consisting

7
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of multisubsets of the ground set together with intersection multiplicities. We here only consider Kneser

hypergraphs of hypergraphs whose edges consist of ordinary subsets of the vertex set without multiplicities.

In this restricted context, there is a well-known lower bound due to K ř i ž [9, 12].

Theorem 4.1 ([9]) For any (finite) hypergraph H = (V, E) and any r ≥ 2 , we have χ(Kr(H)) ≥ 1
r−1 ·cdr(H)).

We should also note that the upper bound in the specific case of χ(Hk(Kn;Krk)) was first constructed

by Erdös [4] (see also Ziegler [17]), which is just a modification of Kneser’s upper bound for K(n; k), and the

lower bound is the simple extension of Dol’nikov’s 2-colorability defect [12].

Theorem 4.2 Let G be a graph with ω(G) = χ(G) = n . Then for any integers k and r satisfying 2k+1 ≤ n

and 2 ≤ r ≤ ⌊n
k ⌋ , we have

χ(Hk(G;Krk)) = ⌈n− r(k − 1)

r − 1
⌉.

Proof The lower bound follows from Theorem 4.1, since ω(G) = n , implying that Hk(Kn;Krk) is an induced

subhypergraph of Hk(G;Krk). For the upper bound, we simply follow Erdös. We let λ : V (G) → [n] be a

proper coloring of G and define Λ: V (Hk(G;Krk)) → [m] by

Λ(A) := min{⌈ 1

r − 1
min{λ(A)}⌉,m},

where λ(A) := {λ(a) : a ∈ A} and m := ⌈n−r(k−1)
r−1 ⌉ . Suppose that {A1, . . . , Ar} is a monochromatic edge of

Hk(G;Krk) under Λ. If Λ(Aj) = i < m for all 1 ≤ j ≤ r , then there must exist a vertex aj ∈ Aj with λ(aj) = i

for each j ∈ [r] . However, this is impossible since G[∪r
j=1Aj ] ∼= Krk . On the other hand, if Λ(Aj) = m for

each j ∈ [r] , it follows that ∪r
j=1λ(Aj) ⊆ {(r− 1)m, (r− 1)m+ 1, . . . , n} . This is also impossible, since the set

on the left-hand side contains exactly rk elements by G[∪r
j=1Aj ] ∼= Krk , while on the right-hand side there are

at most rk − r + 1 elements. 2

Corollary 4.3 If G is a graph with χ(G) = ω(G) , then χ(Hk(G;K2k)) = χ(G)− 2k + 2 for any k ≤ ⌊ω(G)
2 ⌋ .

In general, the condition χ(G) = ω(G) in the statement of Theorem 4.2 cannot be dropped. For this, we

consider the graph G depicted in Figure 4. Note that χ(G) = 5 and ω(G) = 4, while χ(H2(G;K4)) = 2.

We may, however, obtain a lower and an upper bound in the general case in the view of Theorem 4.2.

Corollary 4.4 For any graph G and for any integers k and r satisfying 2k + 1 ≤ n and 2 ≤ r ≤ ⌊n
k ⌋ , we

have

⌈ω(G)− r(k − 1)

r − 1
⌉ ≤ χ(Hk(G;Krk)) ≤ ⌈χ(G)− r(k − 1)

r − 1
⌉.

Proof Assume that G is a graph with χ(G) = m > n = ω(G). We then have χ(Hk(G;Krk)) ≥
χ(Hk(Kn;Krk)), since ω(G) = n . On the other hand, let H := G ∪ Km ; that is, H is the disjoint union

of G and Km . We note that χ(H) = ω(H) = m ; hence, χ(Hk(H;Krk)) ≥ χ(Hk(G;Krk)), since G is an

induced subgraph of H . 2

8



CİVAN and TAYLAN/Turk J Math

4
G H2(G; K )

Figure 4. A graph G with χ(G) ̸= ω(G) and its 2-hypercomplete graph H2(G;K4) .

When r = 2, the Corollary 4.3 simply translates that χ(Hk(G;K2k)) ∈ [w(G) − 2k + 2, χ(G) − 2k + 2]

for any k ≤ ⌊ω(G)
2 ⌋ .

Example 4.5 We define Hs
m to be the join of s-copies of the 2m-cycle. If we assume that m, s ≥ 3 , then we

have χ(H2(H
s
m;K2r)) = ⌈ 2s−r

r−1 ⌉ for any s ≥ r > 2 by Theorem 4.2.

Example 4.6 Assume that G = C5 ∨ C5 , the join of the 5-cycle with itself, so ω(G) = 4 and χ(G) = 6 ;

hence, 2 ≤ χ(H2(G;K4)) ≤ 4 by Corollary 4.3. However, the chromatic number of H2(G;K4) is indeed

equal to 3 . To ensure that, we let {a, b, c, d, e} and {A,B,C,D,E} denote the set of vertices of two 5-

cycles respectively with edges in cyclic fashion. We then note that the graph H2(G;K4) is disconnected with

2 connected components; one is isomorphic to the complete bipartite graph K5,5 , induced by the set of vertices

U := {ab, bc, cd, de, ae,AB,BC,CD,DE,AE} , and the other component is isomorphic to C5 × C5 , the tensor

product of C5 with itself, induced by the rest of the vertices of H2(G;K4) .

The above analysis can naturally be generalized to higher order odd cycles. In other words, if we set

Gr := C2r+1 ∨C2r+1 for r ≥ 2 , then the vertices of H2(Gr;K4) corresponding to the initial edges of the copies

of C2r+1 in Gr form a complete bipartite graph K2r+1,2r+1 , and the rest of the vertices induce the component

being isomorphic to the tensor product C2r+1 × C2r+1 . Therefore, χ(H2(Gr;K4)) = 3 .

Proposition 4.7 If G is a graph and 2k ≤ ω(G) , then ω(Hk(G;K2k)) = ⌊ω(G)
k ⌋ .

Proof Let W = {A1, . . . , As} be a complete of Hk(G;K2k). Then G[Ai ∪ Aj ] ∼= K2k for all i, j ∈ [s] with

i ̸= j . Therefore, we must have G[∪s
i=1Ai] ∼= Ksk , which in turn implies that ω(Hk(G;K2k)) = ⌊ω(G)

k ⌋ as

claimed. 2

Our next computation concerns the independence numbers of hypercomplete graphs Hk(G;K2k). We

first point out that the classical result of Erdös–Ko–Rado [7] takes the following simple form in the language of

hypercomplete graphs.

Theorem 4.8 (Erdös–Ko–Rado Theorem) If n ≥ 2k , then

ω(Hk(Kn; {Kk+1,Kk+2, . . . ,K2k−1})) =
(
n− 1

k − 1

)
.

9



CİVAN and TAYLAN/Turk J Math

Therefore, we have α(Hk(Kn;K2k)) =
(
n−1
k−1

)
whenever 2k ≤ n . It seems that we are not that lucky

for the general case. We are only able to propose the computation with respect to particularly chosen graphs.

We remark that what really differs from the specific case of complete graphs is that the consideration of

the maximal intersecting families of k -completes is not enough to deduce the result for an arbitrary graph.

Furthermore, the maximal independent sets do not have to be uniquely determined, as opposed to the cases of

many generalizations of the Erdös–Ko–Rado theorem [6].

Let G = (V,E) be a graph. We denote the strong product graph G⊠Km by G[m] for any m ≥ 2. As

an example, the graph P
[2]
3 is depicted in Figure 5.

P
[2]
3 H2(P

[2]
3 ; K4)

aa b

b

cc d

d

e

e

ff

g

g

hh

kk l

l

m

m

Figure 5. The graph P
[2]
3 and its 2-hypercompletion.

The reason why we consider the strong product of a graph with complete graphs is that ω(G[m]) =

m · ω(G), while α(G[m]) = α(G) for any graph G and m ≥ 2.

Proposition 4.9 For any 2 ≤ k ≤ m and n ≥ 2 , we have

α(Hk(P
[m]
n ;K2k)) =

{
(n− 1) ·

(
2m−1
k−1

)
− ⌊n−1

2 ⌋ ·
(
m−1
k−1

)
, if n is even,

(n− 1) ·
(
2m−1
k−1

)
− ⌊n−2

2 ⌋ ·
(
m−1
k−1

)
, if n is odd.

(4.10)

Proof We verify the claim by the help of Theorem 4.8 together with an analysis of Hk(P
[m]
n ;K2k). We write

V (P
[m]
n ) = {(i, j) : i ∈ [n] and j ∈ [m]} , and we define Vi := {(i, r), (i + 1, r) : r ∈ [m]} and Ri := P

[m]
n [Vi] for

i ∈ [n − 1]. Similarly, we let Uj := {(j, r) : r ∈ [m]} and Tj := P
[m]
n [Uj ] for 2 ≤ j ≤ n − 1. We note that

Ri
∼= K2m and Tj ∼= Km . We then consider the families of k -completes of P

[m]
n defined by

A2r−1 := {A ∈ Ck(R2r−1)|(2r − 1, 1) ∈ A} and A2r := {A ∈ Ck(R2r)\Ck(T2r)|(2r, 1) ∈ A}

whenever 2r−1, 2r ∈ [n−1]. When n is even, it is straightforward to show that ∪n−1
i=1 Ai is an independent set

in Hk(P
[m]
n ;K2k) with the requested cardinality. When n is odd, we consider the independent set ∪n−2

i=1 Ai∪An ,

where Wn := {(n − 1, r), (n, r) : r ∈ [m]} , Sn := P
[m]
n [Wn] and An := {A ∈ Ck(Sn) : (n, 1) ∈ A} . This proves

the lower bound.

For the upper bound, we simply note that the contribution of k -completes contained by any 2 consecutive

2m-cliques Ri and Ri+1 to an independent set of Hk(P
[m]
n ;K2k) can not be greater than [2

(
2m−1
k−1

)
−
(
m−1
k−1

)
] . 2

Our next aim is to prove an analogue of Schrijver’s result [15] for hypercomplete graphs.

Definition 4.11 Suppose that κ is a proper n-coloring of G , where χ(G) = n . When 2k ≤ ω(G) , we call a k -

complete S of G κ-stable if κ(S) := {κ(s) : s ∈ S} is a stable set in [n] . We define the stable k -hypercomplete

10
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graph SHκ
k(G;K2k) of G with respect to κ to be the graph with vertex set consisting of all κ-stable k -completes

of G , where 2 such sets form an edge if and only if their set union induces a 2k -complete in G .

Corollary 4.12 Let κ be a proper n-coloring of a graph G with n = χ(G) = ω(G) . Then χ(SHκ
k(G;K2k)) =

χ(G)− 2k + 2 for any k ≤ ⌊n
2 ⌋ .

Proof The upper bound is provided by the fact that SHκ
k(G;K2k) is an induced subgraph of Hk(G;K2k),

and the lower bound is a consequence of Schrijver’s theorem, since ω(G) = n . 2

As noted earlier, the graphs SHκ1

k (G;K2k) and SHκ2

k (G;K2k) are not in general isomorphic for any

distinct 2 n-colorings κ1 and κ2 of G . Furthermore, these subgraphs need not be always vertex-critical.

For instance, we consider two 4-colorings κi : V (P
[2]
3 ) → [4] of P

[2]
3 depicted in Figure 6. Note that neither

SHκ1
2 (P

[2]
3 ;K4) nor SHκ2

2 (P
[2]
3 ;K4) is vertex-critical.

κ1 : V (P
[2]
3 ) → [4] κ2 : V (P

[2]
3 ) → [4]

112
2

2

3

3

3

4 4
44

a
a

bb
cc

dd

ee

f fab

cd

ef

ad

bc

df

ce

Figure 6. Two 4-colorings of P
[2]
3 , and the corresponding stable 2-hypercompletions SHκ1

2 (P
[2]
3 ;K4) and

SHκ2
2 (P

[2]
3 ;K4) of P

[2]
3 , in which the isolated vertices bd and de are deleted.

As we have seen so far, our computations are only valid with respect to an even order complete graph

taken as the reference family. There is one more exceptional case that we examine next.

Theorem 4.13 ω(G)− k + 1 ≤ χ(Hk(G;Kk+1)) ≤ χ(G) for any graph G and any integer k < ω(G) .

Proof Suppose that G is a graph with ω(G) = n ≤ m = χ(G). Since G contains an induced Kn , the

graph Hk(G;Kk+1) must contain an induced Kn−k+1 ; thus, χ(Hk(G;Kk+1)) ≥ n − k + 1. Let λ : V (G) →
{0, 1, . . . ,m − 1} be a proper m-coloring of G . We define a coloring Λ: V (Hk(G;Kk+1)) → {0, 1, . . . ,m − 1}

of Hk(G;Kk+1) by Λ({x1, . . . , xk}) :=
∑k

i=1 λ(xi) (mod m) for any k -complete {x1, . . . , xk} of G . Suppose

that Λ(A) = Λ(B) for 2 k -completes of G . If G[A∪B] ∼= Kk+1 , then we must have |A∩B| = k− 1. We may

therefore let A = {x1, . . . , xk−1, y} and B = {x1, . . . , xk−1, z} . However, the equality Λ(A) = Λ(B) implies

that λ(y) = λ(z); that is, yz /∈ E(G). Therefore, G[A∪B] ≇ Kk+1 , a contradiction. So, Λ is a proper coloring

of Hk(G;Kk+1) as claimed. 2

In the particular case where k = 2, Theorem 4.13 forces n − 1 ≤ χ(H2(G;K3)) ≤ n whenever

χ(G) = ω(G) = n ≥ 2 for a given graph G . We also remark that both bounds are attainable in this special case.

For example, if G = K2r , then χ(H2(K2r;K3)) = 2r− 1, and similarly, χ(H2(K2r−1;K3)) = 2r− 1 for r ≥ 2,

as the resulting hypercomplete graphs simply correspond to the line graphs of complete graphs. Furthermore,

the graphs Hk(G;Kk+1) can be considered as the generalized Johnson graphs, since Hk(G;Kk+1) ∼= J(n; k),

when G = Kn as noted earlier.

11
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Example 4.14 We let Hr := C2r ∨C2r for r ≥ 2 , and we consider the graph H2(Hr;K3) . By Theorem 4.13,

we must have 3 ≤ χ(H2(Hr;K3)) ≤ 4 . In fact, we claim that χ(H2(Hr;K3)) = 3 . To verify that, we first

note that the graph H2(Hr;K3) is a connected graph with 4r(r + 1) vertices. If U is the set of vertices of

H2(Hr;K3) corresponding to the initial edges of copies of C2r , then U is an independent set. On the other

hand, the subgraph of H2(Hr;K3) induced by the set V (H2(Hr;K3))\U is isomorphic to the Cartesian product

C2r□C2r from which the claim follows.

4.1. Fractional chromatic number and examples

In this subsection, we prove the fractional analogue of the generalized Lovász–Kneser theorem that turns out

to have no difference from the specific case of complete graphs.

Theorem 4.15 If G is a graph with χ(G) = ω(G) = n , then χf (Hk(G;K2k)) =
n
k for any k ≤ ⌊ω(G)

2 ⌋ .

Proof For the upper bound, we construct an explicit graph homomorphism from Hk(G;K2k) to Hk(Kn;K2k).

Since ω(G) = n , a copy of Kn is contained in G as an induced subgraph. We let κ : V (G) → [n] be a proper

n-coloring of G , and we define ψ : V (G) → V (Kn) ⊆ V (G) by ψ(v) = x if and only if κ(v) = κ(x).

If we define Ψ: V (Hk(G;K2k)) → V (Hk(Kn;K2k)) by Ψ(A) := {ψ(a) : a ∈ A} , we claim that Ψ is a

graph homomorphism. We first note that if a, b ∈ A , then we necessarily have ψ(a) ̸= ψ(b) so that Ψ(A) is a k -

complete in Kn . On the other hand, if G[A∪B] ∼= K2k for some A,B ∈ V (Hk(G;K2k)), then Ψ(A)∩Ψ(B) = ∅ .
We therefore conclude that χf (Hk(G;K2k)) ≤ n

k .

For the other direction, we simply note that χf (Hk(G;K2k)) ≥ χf (Hk(Kn;K2k)) =
n
k , since G contains

an induced Kn . 2

Following the same steps in the proof of Corollary 4.3, we can easily obtain the following by Theorem

4.15.

Corollary 4.16 χf (Hk(G;K2k)) ∈ [ω(G)
k , χ(G)

k ] for any graph G and any integer k ≤ ⌊ω(G)
2 ⌋ .

Before providing an example, we recall that χf (G∪H) = max{χf (G), χf (H)} for any graphs G and H

[14], and χf (G×Cs) = min{χf (G), χf (Cs)} for any graph G and any integer s ≥ 3 by a recent result of Alon

and Lubetzky [2].

Example 4.17 Consider the graph Gr := C2r+1 ∨ C2r+1 for r ≥ 2 . We know from Example 4.6 that

H2(Gr;K4) ∼= K2r+1,2r+1 ∪ (C2r+1 × C2r+1) . By Corollary 4.16, we have χf (H2(Gr;K4)) ∈ [2, 3] . On the

other hand, we note that χf (K2r+1,2r+1) = 2 and χf (C2r+1) = 2 + 1
r , since both K2r+1,2r+1 and C2r+1

are vertex-transitive ([14]). By the same reason together with Alon and Lubetzky’s result, we conclude that

χf (H2(Gr;K4)) = 2 + 1
r for any r ≥ 2 .

We next provide examples of graphs such that there is a large gap between their chromatic and fractional

chromatic numbers, as we promised. Let us first mention an already existing example. The Kneser graph

Hk(K3k−1;K2k) contains no triangle while having chromatic number k + 1 for k ≥ 2. By Corollary 4.3 and

Theorem 4.15, any graph (other than complete graphs) whose clique and chromatic numbers are equal to 3k−1

will produce a new example of a graph with the desired property.

12



CİVAN and TAYLAN/Turk J Math

Example 4.18 We may consider the complete t-partite graphs Kn1,...,nt with ni ≥ 2 . By choosing t = 3k−1 ,

we conclude that χ(Hk(Kn1,...,n3k−1
;K2k)) = k+1 , while it contains no triangle and χf (Hk(Kn1,...,n3k−1

;K2k)) =

3− 1
k .

Example 4.19 Let m, s ≥ 2 be given. Recall that Hs
m is the join of s-copies of the 2m-cycle. If we choose

k > 2 and s = 2k + 1 , then χ(Hk(H
2k+1
m ;K2k)) = 2k + 4 by Corollary 4.3, ω(Hk(H

2k+1
m ;K2k)) = 4 by

Proposition 4.7, and χf (Hk(H
2k+1
m ;K2k)) = 4 + 2

k by Theorem 4.15.

5. Hyperpath hypergraphs

In this section, we provide a study of the chromatic number of hyperpath (hyper)graphs HPk(G;Pm), where we

implicitly assume that the source graph G is always Pm -dense in the sense that any vertex of G is contained

in an induced m-path of G , since otherwise we have HPk(G;Pm) ∼= HPk(G − x;Pm), if x ∈ V (G) is not

contained by any m-path of G . We note that HPk(G;Pm) is a simple graph whenever k < m ≤ 2k . For

notational purposes, if A = {x1, . . . , xk} is a vertex of HPk(G;Pm), we then assume that xixi+1 ∈ E(G) for

any 1 ≤ i < k , and we call x1 and xk the ends of A .

We first show that every graph can be obtained as an induced subgraph of a hyperpath graph, for which

we first need a definition.

Definition 5.1 Let G = (V,E) be a graph and let S = {x11, x12, . . . , x1n} ⊆ V be given. For any given

k ≥ 2 , we define the whisker WS
k (G) of G of length k with respect to S to be the graph whose vertex set is

V S
k (G) := V ∪{xji : 1 < j ≤ k and i ∈ [n]} and whose edge set is ES

k (G) := E∪{xjix
j+1
i : 1 ≤ j < k and i ∈ [n]} .

In particular, we write Wk(G) when S = V .

Lemma 5.2 For any given graph G , the hyperpath graph HPk(Wk(G);P2k) contains G as an induced subgraph

for any k ≥ 2 .

Proof Denote by Ai the vertex of HPk(Wk(G);P2k) induced by the set of vertices {x1i , . . . , xki } ; then

AiAj ∈ E(HPk(Wk(G);P2k)) if and only if x1ix
1
j ∈ E(G), from which the claim follows. 2

As opposed to the case of hypercompletion Hk(G;K2k), the chromatic number of HPk(G;P2k) may

well exceed that of G . This is easily verified when k is even, since, for example, the graph HP2(C6;P4) has

chromatic number 3. When k is odd, it is rather illusive to construct such examples. However, we provide one

such example as follows.

Example 5.3 Let G be the graph depicted in Figure 7a . It is straightforward to check that χ(G) = 3 , while

the graph HP3(G;P6) contains a 4-complete illustrated in Figure 7b ; hence, it has a chromatic number of at

least 4 .

There is still a chance that χ(G) and χ(HPk(G;P2k)) may well be equal.

Proposition 5.4 If G is bipartite and k ≥ 3 is an odd integer, then χ(HPk(G;Pm)) = 2 for any m ≥ 2k .

Proof Let V (G) = U1 ∪ U2 be the bipartition. Since k is odd, any k -path in G has its ends in either U1 or

U2 . Therefore, if we color any such k -path by i if its ends are contained by Ui for i = 1, 2, this is definitely a

proper coloring of HPk(G;Pm). 2
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Figure 7. A graph G for which the chromatic number of HP3(G;P6) exceeds that of G .

Even if there seems to be no general relation between χ(G) and χ(HPk(G;Pm)), we can bound the

latter by the k -distance chromatic number of the source graph for a particularly chosen m . We recall that a

k -distance coloring of a graph G is a vertex coloring of it, in which 2 vertices lying at a distance of less than or

equal to k must be assigned different colors. The minimum number of colors needed in such a coloring is called

the k -distance chromatic number of G and is denoted by χk(G). In terms of graph operations, χk(G) is equal

to the chromatic number of Gk , the kth-power graph of G , which is the graph on the same set of vertices such

that any 2 vertices whose distance is at most k are adjacent.

Theorem 5.5 For any graph G and any integer k ≥ 2 , we have χ(HPk(G;Pk+1)) ≤ χk(G) and χ(HPk(G;P2k))

≤ χ2k−1(G)− 2k + 2 .

Proof If A is a k -path in G , then it is a k -complete of Gr when k − 1 ≤ r ≤ 2k . Therefore, the inclusion

maps HPk(G;Pk+1) ↪→ Hk(G
k;Kk+1) and HPk(G;P2k) ↪→ Hk(G

2k−1;K2k) are graph homomorphisms; hence,

claims follow from Theorem 4.13 and Corollary 4.3. 2

Theorem 5.6 For any graph G and any integer k ≥ 2 , we have χ(HPk(G;P2k)) ≤ 2∆(G)−1 , and this bound

is tight.

Proof Suppose ∆ = ∆(G) and let A = {x1, . . . , xk} be a vertex of HPk(G;P2k). If B is any other vertex of

HPk(G;P2k) satisfying AB ∈ E(HPk(G;P2k)), then we must have either NG(x1)∩B ̸= ∅ or NG(xk)∩B ̸= ∅ .
When NG(x1) ∩ B ̸= ∅ , we say that B is a neighbor of A at x1 , and similarly B is a neighbor of A at xk if

NG(xk) ∩ B ̸= ∅ . Now, if B1, . . . , Br are neighbors of A at x1 , we must have Bi ∩ Bj = ∅ for any distinct

i, j ∈ [r] in order to maximize the degree of A in HPk(G;P2k); thus, r ≤ ∆ − 1, which in turn implies the

claim by Brooks’ theorem.

For tightness, let D(r, k) be the graph defined for r > 1 on the set V (D(r, k)) = V1 ∪ V2 ∪ V3 , where

V1 = {x1, . . . , xk} , V2 = {y11 , . . . , y1k, . . . , y
(r−1)
1 , . . . , y

(r−1)
k } and V3 = {z11 , . . . , z1k, . . . , z

(r−1)
1 , . . . , z

(r−1)
k } with

the set of edges:

E(D(r, k)) ={xixi+1 : 1 ≤ i < k} ∪ {ysi ysi+1 : 1 ≤ i < k and 1 ≤ s ≤ r − 1}

∪ {zsi zsi+1 : 1 ≤ i < k and 1 ≤ s ≤ r − 1} ∪ {x1ys1 : 1 ≤ s ≤ r − 1}

∪ {xkzs1 : 1 ≤ s ≤ r − 1} ∪ {yskzsk : 1 ≤ s ≤ r − 1}

∪ {yp1y
q
1 : 1 ≤ p < q ≤ r − 1} ∪ {zp1z

q
1 : 1 ≤ p < q ≤ r − 1}.
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Note that ∆(D(r, k)) = r , and it is easy to check that the hyperpath graph HPk(D(r, k);P2k) contains

a (2r − 1)-complete. 2

There are other ways to bound χ(HPk(G;P2k)) that we state next, while noting that the computation

of χ(HP2(G
k−1;P4)) or χ(H2(G;K4 − e)) seems to be as difficult as that of χ(HPk(G;P2k)), where K4 − e

denotes the complete graph on 4 vertices with an edge removed (see Figure 3).

Proposition 5.7 Let G be a graph. Then χ(HPk(G;P2k)) ≤ χ(HP2(G
k−1;P4)) for any k ≥ 2 and χ(HPk(G;P2k)) ≤

χ(H2(G;K4 − e)) for any k > 2 .

Proof If A = {x1, . . . , xk} is a vertex of HPk(G;P2k), then the mapping Ψ(A) := {x1, xk} defines a graph

homomorphism in either case. 2
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