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Abstract: The inverse scattering problem for the first-order hyperbolic system on the semi-axis in the case of 2 incident

and 2 scattered waves under consideration of 2 problems with the same given incident waves and different boundary

conditions is considered. The scattering data on the semi-axis are given in terms of the scattering operator on the whole

axis for the same system with the coefficients, which are extended in the whole axis by zero.
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1. Introduction

The inverse scattering problem (ISP) for differential equations is the problem of finding their unknown coeffi-

cients from the scattering operator or scattering data. Such an ISP must satisfy the following requirements:

the solution must be unique, the algorithm of the recovering of the coefficients must be given, and the charac-

terization of the scattering data must be determined.

The scattering data are the minimal information from which the ISP can be uniquely solved. Since

the number of known functions in the ISP is greater than the number of unknown coefficients of differential

equations, selection of the minimal information is important for multidimensional inverse problems.

The ISP on the whole axis for the first-order hyperbolic system was solved in [4] via the Gelfand–

Levitan–Marchenko (GLM) equation and the scattering data for the ISP were given in [7,9]. The nonlocal

Riemann–Hilbert (RH) approach to the ISP for the first-order hyperbolic system on the whole axis was studied

in [8]. A connection of the scattering data between GLM and RH approaches was established in [5].

The present paper is devoted to determination of scattering data for the first-order hyperbolic system on

the semi-axis in the case of 2 incident and 2 scattered waves. The uniqueness of the solution of the ISP and

the algorithm of the recovering of the coefficients from the scattering operator on the semi-axis were studied in

[2,3]. The scattering operator on the semi-axis is closely connected with the scattering operator on the whole

axis for the same system with the coefficients that are extended to the whole axis by zero [4]. Thus, the method

of determination and the characterization of scattering data in this paper are similar to [9], in which scattering

data were made for the first-order hyperbolic system on the whole axis.

The paper is organized as follows:

In Section 2, the ISP on the semi-axis is formulated, the scattering operator on the semi-axis is defined,
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and the relationship between the scattering operator on the semi-axis and the scattering operator on the whole

axis for the same system that is extended by zero in the whole axis are studied. The uniqueness and the

algorithm of the solution of the ISP on the semi-axis are established. In Section 3, the scattering data on the

semi-axis and their characterization are given.

2. The solution of the ISP on the semi-axis

Consider the first-order hyperbolic system of 4 equations on the semi-axis R+ = [0,+∞):

ξi
∂ψi(x, t)

∂t
− ∂ψi(x, t)

∂x
=

4∑
j=1

uij(x, t)ψj(x, t), i = 1, 4, (1)

where ξ1 > ξ2 > 0 > ξ3 > ξ4 ; uij(x, t), i, j = 1, 4 are measurable complex-valued functions and they satisfy

the conditions
uii(x, t) = 0, (2)

uij(x, t) ∈ L2(R+ × R,C), i, j = 1, 4; i ̸= j.

We will consider generalized solutions of the system (1), which are measurable in x and t. Here, these

functions belong to space L2(R,C) with respect to variable t and their L2 -norms belong to L∞(R+,C), i.e.
the vector-valued functions ψ(x, t) = col{ψ1, ψ2, ψ3, ψ4} in the space of vector-valued functions with norm

∥ψ∥ = max
k=1,4

vrai sup
x

∥ψk(x, .)∥L2(R) .

We call such solutions admissible.

Every admissible solution of the system (1) with the potential of satisfying conditions (2) admits the

asymptotic representation

ψi(x, t) = ai(t+ ξix) + o(1), (31)

ψi+2(x, t) = bi(t+ ξi+2x) + o(1), i = 1, 2, x→ +∞, (32)

where the functions a1(t), a2(t) ∈ L2(R,C) define a profile of the incident waves and b1(t), b2(t) ∈ L2(R,C)
define a profile of the scattering waves.

The scattering problem on the semi-axis consists of finding the solutions of system (1) in accordance with

the given incident waves a1(t), a2(t) and specified boundary conditions at x = 0.

Consider the 2 scattering problems on the semi-axis for the system (1).

First scattering problem: It is required to find a solution of the system (1) such that the boundary

conditions

ψ3(0, t) = ψ1(0, t), ψ4(0, t) = ψ2(0, t) (4)

and asymptotic relation (31) are satisfied.

Second scattering problem: It is required to find a solution of the system (1) such that the boundary

conditions
ψ3(0, t) = ψ2(0, t), ψ4(0, t) = ψ1(0, t) (5)

and asymptotic relation (31) are satisfied.

We will consider these 2 scattering problems together.
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Theorem 1 (Theorem 2.1, [3]) Let the coefficients of the system (1) satisfy the condition (2). Then for

arbitrary a(t) =

(
a1(t)
a2(t)

)
∈ L2(R,C2) there exists a unique admissible solution of the scattering problems

(1)-(4)-(31) and (1)-(5)-(31).

According to (32 ), the third and fourth components of the solution of the k th (k = 1, 2) scattering

problems admits the asymptotic representation

ψk
3 (x, t) = bk1(t+ ξ3x) + o(1), x→ +∞

ψk
4 (x, t) = bk2(t+ ξ4x) + o(1), x→ +∞ (6)

where bk1(t), b
k
2(t) ∈ L2(R,C). Denote bk(t) =

(
bk1(t)
bk2(t)

)
, k = 1, 2.

According to Theorem 1 and formula (6), for an arbitrary a(t) ∈ L2(R,C2), we can define the operators

S1 = (S1
ij)i,j=1,2 and S2 = (S2

ij)i,j=1,2 in the space L2(R,C2), which translate a(t) to b1(t) and Ha(t) to

b2(t), respectively:

b1(t) = S1a(t), b2(t) = S2Ha(t)

where H =

(
0 1
1 0

)
.

These operators are invertible and they have forms as Sk = I + F k, (Sk)−1 = I + Jk, where F k and

Jk , (k = 1, 2) are Hilbert–Schmidt integral operators.

We will call the operator S = [S1,S2] the scattering operator for the system (1) on the semi-axis with 2

known incident waves.

The problem of finding coefficients of the system (1) from known scattering operators S1 and S2 is called

the ISP on the semi-axis.

Let us define the transmission operator S̃ transforming the boundary data

col{ψ1(0, t), ψ2(0, t), ψ3(0, t), ψ4(0, t)} of the admissible solution to the asymptotic col{a1(t), a2(t), b1(t), b2(t)} .

The following theorem holds for the relationship between operators S and S̃ .

Theorem 2 (Theorem 2, [2]) The transmission operator S̃ is uniquely determined by the scattering operator

S = [S1,S2] on the semi-axis.

Consider the system of differential equations (1) in the whole axis with the coefficients vij(x, t), which

are extended to the whole axis −∞ < x < +∞ by zero, i.e. vij(x, t) =

{
uij(x, t), x ≥ 0,

0, x < 0.
The system of

equation (1) becomes the system

∂ψ̃i(κ, τ)
∂τ

− ξi
∂ψ̃i(κ, τ)

∂κ
=

4∑
j=1

ṽij(κ, τ)ψ̃j(κ, τ), i = 1, 4,

by applying the change of variables x = −τ , t = κ . Here ϕ̃j(κ, τ) ≡ ϕj(−τ,κ). For this system, when the

condition (2) is satisfied, there exist (p. 40, [6]) unique matrix functions w̃(±)(κ, τ ; y) = (w̃
(±)
ij (κ, τ ; y))4i,j=1 ,
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which are solutions of the matrix integral equation

w̃(κ, τ ; y) = h(κ, τ ; y) + (Kw̃)(κ, τ ; y), (7)

in the region ±κ ≥ ±y . Here

h(κ, τ ; y) = (hij(κ, τ ; y))4i,j=1

hij(κ, τ ; y) =
1

ξi − ξj
ṽij(κ +

ξi
ξi − ξj

(y − κ), τ − y − κ
ξi − ξj

),

hii = 0, i = 1, 4

and (Kw)(κ, τ ; y) is the matrix integral operator as follows:

(Kw̃)ij(κ, τ ; y) = − 1

ξi − ξj

4∑
k=1

κ∫
y

ṽik(κ +
ξi

ξi − ξj
(s− κ), τ − s− κ

ξi − ξj
)

w̃kj(κ +
ξi

ξi − ξj
(s− κ), τ − s− κ

ξi − ξj
; y +

ξj
ξi − ξj

(s− κ))ds,

(Kw̃)ii(κ, τ ; y) = −
4∑

k=1

0∫
−∞

ṽik(κ + ξis, τ − s)w̃kj(κ + ξis, τ − s; y + ξjs)ds, i, j = 1, 4.

The solution of (7) admits the following estimates:∥∥∥vraimax
x

∣∣∣w̃(±)(κ, τ ; y)
∣∣∣∥∥∥

L2(R2)
< +∞.

For fixed y and j , the columns of the solution col
{
w̃

(±)
1j (κ, τ ; y), ..., w̃(±)

nj (κ, τ ; y)
}

of (7) are the solution of

the system (1), which are extended in the whole axis by zero.

Let us introduce the matrices

W−(x)f(t) =

t∫
−∞

w(+)(x, t; y)f(y)dy, W+(x)f(t) =

+∞∫
t

w(−)(x, t, y)f(y)dy,

where w(±)(x, t; y) = w̃(±)(t,−x; y).

From (7), the Hilbert–Schmidt kernels w
(±)
ij (x, t, τ) are uniquely determined by the coefficient of the

system (1) and they are related with the coefficient as the following formulas for x ≥ 0:

(ξi − ξj)w
(±)
ij (x, t, t) = ±uij(x, t), i, j = 1, 4. (8)

There exists another transmission operator (p. 51, [3]) Ŝ = I+F̂ in the space L2(R,C4) that is invertible

and admits the left factorization

FxŜF−x = (I +W−(x))
−1(I +W+(x)) (9)
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for every x ≥ 0, where Fx = diag{Tξ1x, Tξ2x, Tξ3x, Tξ4x} is diagonal shift operator with Tξixf(t) = f(t+ξix), i =

1, 4.

The factorization (9) becomes the following matrix factorizations at x = 0 and x = +∞ (p. 56, [3]):

Ŝ = (I +D−)(I + Srz
− )(I + Slz

+ )−1 = (I + Slz)−1(I + Srz)(I +D+), (10)

where I is identity matrix operator, Srz, Srz
− (Slz, Slz

+ ) are strictly lower (upper) triangular Hilbert–Schmidt

matrix operators, and D+, D− are diagonal matrix operators. In addition, Srz
− , D−(S

lz
+ , D+) are upper (lower)

Volterra integral operators.

Two-sided matrix factorization of the operator S̃ are obtained as follows (p. 56, [3]):

S̃ = (I + Srz)(I +D+)(I + Slz
+ ) = (I + Slz)(I +D−)(I + Srz

− ). (11)

In contrast to the general case, if uij(x, t) = 0, x < 0, i, j = 1, 4, the transmission operator Ŝ admits

left matrix factorization on the triangle and Volterra factors as follows:

Ŝ = (I +D−)(I + Srz
− )(I + Slz

+ )−1.

Therefore, we obtain the following theorem by using Theorem 2 and the uniqueness of the representations

(10) and (11).

Theorem 3 The transmission operators S̃ , Ŝ and the scattering operator

S = [S1,S2] on the semi-axis uniquely determine each other.

The following theorem holds for the uniqueness of the ISP on the semi-axis.

Theorem 4 Let S̃ be a transmission operator for the system (1) with the coefficients satisfying condition (2).

Then the coefficients of the system (1) are uniquely determined from the operator S̃ .

Proof Let (u1ij(x, t))
4
i,j=1 and (u2ij(x, t))

4
i,j=1 be 2 coefficients corresponding to transmission operators S̃1

and S̃2 , respectively. Let us show that if S̃1 = S̃2 , then u1ij(x, t) = u2ij(x, t) for i, j = 1, 4. Since the matrix

representation (11) is unique and S̃1 = S̃2 , its factors coincide. Then Ŝ1 and Ŝ2 also coincide by (10). Because

the Volterra factorization (9) is unique, the Volterra factors are equal for the operators FxŜ1F−x and FxŜ2F−x .

Then u1ij(x, t) = u2ij(x, t) by formula (8). 2

The algorithm of finding the coefficients of the system (1) by the scattering operator S = [S1,S2] consists

of the following steps:

If S = [S1,S2] =

(
S1
11 S1

12 S2
11 S2

12

S1
21 S1

22 S2
21 S2

22

)
is the known scattering operator for the system (1) on the

semi-axis with the coefficients satisfying the conditions (2), then:

1. The matrix operator S̃ can be determined with respect to S by Theorem 2 (see [2] for clarification).
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2. The triangle factors of the operator S̃ can be found as a linear system of the operator equation from the

formula (11).

3. The operator Ŝ can be defined from the formula (10).

4. The operator FxŜF−x admits the factorization (9). The Volterra factors W+(x, t, τ) and W−(x, t, τ)

can be found using Krein’s theory of factorization of the second kind of Fredholm integral operator (p.

183, [1]).

5. The coefficients uij(x, t), (i, j = 1, 4; i ̸= j) are defined with respect to the kernels of
(±)

W (x, t, τ) by the

formula (8).

3. Scattering data and their properties

The ISP on the semi-axis means the recovering of the coefficients uij(x, t), x ≥ 0, t ∈ R, (i, j = 1, 4; i ̸= j) of

the system (1) from its scattering operator S = [S1,S2] , where Sk = I + Fk, Fk = (F k
ij)

4
i,j=1, k = 1, 2 and

F k
ijf(x) =

+∞∫
−∞

F k
ij(x, t)f(t)dt, x ∈ R.

As is seen, the scattering operator S is a 2 × 4 matrix integral operator with Hilbert–Schmidt kernels, which

are defined in all planes R2 . However, the coefficients of the system (1) are known in half-plane R+ × R . By

the way, we have 16 functions in the half-plane for which it is needed to find 12 functions (coefficients). This

means that there is overdetermination in finding coefficients of the system (1). Therefore, it is important to

minimize the data of the considered inverse problem.

It is suitable to select the minimal information in terms of operator Ŝ , which is in a one-to-one relation

with S by Theorem 4.

Let

Srz
− = (Sij−)

4
i,j=1,i>j , S

lz
+ = (Sij+)

4
i,j=1,i<j ,

D± = diag (D11±, D22±, D33±, D44±)

in (11). From the representation (10) we obtain that

(I + Srz
− )(I + Slz

+ )−1 = (I +D−)
−1(I + Slz)−1(I + Srz)(I +D+). (12)

From (12), the matrix D− is uniquely determined by the matrix elements of Srz
− and Slz

+ . As is known,

the matrix I + Slz
+ is invertible and its inverse is the same matrix structure as (I + Slz

+ )−1 = I + M lz
+ ,

M lz
+ = (Mij+)

4
i,j=1,i<j .

From (10), we obtain the following left factorizations:

(I +D44−)
−1(I +D44+) = S41−M14+ + S42−M24+ + S43−M34+ + I,

(I +D33−)
−1(I +D33+) = S31−M13+ + S32−M23+ + I −AB,

(I +D22−)
−1(I +D22+) = S21−M12+ + I − EF − CD,

(I +D11−)
−1(I +D11+) = I − LM − JK −GH,

(13)
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where

A = (S31−M14+ + S32−M24+ +M34+)(I +D44+)
−1, G =M14+(I +D44+)

−1,

B = (I +D44−)(S41−M13+ + S42−M23+ + S43−), H = (I +D44−)S41−,

C = (S21−M14+ +M24+)(I +D44+)
−1, J = (M13+ −GB)(I +D33+)

−1,

D = (I +D44−)(S41−M12+ + S42−), K = (I +D33−)(S31− −AH),

E = (S21−M13+ +M23+ − CB)(I +D33+)
−1, L = (M12+ − JF −GD)(I +D22+)

−1,

F = (I +D33−)(S31−M12+ + S32− −AD), M = (I +D22−)(S21− − EK − CH).

It is known from (12) that the factors are uniquely determined by the factorization relations (13). Therefore,

the matrix D− is uniquely determined by Srz
− and Slz

+ . This means that the transmission matrix Ŝ is uniquely

determined by Srz
− and Slz

+ .

Let

Sij−f(t) =

+∞∫
t

sij(t, τ)f(τ)dτ, i, j = 1, 4; i > j,

Sij+f(t) =

t∫
−∞

sij(t, τ)f(τ)dτ, i, j = 1, 4; i < j.

Definition 1 The collection of functions {sij(t, τ), i, j = 1, 4, i > j; sij(t, τ), i, j = 1, 4, i < j}, which are

the kernels of Volterra integral operators {Sij−, i, j = 1, 4, i > j; Sij+, i < j}, is called the scattering data for

the system (1) on the semi-axis.

From the uniqueness of the matrix factorizations (10) and (11), it follows that Ŝ is uniquely determined by

scattering data. Therefore, the scattering operator S = [S1,S2] is also uniquely determined from the scattering

data by Theorem 3.

Theorem 5 Let (sij(t, τ))
4
i,j=1,i>j and (sij(t, τ))

4
i,j=1,i<j be 2 strictly upper and strictly lower triangular matrix

functions, which are zero when τ > t and τ < t , respectively. Suppose that they are matrices with complex

valued square summable entries. The collection {sij(t, τ), i, j = 1, 4, i > j; sij(t, τ), i, j = 1, 4, i < j} is the

scattering data for the system (1) on the semi-axis with the coefficients satisfying the condition (2) if and only

if the matrix FxŜF−x admits the left factorization as in (9), for every x > 0 . Here

Ŝ = (I +D−)(I + Srz
− )(I + Slz

+ )−1,

Srz
− f(t) =

+∞∫
t

(sij(t, τ))
4
i,j=1,i>jf(τ)dτ,
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Slz
+ f(t) =

t∫
−∞

(sij(t, τ))
4
i,j=1,i<jf(τ)dτ,

D− = diag(D11−, D22−, D33−, D44−),

where D11−, D22−, D33− and D44− are defined as in formula (13).

Proof Since the operator FxŜF−x admits left factorization FxŜF−x = (I + W−(x))
−1(I + W+(x)), we

obtain the following operator equation with respect to W−(x) and W+(x):

W±(x) +
(±)

Φ (x) +W±(x)
(±)

Φ (x) = W±(x),

where
(−)

Φ (x) = FxŜF−x − I ,
(+)

Φ (x) = F
(
Ŝ
)−1

F−x − I . These equations can be rewriten with respect to

kernels of its integral operators as below:

ω(x, t; τ)∓
∫ ∓∞

t

ω(x, t; τ)
(±)

Φ (x, s, τ)ds = ∓
(±)

Φ (x, t, τ), (14)

where ω(x, t; τ) =

{
ω(+)(x, t; τ), τ ≤ t,
ω(−)(x, t; τ), τ ≥ t.

These systems of equations are the GLM type of integral equations. Because the factorization (9) is

admitted, these systems are uniquely solvable in the space L2(R,C4) for every 0 < x < +∞; −∞ < t < +∞
and for the arbitrary right hand side function in space L2 (p. 183, [1]). Therefore, we obtain the functions

±uij(x, t) = (ξi − ξj)ω
(±)
ij (x, t; t), i, j = 1, 4 (15)

in the space L2(R+ × R,C).
Now, consider the system (1) with the coefficients (15). It is needed to show that the scattering data

corresponding to the system with the coefficients (15) coincide with the data mentioned in Theorem 5.

By using the equality (14), it can be shown that the vector function

v(x, t; τ) = ω(x, t; τ)− h(x, t, τ)− (Kω)(x, t; τ)

is the solution of the homogeneous case of the equation (14). Since these homogeneous equations have only a

trivial solution, then v(x, t; τ) = 0 and ω(x, t; τ) is a solution of (7) [9]. Therefore, ω(x, t; τ) = w(x, t; τ). This

fact implies that the scattering data related with the kernel w(x, t; τ) coincide with the data {sij(t, τ), i, j =
1, 4, i > j; sij(t, τ), i, j = 1, 4, i < j} . 2

Example 1 Let us recover the coefficients of the system (1) from the scattering data {sij(t, τ), i, j = 1, 4, i >

j; sij(t, τ), i, j = 1, 4, i < j} with s3k(t, τ) = 0, k = 1, 2; s4k(t, τ) = 0, k = 1, 3; s1k(t, τ) = 0, k = 2, 4;

s2k(t, τ) = 0, k = 3, 4 and s21(t, τ) = 0, τ > t; s34(t, τ) = 0, τ > t with s21(t, τ), s34(t, τ) ∈ L2(R2,C) . In
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this case the factorization (9) easily becomes the following expressions with respect to ωij(x, t; τ) :

ω
(−)
ij (x, t; τ) = 0, i, j = 1, 4; (i, j) ̸= (2, 1), (3, 4), τ ≥ t,

ω
(−)
21 (x, t; τ) = −s21(t+ ξ2x, τ + ξ1x), τ ≥ t,

ω
(−)
34 (x, t; τ) =

{
s34(t+ ξ3x, τ + ξ4x), t ≤ τ ≤ t+ (ξ3 − ξ4)x,

0, τ ≥ t+ (ξ3 − ξ4)x,

ω
(+)
ij (x, t; τ) = 0, i, j = 1, 4; (i, j) ̸= (2, 1), (3, 4), τ ≤ t,

ω
(+)
34 (x, t; τ) = −s34(t+ ξ3x, τ + ξ4x), τ ≤ t,

ω
(+)
21 (x, t; τ) =

{
s21(t+ ξ2x, τ + ξ1x), t+ (ξ2 − ξ1)x ≤ τ ≤ t,

0, τ ≤ t+ (ξ2 − ξ1)x.

By using the formula (15), the coefficients are determined as below:

uij(x, t) = 0, i, j = 1, 4; (i, j) ̸= (2, 1), (3, 4),

u21(x, t) = (ξ2 − ξ1)s21(t+ ξ2x, t+ ξ1x),

u34(x, t) = (ξ4 − ξ3)s34(t+ ξ3x, t+ ξ4x).
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