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Abstract: We establish necessary and sufficient conditions on a weight v governing the trace inequality

∥K̂f∥Lq
v(Ê) ≤ C∥f∥Lp(E),

where E is a cone on a homogeneous group, Ê := E×R+ and K̂ is a positive kernel operator defined on Ê . Compactness

criteria for this operator are also established.
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1. Introduction

Our aim is to establish Lp(E) → Lq
v(Ê) boundedness/compactness criteria for the generalized integral operators

K̂f(x, t) =

∫
Er(x)

k̂(x, y, t)f(y)dy, (x, t) ∈ Ê, (1)

where Er(x) and E are certain cones in a homogeneous group G , and Ê := E×R+ . Here k̂ : {(x, y) ∈ E×E :

r(y) < r(x)} × [0,∞) → R+ is a kernel and v is an almost everywhere positive function on Ê (i.e. weight). It

should be emphasized that the results are new even for Euclidean case G = Rn .

The problems studied in this paper can be considered as a natural continuation of the investigation

carried out in [3] (see also [21], Ch. 3), where the authors derived the similar results for the operator

Kf(x) =

∫
Er(x)

k(x, y)f(y)dy, x ∈ E,

defined on cones of homogeneous groups.

Our conditions on the kernel k̂ are similar to those introduced in [20] (see also [5], Sec. 2.10) for one-

dimensional cases and include kernels of variable parameter fractional integrals on the half-space. In that paper

appropriate examples of kernels defined on R2
+ were also given.
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We point out that the trace inequality

||Iαf ||Lq
v(Ω×R+) ≤ C||f ||Lp(Ω), 1 < p < q < ∞,

where Ω ⊂ Rn is a domain and

Iαf(x, t) =

∫
Ω

(|x− y|+ t)α−nf(y)dy, 0 < α < n,

was characterized by Adams [1] (see also [8] for a more general case).

A complete description of a weight pair (v, w) ensuring the 2-weight inequality for Iα in the case

1 < p < q < ∞ was established in [7]. Sawyer-type necessary and sufficient conditions governing the 2-

weight boundedness of Iα and corresponding Hörmander-type maximal operator were obtained in [26]. In

[12] necessary and sufficient conditions governing the trace inequality/compactness were derived for truncated

potentials defined on Rn × R+ .

Such fractional integral operators defined on the half-space arise in the study of boundary value problems

in PDEs, particularly in polyharmonic differential equations. Some applications of the operator Iα in weighted

estimates for gradients were presented in [30], p. 923.

The Lp → Lq
v (p ≤ q) boundedness/compactness criteria for one-sided potentials

Rαf(x) =

x∫
0

f(t)

(x− t)1−α
dt

were found in [18] (see also [24]). That result was generalized in [20] for kernel operators involving, for example,

Riemann–Liouville, power-logarithmic, Erdelyi-Köber, and Hadamard kernels (see also monograph [5], Ch.2).

In [19] the third author of this paper derived trace inequality criteria for one-sided potential operators

defined on the upper half-plane

R̂αf(x, t) =

x∫
0

f(y)

(x− y + t)1−α
dy, (x, t) ∈ R2

+.

We refer also to [5], Chapters 9 and 10, for these and more general results.

The 2-weight problem for higher-dimensional Hardy-type operators defined on cones in Rn involving the

kernels from [4] and [22] was studied in [9] and [29]. A similar problem for Hardy-type transforms on star-shaped

regions was investigated in [27]. It should be emphasized that the results of [20] were generalized in [16] for

kernel operators defined on star-shaped regions.

Finally, we point out that 2-weight theory for positive kernel operators involving Hardy-type transforms

and fractional integrals was delivered in the following well-known monographs: [11], [15], [17], [23], [25], [5] ,

[13], etc.

2. Preliminaries

We begin this section with the definition of a homogeneous group.

120



ASHRAF et al./Turk J Math

A homogeneous group G is a simply connected nilpotent Lie group G on which Lie algebra g is given

a one-parameter group of transformations δt = exp(A log t), t > 0, where A is a diagonalized linear operator

on G with positive eigenvalues. For G the mappings exp ◦ δt ◦ exp−1, t > 0, are automorphisms on G , which

will be denoted by δt . The number Q = trA is called homogeneous dimension of G . The symbol e will stand

for the neutral element in G .

It is possible to equip G with a homogeneous norm r : G → [0,∞), which is a continuous function on G

and smooth on G \ {e} , satisfying the following conditions:

(i) r(x) = r(x−1) for every x ∈ G ;

(ii) r(δtx) = t · r(x) for every x ∈ G and t > 0;

(iii) r(x) = 0 if and only if x = e ;

(iv) there exists c0 ≥ 1 such that

r(xy) ≤ c0(r(x) + r(y)), x, y ∈ G.

A ball in G , centered at x and of radius ρ , is defined as

B(x, ρ) = {y ∈ G : r(xy−1) < ρ}.

It can be observed that δρB(e, 1) = B(e, ρ).

Let us fix a Haar measure |·| in G so that |B(e, 1)| = 1. Then |δtE| = tQ|E| ; in particular, |B(x, s)| = sQ

for x ∈ G, s > 0.

Examples of homogeneous groups are Euclidean n-dimensional space, Heisenberg groups, upper triangu-

lar groups, etc (see [6] for the definition and basic properties of homogeneous groups).

Let S be the unit sphere in G , i.e. S := {x ∈ G : r(x) = 1} . The next statement is useful for us.

Proposition A ([6], p. 14) Let G be a homogeneous group. There is a (unique) Radan measure σ on S

such that for all u ∈ L1(G) , ∫
G

u(x)dx =

∞∫
0

∫
S

u(δsȳ)s
Q−1dσ(ȳ)ds.

Furthermore, let A be a measurable subset of S with positive measure. We denote by E a measurable

cone in G :
E := {x ∈ G : x = δsx̄, 0 < s < ∞, x̄ ∈ A}.

We denote
Et := {y ∈ E : r(y) < t}.

Now we define the kernel operator given by (1), where k̂(x, y, t) is a nonnegative function defined on

Ẽ := {(x, y) ∈ E × E : r(y) < r(x)} × R+.

In the sequel we will also use the notation:

Sx := Er(x)/2c0 , Fx := Er(x) \ Sx,

F̂ := F × [0,∞), λ′ :=
λ

λ− 1
,
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where the constant c0 is from the triangle inequality for the homogeneous norm r , F is a measurable subset

of G , and λ is a number satisfying the condition λ ∈ (1,∞).

Let Ω be a measurable subset of G and let w be an almost everywhere positive function (i.e. weight) on

Ω. Denote by Lp
w(Ω) (0 < p < ∞) the weighted Lebesgue space, which is the space of all measurable functions

f : Ω → C with the finite norm (quasi-norm if 0 < p < 1):

∥f∥Lp
w(Ω) =

∫
Ω

|f(x)|pw(x)dx

1/p

.

If w ≡ 1, then we denote Lp
w(Ω) by Lp(Ω).

Now we introduce a class of kernels defined on Ê .

Definition 1 We say that the kernel k̂ ∈ V̂λ, 1 < λ < ∞ , if

(i) there are positive constant c1 and c2 such that

k̂(x, y, t) ≤ c1k̂(x, δ1/(2c0)x, t) (2)

for all x, y ∈ E with 0 < r(y) ≤ r(x)/(2c0) and t > 0 ;

k̂(x, y, t) ≥ c2k̂(x, δ1/(2c0)x, t) (3)

for all x, y ∈ E with 0 < r(x)/(2c0) ≤ r(y) ≤ r(x) and t > 0 ;

(ii) there exists a positive constant c3 such that for all x ∈ E and t > 0∫
Fx

k̂λ
′
(x, y, t)dy ≤ c3

(
r(x)

)Q
k̂λ

′
(x, δ1/(2c0)x, t). (4)

Such conditions for kernel operators defined on the semi-axis first appeared in [20].

Remark 1 It can be checked easily that if k̂ ∈ V̂λ , then vk̂ ∈ V̂λ , where v is a weight on Ê .

Example 1 Let G = Rn and let λ be a number greater than 1 . Suppose that r(x) = |x|, δtx = tx, k̂(x, y, t) =(
|x−y|+ t

)α(x)−n
, where α(·) is a measurable function satisfying the condition n/λ < α(x) < n . Then k̂ ∈ V̂λ .

Indeed, first observe that in this case c0 = 1 . It is easy to check that (2) and (3) are satisfied for k̂ . Let

us verify that (4) holds. Denote

I(x) :=

∫
E|x|\E|x|/2

(
|x− y|+ t

)(α(x)−n)λ′

dy.

(i) Let t > |x| . Then we have

I(x) ≤ ct(α(x)−n)λ′
|x|n ≤ c

(
t+ |x|

)(α(x)−n)λ′

|x|n ≤ ck̂λ
′
(x, x/2, t)|x|n.
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(ii) Let now t ≤ |x| . Then

I(x) ≤
∫

E|x|

|x− y|(α(x)−n)λ′
dy ≤ c|x|(α(x)−n)λ′+n

≤ c
(
t+ |x|

)(α(x)−n)λ′+n ≤ ck̂λ
′
(x, x/2, t)|x|n.

Finally we see that (4) holds. 2

Let

Hf(x) =

∫
Er(x)

f(y)dy, x ∈ E,

be the Hardy–type transform defined on a cone E .

Proposition B ([3]) Let 1 < p ≤ q < ∞ . Suppose that E is a cone in a homogeneous group G . Then the

operator H is bounded from Lp(E) to Lq
u(E) if and only if

A := sup
s>0

 ∫
E\Es

u(x)dx


1/q

sQ/p′
< ∞.

For the next statements we refer to [17] (see Sec. 1.3.2) in the case of 1 ≤ q < p < ∞ , and [28] for

0 < q < 1 < p < ∞ .

Proposition C Let 0 < q < p < ∞ and let p > 1 . Suppose that w1−p′
is locally integrable on R+ . Then the

inequality  ∞∫
0

v(x)

 x∫
0

f(t)dt

q

dx

1/q

≤ c

 ∞∫
0

fp(x)w(x)dx

1/p

, f ≥ 0

holds if and only if


∞∫
0


 ∞∫

t

v(x)dx

 t∫
0

w1−p′
(x)dx

q−1

p/(p−q)

w1−p′
(t)dt


(p−q)/(pq)

< ∞.

The next lemma is well known (see [2] and [14], Sections 5.3 and 5.4), which is formulated here for the

special case.

Proposition D Let 0 < q < ∞, 1 < p < ∞ , and q < p . Suppose that v and w are almost everywhere positive

functions defined on Ê and E , respectively. If the kernel operator

AEf(x, t) =

∫
E

a(x, y, t)f(y)dy, (x, t) ∈ Ê
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is bounded from Lp
w(E) to Lq

v(Ê) , then AE is compact.

Now we prove the next statement.

Lemma 1 Let 1 < p ≤ q < ∞, v be a weight on Ê . Then the 2-weight inequality

∫
Ê

v(x, t)

( ∫
Er(x)

f(y)dy

)q

dxdt

)1/q

≤ c

(∫
E

w(f(x))pdx

)1/p

, f ≥ 0,

holds if and only if

sup
s>0

( ∫
E\Es

∞∫
0

v(x, t)dtdx

)1/q

sQ/p′
< ∞. (5)

Proof Necessity follows immediately by taking test functions f(y) = χEs(y) in the weighted inequality.

Let us denote

V (x) :=

∞∫
0

v(x, t)dt.

For sufficiency, observe that (5) together with Proposition B implies

∥Hf∥Lq
v(Ê) =

[ ∫
E

( ∞∫
0

v(x, t)dt

)( ∫
Er(x)

f(y)dy

)q

dx

]1/q

=

[ ∫
E

V (x)

( ∫
Er(x)

f(y)dy

)q

dx

]1/q

≤ c

(∫
E

fp(x)dx

)1/p

.

2

The next statement can be found, for example, in [10] (see Ch. 11, Section 4).

Lemma 2 Let 1 < p, q < ∞ and let (X,µ) and (Y, ν) be σ -finite measure spaces. If

∥∥a(x, y)∥
Lp′

µ (X)
∥Lq

ν(Y ) < ∞,

then the operator

Af(x) =

∫
X

a(x, y)f(y)dµ

is compact from Lp
µ(X) to Lq

ν(Y ) .

124



ASHRAF et al./Turk J Math

3. The main results

We begin this section with the boundedness result.

Theorem 1 Let 1 < p ≤ q < ∞ and let k̂ ∈ V̂p . The following statements are then equivalent:

(i) K̂ is bounded from Lp(E) to Lq
v(Ê);

(ii) B := sup
s>0

( ∫
E\Es

∞∫
0

v(x, t)k̂q(x, δ1/(2c0)x, t)dtdx

)1/q

sQ/p′
< ∞;

(iii) B1 := sup
k∈Z

( ∫
E

2k+1\E2k

∞∫
0

v(x, t)k̂q(x, δ1/(2c0)x, t)dtdx

)1/q

2kQ/p′
< ∞.

Proof Taking Remark 1 into account, without loss of generality we can assume that v ≡ 1. First we show

that (ii) ⇒ (i). Let f ≥ 0. We have

∥K̂f∥q
Lq(Ê)

≤ c

∫
Ê

(∫
Sx

k̂(x, y, t)f(y)dy

)q

dxdt

+c

∫
Ê

(∫
Fx

k̂(x, y, t)f(y)dy

)q

dxdt

=: cI1 + cI2.

Lemma 1 and the condition k̂ ∈ V̂p yield that

I1 ≤ c

∫
Ê

k̂q(x, δ1/(2c0)x, t)

( ∫
Er(x)

f(y)dy

)q

dxdt

≤ cBq

(∫
E

fp(y)dy

)q/p

.

Applying Hölder’s inequality and the condition k̂ ∈ V̂p , we find that

I2 ≤
∫
Ê

(∫
Fx

fp(y)dy

)q/p(∫
Fx

k̂p
′
(x, y, t)dy

)q/p′

dxdt

≤ c

∫
Ê

k̂q(x, δ1/(2c0)x, t)
(
r(x)

)Qq/p′
( ∫
Er(x)

fp(y)dy

)q/p

dxdt

(6)
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≤ c
∑
k∈Z

( ∫
E

2k+1\E2k

∞∫
0

k̂q(x, δ1/(2c0)x, t)dxdt

)

×
( ∫
E

2k+1\E2k

fp(y)dy

)q/p

2kQq/p′

≤ cBq∥f∥qLp(E).

Now we prove that (i) ⇒ (iii). Let fk(x) = χE
2k+1

(x). Then ∥fk∥Lp(E) = c2kQ/p , where c does not

depend on k . Furthermore, by the condition k ∈ V̂p (in particular, by (3)), we have

∥K̂f∥q
Lq(Ê)

≥
∫

E
2k+1\E2k

∞∫
0

(∫
Fx

k(x, y, t)dy

)q

dtdx

≥ c

∫
E

2k+1\E2k

∞∫
0

kq(x, δ1/(2c0)x, t)
(
r(x)

)Qq
dtdx

≤ c

( ∫
E

2k+1\E2k

∞∫
0

kq(x, δ1/(2c0)x, t)dtdx

)
2kQq.

Hence, we conclude that (i) implies (iii).

To prove the implication (iii) ⇒ (ii), we take s > 0. Then s ∈ [2m, 2m+1) for some integer m . Then

( ∫
E\Es

∞∫
0

kq(x, δ1/(2c0)x, t)dtdx

)
sQq/p′

≤ c

( ∫
E\E2m

∞∫
0

kq(x, δ1/(2c0)x, t)dtdx

)
2mQq/p′

= c

∞∑
k=m

( ∫
E

2k+1\E2k

∞∫
0

kq(x, δ1/(2c0)x, t)dtdx

)
2mQq/p′

≤ cBq
12

mQq/p′
∞∑

k=m

2−kQq/p′
≤ cBq

1 .

Hence, B ≤ B1. 2

The compactness result reads as follows:
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Theorem 2 Let 1 < p ≤ q < ∞ and let k̂ ∈ V̂p . Then the following statements are equivalent.

(i) K̂ is compact from Lp(E) to Lq
v(Ê);

(ii) B < ∞ and lim
s→0

B(s) = lim
s→∞

B(s) = 0,where B is defined in Theorem 1 and

B(s) :=

( ∫
E\Es

∞∫
0

v(x, t)k̂q(x, δ1/(2c0)x, t)dtdx

)1/q

sQ/p′
;

(iii) B1 < ∞ and lim
k→−∞

B1(k) = lim
k→+∞

B1(k) = 0,where B1 is defined in Theorem 1 and

B1(k) =

( ∫
E

2k+1\E2k

∞∫
0

v(x, t)k̂q(x, δ1/(2c0)x, t)dtdx

)1/q

2kQ/p′
.

Proof Due to Remark 1 we assume that v ≡ 1. Let us first we show that (ii) ⇒ (i). Denoting Êt = Et ×R+

we have that

K̂f(x, t) = χÊa
(x, t)K̂f(x, t) + χÊb\Êa

(x, t)K̂f(x, t)

+χÊ\Êb
(x, t)K̂(fχÊb/(2c0)

)(x, t) + χÊ\Êb
(x, t)K̂(fχÊ\Êb/(2c0)

)(x, t)

=: K̂1f(x, t) + K̂2f(x, t) + K̂3f(x, t) + K̂4f(x, t),

where 0 < a < b < ∞ . It is obvious that

K̂2f(x, t) =

∫
E

k∗(x, y, t)f(y)dy,

where k∗(x, y, t) = χÊb\Êa
(x, t)χEr(x)

(y)k(x, y, t). Now observe that the condition k̂ ∈ V̂p yields

S :=

∫
Ê

(∫
E

(
k∗(x, y, t)

)p′

dy

)q/p′

dxdt

=

∫
Êb\Êa

( ∫
Er(x)

(
k̂(x, y, t)

)p′

dy

)q/p′

dxdt

≤ c

∫
Êb\Êa

( ∫
Er(x)/2

(
k̂(x, y, t)

)p′

dy

)q/p′

dxdt

+c

∫
Êb\Êa

( ∫
Er(x)\Er(x)/2

(
k̂(x, y, t)

)p′

dy

)q/p′

dxdt

≤ c

∫
Êb\Êa

k̂q(x, δ1/(2c0)x, t)
(
r(x)

)Qq/p′

dxdt

≤ cbQq/p′
∫

Êb\Êa

k̂q(x, δ1/(2c0)x, t)dxdt < ∞.
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Hence S < ∞ and, consequently, by Lemma 2 we have that K̂2 is compact for every a and b . In a

similar manner we conclude that K̂3 is also compact. Furthermore, taking into account arguments used in the

proof of Theorem 1, we find that

∥K̂2∥ ≤ cB(a) := c sup
s≤a

( ∫
Êa\Ês

k̂q(x, δ1/(2c0)x, t)dxdt

)1/q

sQ/p′
;

∥K̂3∥ ≤ cB(b) := c sup
s≥b

( ∫
Ê\Ês

k̂q(x, δ1/(2c0)x, t)dxdt

)1/q(
sQ − bQ

)1/p′

.

Hence,

∥K̂ − K̂1 − K̂4∥ ≤ ∥K̂2∥+ ∥K̂3∥ ≤ c
(
B(a) +B(b)

)
→ 0

as a → 0 and b → ∞ because lim
t→0

B(t) = lim
t→∞

B(t) = 0.

The implication (iii) ⇒ (ii) follows in the same way as in the case of the implication (iii) ⇒ (ii) in the

proof of Theorem 1; therefore, we omit the details.

Now we prove that (i) ⇒ (iii). Let us take fj(y) = χÊ2j+1\Ê2j−1/c0

(y)2−jQ/p . Then for ϕ ∈ Lp(E), we

have ∣∣∣ ∫
E

fj(y)ϕ(y)dy
∣∣∣ ≤ ( ∫

E2j+1\E2j−1/c0

|ϕ(y)|p
′
dy

)1/p′

−→ 0

as j → −∞ or j → +∞ . On the other hand, condition (3) implies

∥K̂fj∥Lq(Ê) ≥
( ∫
Ê2j+1\Ê2j

(
K̂fj(x, t)

)q
dxdt

)1/q

≥ c

[ ∫
Ê2j+1\Ê2j

k̂q(x, δ1/(2c0)x, t)

(∫
Fx

fj(y)dy

)q

dxdt

]1/q

≥ c

( ∫
Ê2j+1\Ê2j

k̂q(x, δ1/(2c0)x, t)2
jQq/p′(

r(x)
)Qq

dxdt

)1/q

≥ c

( ∫
Ê2j+1\Ê2j

k̂q(x, δ1/(2c0)x, t)

)1/q

2jQq/p = cB(j).

By virtue of the fact that the compact operator maps weakly convergent sequence into a strongly convergent

one, we conclude that (i) implies (iii). 2

Let us now consider the case q < p .

Theorem 3 Let 0 < q < p < ∞ and let p > 1 . Suppose that k ∈ V̂p . Then the following statements are

equivalent.
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(i) K̂ is bounded from Lp(E) to Lq
v(Ê) ;

(ii) K̂ is compact from Lp(E) to Lq
v(Ê) ;

(iii)

D :=

[ ∫
E

( ∫
Ê\Êr(x)

v(y, t)kq(y, δ1/(2c0)y, t)dydt

) p
p−q (

r(x)
)Qp(q−1)

p−q dx

] p−q
pq

< ∞.

Proof Due to Remark 1, without loss of generality we assume that v ≡ 1. Let us prove that the implication

(iii) ⇒ (i) holds. Let f ≥ 0. Keeping the notation of the proof of Theorem 1 and taking Proposition A into

account, we see that

I1 ≤ c

∫
Ê

k̂q(x, δ1/(2c0)x, t)

(∫
Sx

f(y)dy

)q

dx

= c

∫
E

( ∞∫
0

k̂q(x, δ1/(2c0)x, t)dt

)(∫
Sx

f(y)dy

)q

dx

= c

∫
E

v(x)

(∫
Sx

f(y)dy

)q

dx

= c

∞∫
0

sQ−1

[ ∫
A

v(δsx)dσ(x)

][ s/2c0∫
0

τQ−1

(∫
A

f(δτy)dσ(y)

)
dτ

]q
ds

≤ c

∞∫
0

ṽ(s)

(∫ s

0

F (τ)dτ

)q

ds,

where

v(x) :=

∞∫
0

k̂q(x, δ1/(2c0)x, t)dt;

ṽ(s) := sQ−1

∫
A

v(δsx)dσ(x);

F (τ) := τQ−1

∫
A

f(δτy)dσ(y).

Now observe that

D =

[ ∞∫
0

sQ−1

( ∫
E\Es

∞∫
0

k̂q(y, δ1/(2c0)y, t)dtdy

)p/(p−q)

sQp(q−1)/(p−q)ds

](p−q)/(pq)

=

[ ∞∫
0

sQp(q−1)/(p−q)+Q−1

( ∫
E\Es

v(y)dy

)p/(p−q)

ds

](p−q)/(pq)

(7)
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=

[ ∞∫
0

sQp(q−1)/(p−q)+Q−1

( ∞∫
s

ṽ(s)ds

)p/(p−q)

ds

](p−q)/(pq)

= c

[ ∞∫
0

( ∞∫
s

ṽ(s)ds

)p/(p−q)( s∫
0

τ (Q−1)(1−p)(1−p′)dτ

)p(q−1)/(p−q)

× s(Q−1)(1−p)(1−p′)ds

](p−q)/(pq)

.

Consequently, Proposition C, Hölder’s inequality, and Proposition A imply

I1 ≤ c

( ∞∫
0

s(Q−1)(1−p)
(
F (s)

)p
ds

)q/p

= c

[ ∞∫
0

s(Q−1)(1−p)+(Q−1)p

(∫
A

f(δsx)dσ(x)

)p

ds

]q/p

≤ c

[ ∞∫
0

sQ−1

(∫
A

fp(δsx)dσ(x)

)
ds

]q/p
= c∥f∥qLp(E).

Furthermore, due to Hölder’s inequality and the condition k̂ ∈ V̂p we find that

I2 ≤
∫
Ê

(∫
Fx

fp(y)dy

)q/p(∫
Fx

k̂p
′
(x, y, t)dy

)q/p′

dxdt

≤ c

∫
Ê

(∫
Fx

fp(y)dy

)q/p

k̂q(x, δ1/(2c0)x, t)
(
r(x)

)Qq/p′

dxdt

≤ c
∑
k∈Z

( ∫
E

2k+1\E2k

∞∫
0

k̂q(x, δ1/(2c0)x, t)
(
r(x)

)Qq/p′

dtdx

)

×
( ∫
E

2k+1\E2k−1/c0

fp(y)dy

)q/p

≤ c

[∑
k∈Z

∫
E

2k+1\E2k−1/c0

fp(y)dy

]q/p

×
[∑
k∈Z

( ∫
E

2k+1\E2k

v(x)
(
r(x)

)Qq/p′

dx

)p/(p−q)](p−q)/p

=: c∥f∥qLp(E)

(
D
)q
,
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where

D :=

[∑
k∈Z

( ∫
E

2k+1\E2k

v(x)
(
r(x)

)Qq/p′

dx

)p/(p−q)](p−q)/pq

.

Furthermore, it is clear that

(
D
)pq/(p−q) ≤ c

∑
k∈Z

2kQq(p−1)/(p−q)

( ∫
E

2k+1\E2k

v(x)dx

)p/(p−q)

≤ c
∑
k∈Z

∫
E

2k
\E

2k−1

(
r(y)

)kQp(q−1)/(p−q)
( ∫
E\Er(y)

v(x)dx

)p/(p−q)

dy

=

∫
E

(
r(y)

)kQp(q−1)/(p−q)

×
( ∫
E\Er(y)

∞∫
0

kq(x, δ1/(2c0)x, t)dtdx

)p/(p−q)

dy

= cDpq/(p−q) < ∞.

Now we show that (i) ⇒ (iii). Let n ∈ Z, n ≥ 2, and let

vn(x) :=

( ∞∫
0

k̂q(x, δ1/(2c0)x, t)dt

)
χEn\E1/n

(x).

Suppose that

fn(x) :=

( ∫
E\Er(x)

vn(y)dy

)1/(p−q)(
r(x)

)Q(p−1)/(p−q)
.

Then

∥fn∥Lp(E) =

[ ∫
E

( ∫
E\Er(x)

vn(y)dy

)p/(p−q)(
r(x)

)Qp(q−1)/(p−q)
dx

]1/p

=

[ ∫
E

χEn\E1/n
(x)

( ∫
E\Er(x)

∞∫
0

k̂q(x, δ1/(2c0)x, t)dtdy

)p/(p−q)

×
(
r(x)

)Qp(q−1)/(p−q)
dx

]1/p
< ∞.
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Furthermore, by the condition k̂ ∈ V̂p (in particular, by (3)), we have that

∥K̂f∥Lq
v(Ê) ≥

[ ∫
Ê

(∫
Fx

fn(y)k̂(x, y, t)dy

)q

dxdt

]1/q

≥ c

[ ∫
Ê

kq(x, δ1/(2c0)x, t)

×
( ∫
E\Er(x)

vn(y)dy

)q/(p−q)(
r(x)

)Qq(p−1)/(p−q)
dxdt

]1/q

= c

[ ∫
E

( ∞∫
0

k̂(x, δ1/(2c0)x, t)dt

)

×
( ∫
E\Er(x)

vn(y)dy

)q/(p−q)(
r(x)

)Qq(p−1)/(p−q)
dx

]1/q

≥ c

[ ∫
E

vn(x)

( ∫
E\Er(x)

vn(y)dy

)q/(p−q)(
r(x)

)Qq(p−1)/(p−q)
dx

]1/q

= c

[ ∞∫
0

sQ−1

( ∫
E\Es

vn(y)dy

)q/(p−q)

×
(∫

A

vn(δsx)dσ(x)

)
sQq(p−1)/(p−q)dx

]1/q

= c

[ ∞∫
0

( ∞∫
s

τQ−1

∫
A

vn(δτy)dσ(y)dτ

)q/(p−q)

sQ−1

×
(∫

A

vn(δsx)dσ(x)

)
sQq(p−1)/(p−q)ds

]1/q

= c

[ ∞∫
0

( ∞∫
s

τQ−1

∫
A

vn(δτy)dσ(y)dτ

)p/(p−q)

sQq(p−1)/(p−q)−1ds

]1/q

= c

[ ∫
E

(
r(x)

)Qq(p−1)/(p−q)−Q
( ∫
E\Er(x)

vn(y)dy

)p/(p−q)

dx

]1/q

= c

[ ∫
E

(
r(x)

)Qp(q−1)/(p−q)
( ∫
E\Er(x)

vn(y)dy

)p/(p−q)

dx

]1/q
.

Hence, the bondedness of K̂ implies that
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[ ∫
E

(
r(x)

)Qp(q−1)/(p−q)
( ∫
E\Er(x)

ṽn(y)dy

)p/(p−q)

dx

](p−q)/(pq)

≤ c.

Passing to the limit as n → ∞ , we conclude that D < ∞ .

Finally, Proposition D implies (i) ⇔ (ii). 2

Remark 2 Taking Remark 1 into account, it is possible to formulate the main results of this paper in the

equivalent form in terms only of the kernel k̂ .

Remark 3 Suppose that

Kf(x) =

∫
Er(x)

k(x, y)f(y)dy, x ∈ E,

where

k(x, y) =

( ∞∫
0

k̂(x, y, t)qdt

)1/q

. (8)

Definition A [3] Let k be a positive function on {(x, y) ∈ E ×E : r(y) < r(x)} and let 1 < λ < ∞ . We say

that k ∈ Vλ , if

(a) there exist positive constants c1 , c2 , and c3 such that

k(x, y) ≤ c1k(x, δ1/(2c0)x) (9)

for all x, y ∈ E with r(y) < r(x)/(2c0);

(b)

k(x, y) ≥ c2k(x, δ1/(2c0)x) (10)

for all x, y ∈ E with r(x)/(2c0) < r(y) < r(x);

(c) ∫
Fx

kλ
′
(x, y)dy ≤ c3r

Q(x)kλ
′
(x, δ1/(2c0)x), (11)

for all x ∈ E .

Using Minkowski integral inequality and taking into account the main results of this paper and [3], it

can be checked that if k̂ ∈ V̂p and k ∈ Vp , where k is defined by (8), then the boundedness/compactness of

K from Lp(E) to Lq(E) implies the boundedness/compactness of K̂ from Lp(E) to Lq(Ê). Furthermore, if

q ≤ p′ , and k̂ ∈ V̂p , then k ∈ Vp , where k is defined by (8). Indeed, let k̂ ∈ V̂p . Then (9) and (10) are obvious

for k , while Minkowski integral inequality yields

∫
Fx

k(x, y)p
′
dy ≤

( ∞∫
0

(∫
Fx

k̂(x, y, t)dy

)q/p′

dt

)p′/q

≤ c3r(x)
Qk(x, δ1/(2c0)x, t)

p′
.

Consequently, for this p and q , the results of this paper follow from the results of [3].
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